Constraint Programming and Safe Global Optimization

Michel RUEHER

Joint work with Alexandre GOLDSZTEJN, Yahia LEBBAH and Claude MICHEL

Université de Nice Sophia-Antipolis / CNRS, France

SCAN 08, October 2008

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Outline

Motivations

Basics on CSP

Using CSP to boost safe OBR

Computing "sharp" upper bounds

Conclusion

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

The Problem

We consider the continuous global optimisation problem

$$\mathcal{P} \equiv \begin{cases} \min & f(x) \\ \text{s.c.} & g_i(x) = 0, \ j = 1..k \\ & g_j(x) \le 0, \ j = k+1..m \\ & \underline{\mathbf{b}} \le x \le \overline{\mathbf{b}} \end{cases}$$

with

- **B** = $[\underline{b}, \overline{b}]$: a vector of intervals of **R**
- $f: \mathbb{R}^n \to \mathbb{R}$ and $g_i: \mathbb{R}^n \to \mathbb{R}$
- Functions f and g_j: are continuously differentiable on B

CSP & Global Optimization

Michel Rueher

Motivations

(1)

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Trends in global optimisation

Performance

Most successful systems (Baron, α BB, ...) use local methods and linear relaxations \rightarrow **not rigorous** (work with floats)

Rigour

Mainly rely on interval computation ... available systems (e.g., Globsol) are **quite slow**

 Challenge: to combine the advantages of both approaches in an efficient and rigorous global optimisation framework

CSP & Global Optimization

Michel Rueher

Motivations

The Problem

Trends in global optimisation

Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

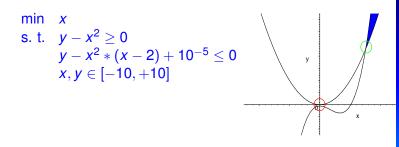
Statement of the problem Newton for under-constrained systems New upper bounding

New upper bounding strategie

Experiments

Example of flaw due to a lack of rigour

Consider the following optimisation problem:



Baron 6.0 and Baron 7.2 find 0 as the minimum ...

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation

Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems

CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Basics on CSP

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Numeric CSP

•
$$\mathcal{X} = \{x_1, \dots, x_n\}$$
 is a set of variables

D = {D_{x1},..., D_{xn}} is a set of domains
 (D_{xi} contains all acceptable values for variable x_i)

 $D_{x_i} = [\underline{\mathbf{x}_i}, \overline{\mathbf{x}_i}]$

• $C = \{c_1, \ldots, c_m\}$ is a set of constraints

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems

CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

CSP: Overall scheme

A Branch & Prune schema:

- 1. Pruning the search space
- 2. Making a choice to generate two (or more) sub-problems
- ► The pruning step → filtering techniques to reduce the size of the intervals
- ► The branching step → splits the intervals (uses heuristics to choose the variable to split)

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition

Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding

Experiments

Local consistencies (1)

A constraint system C satisfies a local consistency property if each constraint C holds in a relaxation of C

Consider $\mathbf{X} = [\underline{\mathbf{x}}, \overline{\mathbf{x}}]$ and $C(x, x_1, \dots, x_n) \in C$: if $C(x, x_1, \dots, x_n)$ does not hold for any values $a \in [\underline{\mathbf{x}}, \mathbf{x}']$, then \mathbf{X} can be shrinked to $\mathbf{X} = [\mathbf{x}', \overline{\mathbf{x}}]$

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Local consistencies (2)

 2B-consistency only requires to check the Arc-Consistency property for each bound of the intervals

Variable x with $\mathbf{X} = [\mathbf{x}, \overline{\mathbf{x}}]$ is 2B–consistent for constraint $f(x, x_1, \dots, x_n) = 0$ if \mathbf{x} and $\overline{\mathbf{x}}$ are the leftmost and the rightmost zero of $f(x, x_1, \dots, x_n)$

Box–consistency :

- \rightarrow coarser relaxation of AC than 2B–consistency
- \rightarrow better filtering

Variable x with $\mathbf{X} = [\mathbf{\underline{x}}, \mathbf{\overline{x}}]$ is Box–Consistent for constraint $f(x, x_1, \dots, x_n) = 0$ if $\mathbf{\underline{x}}$ and $\mathbf{\overline{x}}$ are the leftmost and the rightmost zero of $\mathbf{F}(\mathbf{X}, \mathbf{X}_1, \dots, \mathbf{X}_n)$, the optimal interval extension of $f(x, x_1, \dots, x_n)$

