
1

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Using OpenMP to Parallelize
Interval Algorithms

Ruud van der Pas

Senior Staff Engineer
Technical Developer Tools

Sun Microsystems, Menlo Park, CA, USA

SCAN 2008
The University of Texas at El Paso

El Paso, TX, USA
Sep 29-Oct 3, 2008

2

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Goals Of This Talk

Present the OpenMP Parallel Programming
Model as a possible solution to speed up

interval algorithms that require a significant
time to compute

Demonstrate that Interval Algorithms are not
exempt from Data Races

3

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Outline
❑ Interval Arithmetic in the Sun Studio Compilers

❑ The OpenMP Programming Model

● Includes a short demo

❑ Data Races

❑ Extensive demo

● An interval program

✔ Written in Fortran
✔ Parallelized with OpenMP

● Thread Analyzer - Detects data races (and deadlock)

❑ Wrap Up

4

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

The Sun Studio™
Compilers and Tools

For Free

5

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Sun Studio Compilers and Tools
❑ Fortran (f95), C (cc) and C++ (CC) compilers

● Support sequential optimization, automatic
parallelization and OpenMP

❑ The Sun Studio Performance Analyzer

● Languages supported: Fortran, C, C++ and Java

● Parallel: AutoPar, OpenMP, POSIX/Solaris Threads, MPI

❑ The Sun Studio Thread Analyzer

● Languages supported: C, C++ and Fortran

● Parallel: OpenMP, POSIX/Solaris Threads

❑ Sun Studio Integrated Development Environment

❑ Additional tools

6

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Supported Platforms
❑ The Sun Studio compilers and tools are supported on

various AMD and Intel processors, as well as all SPARC
processors

● SPARC has the siam instruction to better support
interval arithmetic

❑ Operating Systems supported

● Solaris

● Certain Linux implementations (RedHat, Suse)

❑ Regarding Interval Arithmetic

● Fortran has the best and easiest support

✔ Intervals are a built in, native, data type
● C++ support is through a class library

7

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

The Sun Web Site for Developers

http://developers.sun.com

8

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

http://developers.sun.com/sunstudio

The web site for the Sun Studio
Compilers and Tools

downloads

9

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Sun Studio Support for Interval
Arithmetic

10

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Intervals in Fortran - Key Features
❑ Native Interval Data Type

❑ Fortran Intrinsic Functions (e.g. EXP, LOG, SIN, ...)

❑ Interval Specific Intrinsic (Set) Functions

● width, midpoint, hull, union, subset, element of,

❑ Order Relations (e.g. “certainly less than”)

❑ Input/Output can be handled in different ways

❑ Integer Power understands Dependence

❑ Mixed mode interval expressions

❑ Context dependent literal interval constants

11

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Support in C++
❑ Implemented as class library

❑ SPARC only

❑ Same functionality as Fortran

● No mixed mode support because of C++ language
standard and not a native data type

12

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Basic Arithmetic Operations

[a,b] + [c,d] = [a+c,b+d]
[a,b] - [c,d] = [a-d,b-c]
[a,b] * [c,d] = [min(a*c,a*d,b*c,b*d,
 max(a*c,a*d,b*c,b*d)]
[a,b] / [c,d] = [min(a/c,a/d,b/c,b/d),
 max(a/c,a/d,b/c,b/d)]

(if 0 is not included in [c,d])

Assume that [a,b] and [c,d] are intervals

For a basic operator "op" in {+,-,*,/} we can then define:
[a,b] "op" [c,d] ⊇ {x "op" y | x [a,b] and y [c,d]}

Formulas for basic operations:

13

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Support For Intrinsic Functions
All Fortran intrinsic functions have an interval

counterpart if they either return a REAL, or
accept a REAL type argument

% cat -n cos.f95
 1 program demo
 2
 3 print *,'cos (-0.5) = ',cos(-0.5D0)
 4 print *,'cos (+0.5) = ',cos(+0.5D0)
 5 print *,'cos [-0.5,+0.5] = ',cos([-0.5,+0.5])
 6
 7 stop
 8 end

