Derivative-Free Constraint-Driven

Global Optimization

M.H. van Emden University of Victoria, Canada

vanemden@cs.uvic.ca
http://webhome.cs.uvic.ca/~vanemden

The Optimization Paradigm

Choose *decision variables* so as to maximize (or minimize) the *objective function* (can measure error, cost, profit, ...).

The decision variables are subject to *constraints*. The paradigm can be modelled mathematically.

The Optimization Paradigm, mathematically

Minimize $f(x_0, \ldots, x_{n-1})$ subject to

$$g_0(x_0, \dots, x_{n-1}) \leq 0$$

...
 $g_{m-1}(x_0, \dots, x_{n-1}) \leq 0$

obj. function	constraints	derivatives	
linear	linear	N	LP
non-linear		N	Moore-Skelboe
non-linear		Y	enum. crit. points
non-linear	equalities	Y	Lagrange
non-linear	inequalities	Y	KKT, John
non-linear	inequalities	N	CDGO

Stages for development of optimization algorithm:

1. No use of derivatives; interval arithmetic

- 2. Convert to interval constraints
- 3. Add as redundant constraints KKT or John conditions

This talk: only first stage.

Non-linear Objective Function:

Non-linear Constraints:

(Heuristic) SIVIA for the constraints

Two lists of boxes: Y, ? (Ns are discarded)

CDGO: Constraint-Driven Global Optimization

- Y-list: Contained in interior of feasible set. Allows unconstrained optimization. Gives upper bound to cut off boxes of both types. Can use (dynamic) Moore-Skelboe or point method. Gives lower bound on interior.
- ?-list: Contains boundary of feasible set. Only atomic boxes. Only need to store one. Gives lower bound on boundary if ?-list contains a feasible point.

Equality constraints

So far only inequality constraints $g_i(x_0, \ldots, x_{n-1}) \leq 0$.

If equality, then feasible set has no interior, numerically. That is, Y-list is empty.

Equality in practice: $|g_i(x_0, \ldots, x_{n-1})| \le \epsilon > 0.$

Of course, Interval Newton gives exact treatment of equality constraints.

Future work: incorporate Interval Newton into SIVIA.

Contributions of this work

- Verified bounds for global optimum of non-linear objective function subject to non-linear inequality constraints.
- Dynamic Moore-Skelboe (add boxes on the fly).
- Heuristic SIVIA (control processing order of boxes).