◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ◆ の へ ()

A Box-Consistency Contraction Operator Based on extremal Functions

Gilles Trombettoni, Yves Papegay, Gilles Chabert, Odile Pourtallier

INRIA, Université de Nice-Sophia, France

October 2008, El Paso, Texas

Motivation

- New interval-based operators to better solve non-linear systems of equations.
- Two main types of algorithms: interval analysis (interval Newton), constraint propagation.
- Contribution: the PolyBox algorithm that:
 - improves the Box-consistency constraint propagation operator,
 - by taking advantage of the **symbolic form** of the handled equations.

Outline

Background: Contraction with constraint propagation

2 Box-consistency using extremal functions

Constraint propagation

- **contraction** (filtering) algorithms from the constraint programming community used in interval solvers.
- Principle:
 - **Propagation**: At each step, a single equation is handled (by a so-called "revise" procedure), and the obtained reductions are propagated in the rest of the system until no interval can be reduced.
 - The "**revise**" procedure handles a single constraint. It reduces the intervals of the variables implied in the constraint.
- Two main constraint propagation algorithms: HC4 (Hull-consistency) and Box (Box-consistency).

HC4 Algorithm

- Every equation is represented by a binary tree. HC4-Revise works with this tree.
- HC4-Revise works in two phases: bottom-up evaluation phase, and top-down narrowing phase.
- HC4-Revise computes the 2B-consistency (or Hull-consistency) of the "decomposed" system of equations.

Example: HC4 applied to $(x + y + z)^2 + 3(x + z) = 30$ computes the 2B-consistency of the following decomposed system:

$$\{(x+y+z)^2+3(x_1+z_1)=30, x=x_1, z=z_1\}$$

<ロト < 団 ト < 巨 ト < 巨 ト 三 の < ()</p>

HC4-Revise applied to: $(x + y + z)^2 + 3(x + z) = 30$

HC4-Revise applied to: $(x + y + z)^2 + 3(x + z) = 30$

BoxNarrow (or Box-Revise) Algorithm

- Box-Revise is the "revise" procedure of the Box algorithm.
- Box-Revise is applied to a pair (equation f = 0, variable x). A considered equation is f(a, x) = 0. $f : IR^{n-1} \times IR \to IR$ (a is a vectorial variable).
- Box-Revise works with the univariate interval (multivalued) function $f_{[a]}(x) = f([a], x)$: variables in a are replaced by their current interval.
- Starting from an initial interval [x] for x, Box-Revise computes a contracted interval [*I*, *r*] for x with no loss of solution.
- To do so, Box-Revise computes *l* (respectively, *r*) as the leftmost (respectively, the rightmost) root of *f*_[a](*x*) = 0.

Experiments

Two types of Revise procedures

- If x appears only once in the symbolic form of f_[a](x):
 HC4-Revise is optimal.
- If x appears several times in $f_{[a]}(x)$: To contract [x], Box-Revise splits [x] in slices $[x]_k$ and checks whether $[x]_k$ contains a root of $f_{[a]}(x) = 0$, with:

evaluations with the natural extension of f_[a]: 0 ∈ f_[a]([x]_k)?
 a univariate interval Newton.

Outline

Background: Contraction with constraint propagation

2 Box-consistency using extremal functions

3 Experiments

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Extremal functions

- The Box-Revise procedure may converge slowly because $f_{[a]}(x)$ is an interval ("thick") function.
- Transform $f_{[a]}(x)$ into a new analytic form $g_{[a]}(x)$ such that **extremal functions** of $g_{[a]}(x)$ can be extracted quickly.
- Extremal functions:
 - Minimal function: $g_{[a]}(x) = \min_{a_s \in [a]} f(a_s, x)$
 - Maximal function: $\overline{\overline{g_{[a]}}}(x) = \max_{a_s \in [a]} f(a_s, x)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Extraction of extremal functions

Favorable expanded form: $g_{[a]}(x) = \sum_{i=0}^{i=k} f_i([a]) \times h_i(x)$, with:

- $h_i(x)$ depends only on x, and not on a.
- *h_i(x)* has a sign that does "not often" change: *xⁱ*, log(*x*), *e^x*.
- $\Rightarrow \underline{g_{[a]}}(x)$ and $\overline{g_{[a]}}(x)$ are piecewise functions with **punctual** coefficients in $\{\overline{f_i([a])}, \underline{f_i([a])}\}$. First implementation:

 $f_{[a]}(x)$ is a polynomial and $g_{[a]}(x) = \sum_{i=0}^{i=d} f_i([a]) \times x^i$ (*d* is the degree of the polynomial).