% f95 -o cos -xia cos.f95
% ./cos
 cos (-0.5) = 0.8775825618903728
 cos (+0.5) = 0.8775825618903728
 cos [-0.5,+0.5] = [0.87758256189037264,1.0]

14

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Integer Powers

The Dependence Problem:
[-1,2]*[-1,2] = [-2,4]

% f95 -o pow -xia pow.f95
% ./pow
X = [-1.00000000, 2.00000000]
X*X = [-2.00000000, 4.00000000]
X**2 = [0.00000000, 4.00000000]

The Sun Compiler will do
the right thing:

+4

-2

+2-1

15

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Order Relations - What To Do ?

[]
a b

][
c d

[a,b] certainly less than [c,d]

[]
a b

Implementation in the Sun compiler:
One of {C, P, S}, followed by LT/LE/EQ/NE/GE/GT

Example: A .CLT. B

[]
c d

[a,b] possibly less than [c,d]

16

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Set-Theoretic Interval Operators

Name Math. Notation Fortran Result Type

Interval hull X .IH. Y Interval
Intersection X .IX. Y Interval
Disjoint X .DJ. Y Logical
Element R .IN. Y Logical
Interior X .INT. Y Logical
Proper subset X .PSB. Y Logical
Proper superset X .PSP. Y Logical
Subset X .SB. Y Logical
Superset X. SP. Y Logical

X ∪ Y
X ∩ Y

X ∩ Y = ∅
r ∈ Y

X < Y and X < Y
X ⊂ Y
X ⊃ Y
X ⊆ Y
X ⊇ Y

17

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Interval Specific Intrinsics

Name Definition Name Result Type

Infimum inf([a,b]) = a INF REAL
Supremum sup([a,b]) = b SUP REAL
Width w([a,b]) = b-a WID REAL
Midpoint (a+b) / 2 MID REAL
Magnitude max(|a|,|b|) MAG REAL
Mignitude min(|a|,|b|)* MIG REAL
Empty Test TRUE if empty ISEMPTY LOGICAL
Number Of Digits Max. digits NDIGITS INTEGER

*) Returns 0 if 0 ∈ [a,b]

18

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Additional Features
❑ A closed interval system in which all expressions

(including singularities and indeterminate forms) are
defined

● Examples: 1/0, xy with x=y=0, operations involving +∞
and/or -∞

❑ Domain constraints on intrinsic functions are gracefully
handled

● Example: SQRT([-1 , +1]) = [0 , 1]

❑ Input / Output can be handled in different ways

❑ Context dependent literal interval constants

❑ Mixed mode expressions

19

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Example Code

 Program Demo
 logical :: not_done = .true.
 interval(kind=8) :: ai, bi
 write(*,*) 'Please give values for A and B'
 do while (not_done)
 read(*,*,end=9000) ai, bi

 write(*,9010) '+',ai,'+',bi,ai+bi
 write(*,9010) '-',ai,'-',bi,ai-bi
 write(*,9010) '*',ai,'*',bi,ai*bi
 write(*,9010) '/',ai,'/',bi,ai/bi
 write(*,*)
 end do

 9000 continue
 stop
 9010 format(1X,'A',1X,(A),1X,'B =',VF17.4,1X,(A), &
 1X,VF17.4,' = ',VF17.4)
 end

20

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Example Closed Interval System
% f95 -xia math.f95
% ./a.out
 Please give values for A and B
 A + B =[-1.0000, 3.0000] + [1.0000, 2.0000] = [0.0000, 5.0000]
 A - B =[-1.0000, 3.0000] - [1.0000, 2.0000] = [-3.0000, 2.0000]
 A * B =[-1.0000, 3.0000] * [1.0000, 2.0000] = [-2.0000, 6.0000]
 A / B =[-1.0000, 3.0000] / [1.0000, 2.0000] = [-1.0000, 3.0000]