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema

OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding

Experiments

Filtering

• 2B-filtering Algorithms ~> projection functions

- → considers that each occurrence is a different new variable
- → initial constraints are decomposed into "primitive" constraints: amplifies the dependency problem
- Box–filtering Algorithms → monovariate version of the interval Newton method
 - → Monovariate constraints: substituting intervals for all variables but one
 - → Computing bounds: dichotomy algorithm (combined with the interval Newton method)

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding

Experiments

Limits of Local Consistencies

- A constraint is handled as a black-box by local consistencies (2B,BOX,...)
 - No way to catch the dependencies between constraints
 - Splitting is behind the success for small dimensions
- ► Higher consistencies

 (KB-filtering,Bound-filtering)
 → capture some dependencies between constraints
 → visiting numerous combinations
- A global constraint to handle a linear approximation with LP solvers

 → safe linear relaxations

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema

OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding

strategie

Experiments

Safe use of Linear Relaxation

A global constraint to handle an approximation of the constraint system with LP

QUAD_SOLVER

- → **Global constraint** on linear relaxations
- → local consistencies (2B, Box) and interval methods (Newton)

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

The QUAD_SOLVER framework

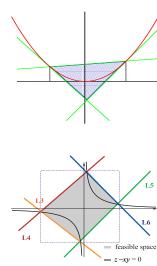
Reformulation

capture the linear part

 → replace non linear terms
 by new variable
 eg x² by y_i

Linearisation

- introduce redundant linear constraints
 → tight approximations (RLT)
- Computing min(X) = x_i and max(X) = x_i in LP



CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding strategie

Experiments

Quad_Solver filtering algorithm

Function Quad_filtering(IN: $\mathcal{X}, \mathcal{D}, \mathcal{C}, \epsilon$) return \mathcal{D}'

1. Reformulation

 \rightarrow linear inequalities $[\mathcal{C}]_R$ for the nonlinear terms in \mathcal{C}

- 2. Linearisation/relaxation of the whole system $[C]_L$ \rightarrow a linear system $LR = [C]_L \cup [C]_R$
- 3. $\mathcal{D}' := \mathcal{D}$
- 4. **Pruning**: While amount of reduction of some bound $> \epsilon$ and $\emptyset \notin \mathcal{D}'$ Do
 - 4.1 Update the coefficients of $[\mathcal{C}]_R$ according to \mathcal{D}'
 - 4.2 Reduce the lower and upper bounds $\underline{\mathbf{x}}'_i$ and $\overline{\mathbf{x}}'_i$ of each *initial* variable $x_i \in \mathcal{X}$ computing min and max of \mathbf{X}_i subject to *LR* with a LP solver

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

DOOST SAIE ODH B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding strateme

Experiments

Issues in the use of linear relaxation

Coefficients of linear relaxations are scalars
 ⇒ computed with *floating point numbers*

Efficient implementations of the simplex algorithm
 ⇒ use *floating point numbers*

 All the computations with floating point numbers require *right corrections*

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

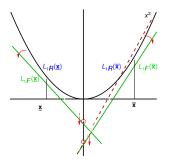
Experiments

Safe approximations of L₁

$$L_1(y,\alpha) \equiv y \geq 2\alpha x - \alpha^2$$

Effects of rounding:

- rounding of 2α
 - \Rightarrow rotation on y axis
- rounding of α^2
 - \Rightarrow translation on y axis



CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Correction of the Simplex algorithm

Consider the following LP : minimise $c^T x$ subject to $\underline{\mathbf{b}} \leq Ax \leq \overline{\mathbf{b}}$

- Solution = vector $x_{\mathbf{R}} \in \mathbf{R}^n$
- LP solver computes a vector $x_F \in F^n \neq x_R$
- x_F is safe for the objective if $c^T x_R \ge c^T x_F$
- Neumaier & Shcherbina
 - → cheap method to obtain a rigorous bound of the objective (use of the approximation solution of the dual)

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding

Experiments

Using constraint techniques to boost safe OBR (optimal based reduction)

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorem

CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Branch and bound

BB Algorithm:

While $\mathcal{L} \neq \emptyset$ do % \mathcal{L} initialized with the input box