- *i* is even: x^i is positive.
- *i* is odd: the sign of x^i may change once (at x = 0).

Example

$$\begin{split} f(\{y,z\},x) &= (y+z) \times x^2 + (2yz) \times x + sin(z) \\ g_{[a]}(x) &= [-2,3]x^2 + [-4,-2]x + [-1,1] \\ \bullet \ x \geq 0: \ \overline{g_{[a]}}(x) &= 3x^2 - 2x + 1 \\ \bullet \ x \leq 0: \ \overline{g_{[a]}}(x) &= 3x^2 - 4x + 1 \\ \bullet \ x \geq 0: \ \underline{g_{[a]}}(x) &= -2x^2 - 4x - 1 \\ \bullet \ x \leq 0: \ \underline{g_{[a]}}(x) &= -2x^2 - 2x - 1 \end{split}$$

Key idea: Perform Box-Revise with the extremal punctual functions.

Contraction of [x] with PolyBoxRevise

PolyBoxRevise determines a contracted interval [I, r] of [x]. Let us detail the determination of I.

Step 1: With which extremal function to work?

- If $\underline{g_{[a]}}(\underline{[x]}) \le 0$ and $0 \le \overline{g_{[a]}}(\underline{[x]}) : I = \underline{[x]}$ (no contraction)
- If g_[a]([x]) > 0: we work with g_[a]
- If $\overline{g_{[a]}}([x]) < 0$: we work with $\overline{g_{[a]}}$

Contraction of [x] with PolyBoxRevise

Step 2: Computation of /

Two cases according to the degree *d* of $\overline{g_{[a]}}$:

- High degree: d > 4The smallest root of $\overline{g_{[a]}}(x) = 0$ inside [x] is computed with Box-Revise applied to a punctual function.
- Low degree: d ≤ 4 The smallest root of g_[a](x) = 0 inside [x] is extracted analytically. Implementation for degree 2 and degree 3 (with the method by Cardano).

Propagation with PolyBoxRevise (principles)

The "Revise" procedure selects the right routine according to $f_{[a]}(x)$:

- If f_[a](x) has no multiple occurrence of x:
 HC4-Revise
- Else Mathematica tries to transform $f_{[a]}(x)$ into

$$g_{[a]}(\mathbf{x}) = \sum_{i=0}^{i=d} f_i([a]) \times \mathbf{x}^i.$$

- If Mathematica fails, i.e., f_[a](x) is not polynomial: standard Box-Revise (or HC4-Revise)
- Else If $g_{[a]}(x)$ has no multiple occurrence of x: HC4-Revise applied to $g_{[a]}(x)$. Example (Caprasse): $-2x + 2txy - z + y^2z = 0 \Rightarrow x(-2+2ty) + (-1+y^2)z = 0$
- Else If the degree of $g_{[a]}(x)$ is low: the roots of one extremal function are determined analytically.
- Else (the degree of g_[a](x) is high): the roots of one extremal function are determined numerically.

Symbolic form of $f_i(a)$

Remark 1: A given function f can be rewritten in several forms according to the variable x contracted by the PolyBoxRevise procedure.
Example: f(t, x, y, z) = -2x + 2txy - z + y²z = 0 g({x, y, z}, t) = -2x + 2txy - z + y²z = f(t, x, y, z) = 0 g({t, y, z}, x) = (-2 + 2ty)x + (-1 + y²)z = 0 g({t, x, z}, y) = -2x + 2txy - z + y²z = f(t, x, y, z) = 0 g({t, x, y}, z) = -2x + 2txy - z + y²z = f(t, x, y, z) = 0 g({t, x, y}, z) = -(2 + 2ty) + (-1 + y²)z = 0

Remark 2:

The symbolic form of $f_i(a)$ obtained by Mathematica is crucial! The number of occurrences of the variables of *a* in $f_i(a)$ should be (generally) "minimized".