 A + B =[1.0000, 2.0000] + [-1.0000, 3.0000] = [0.0000, 5.0000]
 A - B =[1.0000, 2.0000] - [-1.0000, 3.0000] = [-2.0000, 3.0000]
 A * B =[1.0000, 2.0000] * [-1.0000, 3.0000] = [-2.0000, 6.0000]
 A / B =[1.0000, 2.0000] / [-1.0000, 3.0000] = [-Inf, Inf]

21

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

http://developers.sun.com/sunstudio/
overview/topics/numerics_index.html

Documentation on Interval Arithmetic
support

22

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

http://developers.sun.com/sunstudio/
documentation/codesamples/index.jsp

Code samples (Fortran and C++)

23

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Pointers To More Information
❑ Documentation

● Fortran Interval Arithmetic Programming Reference

✔ http://docs.sun.com/app/docs/doc/819-5271
● C++ Interval Arithmetic Programming Reference

✔ http://docs.sun.com/app/docs/doc/819-5272
❑ More information, plus code examples, can be

downloaded from http://developers.sun.com/sunstudio

❑ Another useful web site (on numerical computations):

● http://developers.sun.com/sunstudio/overview/
topics/numerics_index.html

http://developers.sun.com/sunstudio/overview/

24

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Summary Interval Support
❑ The Sun Fortran and C++ compilers support Interval

Arithmetic

❑ The regular Basic Arithmetic Operations, intrinsic
functions and logical operations have been extended to
intervals

❑ In addition to this, several quality of implementation
features are supported:

● Closed interval system, domain constraints on
intrinsic functions, input/output, ontext dependent
literal interval constants, etc.

❑ We believe that this provides for a production quality
interval compiler

25

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

About Parallelization

26

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Why Parallelization ?
Parallelization is another optimization technique.

The goal is to reduce the execution time.

To this end, multiple processors, or cores, are used
T

im
e

1 core 4 cores
parallelization

Using 4 cores, the execution
time is 1/4 of the single core

time

27

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

What Is Parallelization ?

"Something" is parallel if there is a certain level
of independence in the order of operations

A sequence of machine instructions

A collection of program statements

An algorithm

The problem you're trying to solve

granularity

In other words, it doesn't matter in what order
those operations are performed

28

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

How To Program A Parallel Computer?
❑ The more well-known parallel programming models:

● A Single System (“Shared Memory”)

✔ POSIX Threads (standardized, low level)

✔ OpenMP (de-facto standard)

✔ Automatic Parallelization (compiler does it for you)

● A Cluster Of Systems (“Distributed Memory”)

✔ Sockets (standardized, low level)

✔ MPI - Message Passing Interface (de-facto standard)

● A Cluster of Shared Memory/Multicore Systems

✔ The best and worse of both worlds

today's focus

29

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Automatic Parallelization
❑Compiler analyzes loop for parallelism to exploit

❑Different iterations of the loop executed in parallel

❑Same binary used for any number of threads

for (i=0; i<1000; i++)
 a[i] = b[i] + c[i];

Thread 3

750-999

Thread 2

500-749

Thread 1

250-499

Thread 0

0-249

 OMP_NUM_THREADS=4

30

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Automatic Parallelization Example

 1 void mxv (int m,int n,double *a,double *b[],double *c)
 2 {
 3
 4 double sum;
 5
 6 for (int i=0; i<m; i++)
 7 {
 8 sum = 0.0;
 9 for (int j=0; j<n; j++)
10 sum += b[i][j]*c[j];
11 a[i] = sum;
12 }
13 }

