Fixed-motion shadowing on gravitational n-body simulations

Yong-Kang Zhu and Wayne B. Hayes

Department of Computer Science University of California, Irvine

{yongkanz,wayne}@ics.uci.edu

Outline

- 1. Introduction of Shadowing
- 2. Refinement Algorithm
- 3. Fixed-motion Shadowing
- 4. Results and Discussions

2-galaxy collision by John Dubinski

See the animation ...

Introduction

Gravitational N-body problem:

$$\begin{pmatrix} \vec{p} \\ \vec{v} \end{pmatrix}' = \begin{pmatrix} \vec{v} \\ \vec{a} \end{pmatrix}$$

where:
$$\vec{a}_{ij} = \frac{Gm_im_j}{\|\vec{p}_j - \vec{p}_i\|^3} (\vec{p}_j - \vec{p}_i)$$

Softened:
$$\vec{a}_{ij} = \frac{Gm_im_j}{(\|\vec{p}_j - \vec{p}_i\|^2 + \varepsilon^2)^{\frac{3}{2}}} (\vec{p}_j - \vec{p}_i)$$

Introduction

A Shadow: an exact trajectory that stays close to the numerical one for a long time.

Refinement

- Why shadowing?
 - Can we trust numerical simulations?
- GHYS/QT/H refinement algorithm
 - GHYS: Newton-like, noise reduction
 - QT: generalize GHYS to high-dimensional systems
 - H: optimize GHYS/QT to be about 100 times faster
 - Not rigorous shadowing
 - QT believe, failure of refinement means no real solution nearby
 - $O(N^3)$ time

Refinement

Numerical: $y_1, y_2, y_3, \dots y_i, \dots$ Shadow (if exists): $x_1, x_2, x_3, \dots x_i, \dots$, with $x_{i+1} = \varphi(x_i)$ Correction: $c_i = x_i - y_i$ Error: $y_{i+1} = \widehat{\varphi}(y_i) + e_{i+1}$

So,
$$c_{i+1} = x_{i+1} - y_{i+1}$$

= $\varphi(x_i) - \varphi(y_i) - e_{i+1}$
= $D\varphi(y_i) \cdot c_i - e_{i+1}$

Fixed-motion Shadowing

- High dimensional, gravitational n-body simulation
 - John Dubinski, parallel tree-code, leapfrog integrator
 - $N = 10^6$ particles, softened
 - 2-galaxy collision
- Fixed-position shadowing (FPS) : Pinball Machine
 - N particles: N M fixed, M movable
 - Shadowing *M* movable particles
 - If $N = 10^6$, only $M \le N$ is feasible
- Fixed-motion shadowing (FMS)
 - *N* particles, all movable
 - Shadowing one or a few particles
 - Interpolation

Fixed-motion Shadowing

- Procedure of FMS
 - Run cheap leapfrog integrator, and approximate force calculation
 - Obtain the noisy trajectory
 - *N*: number of particles
 - \mathcal{E} : softening
 - *h* : integrating time step
 - θ : opening angle
 - Separate the noisy trajectory of a particle from the whole trajectory
 - Run GHYS/QT/H refinement algorithm
 - Input : the above trajectory of the particle we want to shadow
 - Output : the longest shadow
 - Plug-in : Hermite interpolation between two time steps, and

a new heuristic to accelerate refinement

Fixed-motion Shadowing

- A warm-up:
 Figure-8, 3-body problem

 ⁴⁰⁰/₄₀₀

 ⁴⁰⁰/₄₀₀
 <li
 - Always truncate double precision to single precision at each step
 - With initial condition in 3D, but $z = v_z = 0$, h = 0.05
 - Do FMS: find a 20,000-step shadow (~160 loops)
 - Shadow distance: ~10⁻⁵

Force Computations

- Direct force computation: $O(N^2)$
- In simulation:
 - Approximation: $O(N \cdot log(N))$
 - θ : 0.9 ~ 1.2 (Error: ~ 1%)
- In shadowing:
 - No approximation
 - Accurate floating-point summation
 - bucket summation
 - iFastSum: guaranteed correctly rounded, 5 times slower
 - Advantages
 - "physically correct"
 - LSODE works better (continuous force)

- Randomly pick particles for each mass
- Fixed-motion shadowing each of these particles
- Total Average Shadow Length: 9.82

Mass	Average Shadow Length
Disk 1	4.21
Disk 2	5.85
Bulge 1	3.06
Bulge 2	2.38
Halo 1	18.86
Halo 2	25.58

before the collision occurs

- Empirical results for FPS
 - Choose simulation parameters: $h^2 \propto arepsilon^2 N^{1/3}$
 - For same k (when $\,\mathcal{E}\in [\sim 0.2,1]\,)$,

we should get similar shadow length, where $h^2 = k^2 \varepsilon^2 (\frac{N}{100})^{1/3}$

- Try small systems
 - Scale N=10⁶ simulation into N=10³,10⁴
 - Eliminate one galaxy
- Does FPS's formula work for FMS?
 - Do analysis for each type of particles
 - Switch to *h* to crossing time = R / V
 - 50% mass radius, R
 - Average speed, V
 - Count N for each type of particles
 - Compute k from $h^2 = k^2 \varepsilon^2 (\frac{N}{100})^{1/3}$
 - Estimate the average shadow length for the same *k*

Does FPS's formula work for FMS? (Cont'd)
 – N=10⁶

Mass	Average	Expected
Disk 1	4.21	23.23
Disk 2	5.85	22.06
Bulge 1	3.06	3.23
Bulge 2	2.38	3.06
Halo 1	18.86	97.29
Halo 2	25.58	91.71

- Does FPS's formula work for FMS? (Cont'd)
 - N=10³ (15 softenings each)

- Does FPS's formula work for FMS? (Cont'd)
 - N=10⁴ (4 softenings each)

- Some conclusions
 - It works best for Bulge
 - For different *N*, the pictures look similar
 - Possible reasons
 - In FPS, all the particles in 1-unit sphere, like Bulge
 - Other particles slightly influence Bulge
 - Many Halo particles have full shadows (simulate longer? CPU?)
 - Disk is not distributed in a sphere
 - All Bulge-shadows end far before collision occurs, so got similar results when eliminating one galaxy
- Future work: how to make shadows longer?

Thanks!

Q & A