- Good example: see above
- Bad example: Equation of 6body:

$$5(B-D) + 3(b-d)(B+D-2F) = 0 \Rightarrow$$

B(5+3(b-d)) + (-5+3b-3d)D + 6(-b+d)F = 0

500

New contributions

P. Van Hentenryck et al. used the same idea in their interval-based solver Numerica. Main differences:

- Numerica used different systems of equations ("natural", Taylor form and expanded form).
 Propagation was performed separately on the system where equations has an expanded form.
 PolyBox manages a single system with different revise procedures.
- For a given equation, PolyBox may use a different symbolic form for every variable to be contracted. These (sophisticated) transformations are obtained with a symbolic computation tool.
- Contrarily to Numerica, PolyBox also uses HC4-Revise and LowDegree PolyBoxRevise.
- Experimental comparison: PolyBox VS Box.

Outline

Background: Contraction with constraint propagation

2 Box-consistency using extremal functions

3 Experiments

Benchmarks

We compare PolyBox to HC4 and Box.

Benchmarks

Among the 44 polynomial systems (with isolated solutions) found in the Web page of the COPRIN team, we have selected the 12 instances that:

- are solved by at least one of the 3 strategies in a time comprised between 1 second and 1 hour (Pentium 3 GHz),
- have equations with multiple occurrences of the variables.

Implementation

Solving strategy

- Variables are bisected with a round-robin strategy.
- Between two bisections:
 - Constraint propagation (PolyBox, HC4 or Box (BC3)).
 - Interval Newton: Hansen-Sengupta, preconditioning of the matrix, Gauss-Seidel.

Implementation with Mathematica and with the free Ibex/C++ interval-based solver (by Gilles Chabert).

Comparison between PolyBox, HC4 and Box

Table: CPU time in second and number of generated boxes

Name	#variables	#solutions	HC4	BC3	PolyBox
Caprasse	4	18	5.53 9539	37.2 6509	2.16 2939
Yamamura1	8	7	34.3 42383	13.4 4041	2.72 2231
Extended Wood	4	3	0.76 4555	1.94 1947	1.12 3479
Broyden Banded	20	1	> 3600 ?	0.62 1	0.09 1
Extended Freudenstein	20	1	> 3600 ?	0.19 121	0.11 121
6body	6	5	0.58 4899	2.93 4797	0.73 4887
Rose	3	18	> 3600 ?	> 3600 ?	4.11 12521
Discrete Boundary	39	1	179 185617	29.5 3279	16.1 3281
Katsura	12	7	102 14007	404 11371	104 13719
Eco9	8	16	66.4 132873	191 125675	71 131911
Broyden Tridiagonal	20	2	470 269773	495 163787	349.6 164445
Geneig	6	10	3657 79472328	> 7200 ?	3363 4907705

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Interest of low degree PolyBox

Table: CPU time in second. Left: PolyBox with **no** LowDegreepolyBoxRevise for polynomials of degrees 2 and 3. Right: PolyBox

Name	#variables	#solutions	PolyBox	PolyBox
Caprasse	4	18	2.34	2.16
Yamamural	8	7	5.79	2.72
Extended Wood	4	3	1.34	1.12
Broyden Banded	20	1	0.16	0.09
Extended Freudenstein	20	1	0.22	0.11
6body	6	5	0.72	0.73
Rose	3	18	3.95	4.11
Discrete Boundary	39	1	41.8	16.1
Katsura	12	7	103	104
Broyden Tridiagonal	20	2	403	350

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

- PolyBox is a step towards a unified local consistency algorithm.
- Proposition: a PolyHC4 algorithm (no call to a costly standard Box-Revise)
- Future work: improve the symbolic form of the equations.
- Future work: extend the class of functions that are "tractable" with their extremal functions.

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ◆ の へ ()

A Box-Consistency Contraction Operator Based on extremal Functions

Gilles Trombettoni, Yves Papegay, Gilles Chabert, Odile Pourtallier

INRIA, Université de Nice-Sophia, France

October 2008, El Paso, Texas