% cc -c -fast -xrestrict -xautopar -xloopinfo mxv.c
"mxv.c", line 6: PARALLELIZED, and serial
 version generated
"mxv.c", line 9: not parallelized, unsafe
 dependence (sum)

parallel loop

= *

j

i

31

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

The Shared Memory Model

A Single System

0

M

1

M

P

M

Shared Memory

32

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

http://www.openmp.org

http://www.compunity.org

33

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

http://www.openmp.org

34

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

What is ?
❑ De-facto standard API for writing shared memory parallel

applications in C, C++, and Fortran

❑ Consists of:

● Compiler directives

● Run time routines

● Environment variables

❑ Specification maintained by the OpenMP
Architecture Review Board (ARB)

❑ Version 3.0 was released May 2008

● First compiler support now appearing

35

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Advantages of OpenMP
❑ Good performance and scalability

● If you do it right of course

❑ De-facto and mature standard

● Supported by a large number of compilers

❑ Requires little programming effort

❑ Preserves sequential version of application

❑ Supports incremental parallelization

❑ Maps naturally onto a multicore architecture:

● Lightweight

● Each thread efficiently executed by a hardware thread

36

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

The OpenMP Execution Model

Fork and Join Model
Master
Thread

Worker
ThreadsParallel region

Synchronization

Parallel region Worker
Threads

Synchronization

37

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Demo
Basic Parallelization with OpenMP

38

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Components of OpenMP 2.5

 Parallel regions

 Work sharing

 Synchronization

 Data-sharing
attributes

☞ private

☞ firstprivate

☞ lastprivate

☞ shared

☞ reduction

 Orphaning

Directives Environment
variables

 Number of threads

 Scheduling type

 Dynamic thread
adjustment

 Nested parallelism

Runtime
environment

 Number of threads

 Thread ID

 Dynamic thread
adjustment

 Nested parallelism

 Timers

 API for locking

39

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Learning Curve - Data Scoping
❑ In the Shared Memory Programming Model one has to

think about the use of the variables (“scoping”)

❑ There are two main types to distinguish

● Private

✔ Each thread has a local copy of the variable(s)
✔ Variable is “owned” by a thread
✔ Other threads will not see changes made

● Shared

✔ There is only one instance of the variable(s)
✔ Correct updates to such a variable is under control

of the developer

40

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

for (i=0; i<m; i++){
 sum = 0.0;
 for (j=0; j<n; j++)
 sum += b[i][j]*c[j];
 a[i] = sum;

 }

Thread 0 Thread 1
for (i=0,1,2,3,4) for (i=5,6,7,8,9)

OpenMP Example - Matrix Times Vector

i = 0 i = 5

a[0] = sum a[5] = sum

sum = Σ b[i=0][j]*c[j] sum = Σ b[i=5][j]*c[j]

i = 1 i = 6

... etc ...

 #pragma omp parallel for default(none) \
 private(i,j,sum) shared(m,n,a,b,c)

= *

j

i

parallel loop

41

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Shameless Plug - “Using OpenMP”

“Using OpenMP”
Portable Shared Memory
Parallel Programming

Chapman, Jost, van der Pas

MIT Press, October 2007

ISBN-10: 0-262-53302-2
ISBN-13: 978-0-262-53302-7

List price: 35 $US

All examples available soon!

(also plan to start a forum
on www.openmp.org)

42

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Why The Excitement About OpenMP 3.0 ?

Support for TASKS !

With this new feature, a wide range of
applications can now be parallelized

43

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Tasking Concept in OpenMP 3.0

Developer specifies tasks in application
Run-time system executes tasks

Encountering
thread adds
task to pool

Threads execute
tasks in the pool

44

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Example - A Linked List

 my_pointer = listhead;

 while(my_pointer) {

 (void) do_independent_work(my_pointer);

 my_pointer = my_pointer->next ;
 }

Hard to do before OpenMP 3.0:
First count number of iterations, then
convert while loop to for loop

45

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Example - A Linked List With Tasking
 my_pointer = listhead;

 #pragma omp parallel

 {

 #pragma omp single

 {

 while(my_pointer) {

 #pragma omp task firstprivate(my_pointer)

 {

 (void) do_independent_work(my_pointer);

 }

 my_pointer = my_pointer->next ;

 }

 } // End of single - implied barrier

 } // End of parallel region - implied barrier

Task Defined Here

46

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Data Races

47

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

About Parallelism

Parallelism

Independence

No Fixed Ordering

"Something" that does not
obey this rule, is not
parallel (at that level)

48

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

“Hello Data Race World”
#pragma omp parallel shared(n)

 OMP_NUM_THREADS=4

{n = omp_get_thread_num();}

nW W

0

M

1

M

3

M

4

M

Thread 0

n = 0

Thread 1

n = 1

Thread 2

n = 2

Thread 3

n = 3T
im

e

49

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

What is a Data Race?
❑ Two different threads in a multi-threaded shared memory

program

❑ Access the same (=shared) memory location

● Concurrently and

● Without holding any common exclusive locks and

● At least one of the accesses is a write/store

50

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

A Parallel Loop

for (i=0; i<8; i++)
 a[i] = a[i] + b[i];

The result does not
depend on the order

of execution

Thread 1 Thread 2

a[0]=a[0]+b[0] a[4]=a[4]+b[4]

a[1]=a[1]+b[1] a[5]=a[5]+b[5]

a[2]=a[2]+b[2] a[6]=a[6]+b[6]

a[3]=a[3]+b[3] a[7]=a[7]+b[7]

T
im

e

51

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Not A Parallel Loop

for (i=0; i<8; i++)
 a[i] = a[i+1] + b[i];

The result is not
deterministic if

executed in parallel !

Thread 1 Thread 2

a[0]=a[1]+b[0] a[4]=a[5]+b[4]

a[1]=a[2]+b[1] a[5]=a[6]+b[5]

a[2]=a[3]+b[2] a[6]=a[7]+b[6]

a[3]=a[4]+b[3] a[7]=a[8]+b[7]

T
im

e

52

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Numerical Results

threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953

Data Race
In Action !

threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953

threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953

threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953

threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953

threads: 4 checksum 1905 correct value 1953
threads: 4 checksum 1905 correct value 1953
threads: 4 checksum 1953 correct value 1953
threads: 4 checksum 1937 correct value 1953

threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953
threads: 1 checksum 1953 correct value 1953

threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953
threads: 2 checksum 1953 correct value 1953

threads: 4 checksum 1905 correct value 1953
threads: 4 checksum 1905 correct value 1953
threads: 4 checksum 1953 correct value 1953
threads: 4 checksum 1937 correct value 1953

threads: 32 checksum 1525 correct value 1953
threads: 32 checksum 1473 correct value 1953
threads: 32 checksum 1489 correct value 1953
threads: 32 checksum 1513 correct value 1953

53

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Demo
Parallelizing An Interval Algorithm

Using OpenMP

54

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Bottom Line About Data Races

Data Races Are Easy To Put In
But

Very Hard To Find

That is why a special tool to find data
races is highly recommended to use

“Finding errors in software is particularly
important in computer programs that claim
to be mathematically rigorous.”

R. Baker Kearfott - SCAN 2008, El Paso, TX

55

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

Wrap Up
❑ The Sun Studio Fortran and C++ compilers support

Interval Arithmetic

● Fortran implementation most elegant and powerful

❑ OpenMP provides for an easy to use, but yet very
powerful, portable parallel programming model

● Also very suitable for multicore architectures

❑ Despite this, parallel programming can still be tricky

❑ As always, good tools can make all the difference when
it comes to productivity and correctness

56

RvdP/V1

SCAN 2008
UTEP, TX, USA
Sep 29-Oct 3

2008

Using OpenMP to Parallelize Interval Algorithms

That's It

Thank You and Stay Sharp !

Ruud van der Pas
ruud.vanderpas@sun.com