- Select a box B from the set of current boxes L
- Reduction (filtering or tightening) of B
- Lower bounding of f in box B
- Upper bounding of f in box B
- Splitting of *B* (if not empty)
- Upper Bounding Critical issue:

to prove the **existence** of a feasible point in a reduced box

Lower Bounding – Critical issue: to achieve an efficient pruning

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema

OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under constrained systems

New upper bounding strategie

Experiments

Lower bounding

Relaxing the problem

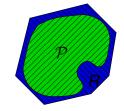
• linear relaxation R of \mathcal{P}

 $\begin{array}{ll} \min & d^T x \\ s.t. & Ax \leq b \end{array}$

- LP solver $\rightarrow \underline{\mathbf{f}}^*$
- \rightarrow numerous splitting

OBR is a way to speed up the reduction process

(2)



CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Evaporiments

Computing "sharp" upper bounds

Statement of the problem Newton for Inder-constrained systems New upper bounding

strategio

Experiments

Optimality Base Reduction

Introduced by Ryoo and Sahinidis

- to take advantage of the known bounds of the objective function to reduce the size of the domains
- uses a well known property of the saddle point to compute new bounds for the domains taking into account the known bounds of the objective function

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding

Experiments

Theorems of OBR

Let [L, U] be the domain of f. If the constraint x_i − x̄_i ≤ 0 is active at the optimal solution of R and has a corresponding multiplier λ_i^{*} > 0 (λ^{*} is the optimal solution of the dual of R), then

$$x_i \geq \mathbf{\underline{x}}_i'$$
 with $\mathbf{\underline{x}}_i' = \mathbf{\overline{x}}_i - rac{U-L}{\lambda_i^*}$.

if $\underline{\mathbf{x}}_i' > \underline{\mathbf{x}}_i$, the domain of x_i can be shrinked to $[\underline{\mathbf{x}}_i', \overline{\mathbf{x}}_i]$ without loss of any global optima

▶ similar theorems for $\underline{\mathbf{x}}_i - x_i \leq 0$ and $g_i(x) \leq 0$.

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

(3)

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

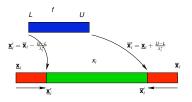
Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

OBR: intuitions

Ryoo & Sahinidis 96



$$x_i \geq \mathbf{\underline{x}}_i'$$
 with $\mathbf{\underline{x}}_i' = \mathbf{\overline{x}}_i - \frac{U-L}{\lambda_i^*}$

- does not modify the very branch and bound process
- almost for free !

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

(4)

Conclusio

24

OBR Issues

Critical issue: basic OBR algorithm is unsafe

- it uses the dual solution of the linear relaxation
- Efficient LP solvers work with floats → the available dual solution λ* is an approximation if used in OBR ...

 $\dots \rightarrow OBR$ may remove actual optimum !

- Solutions: two ways to take advantage of OBR
 - 1. **prove dual solution** (Kearfott): combining the dual of linear relaxation with the Kuhn-Tucker conditions
 - 2. validate the reduction proposed by OBR with CP !

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding

strategie

Experiments

CP approach: intuition

Essential observation: if the constraint system

$$L \le f(x) \le U$$

 $g_i(x) = 0, \ i = 1..k$
 $g_j(x) \le 0, \ j = k + 1..m$

has **no solution** when the domain of *x* is set to $[\underline{\mathbf{x}}_i, \underline{\mathbf{x}}'_i]$, then the reduction computed by OBR is valid

Try to reject [x_i, x'_i] with classical filtering techniques, otherwise add this box to the list of boxes to process

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

CP algorithm

 $\mathcal{L}_r := \emptyset$ % set of potential non-solution boxes

```
for each variable x_i do
Apply OBR
and add the generated potential non-solution boxes to \mathcal{L}_r
```

```
for each box \mathbf{B}_i in \mathcal{L}_r do

\mathbf{B}'_i := 2B-filtering(\mathbf{B}_i)

if \mathbf{B}'_i = \emptyset then reduce the domain of x_i

else \mathbf{B}''_i := \text{QUAD}_\text{SOLVER-filtering}(\mathbf{B}'_i)

if \mathbf{B}''_i = \emptyset then reduce the domain of x_i

else add \mathbf{B}_i to global list of box to be handled endif

endif
```

[Compute <u>f</u> with QUAD_SOLVER in X]

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

```
Using CSP to
boost safe OBR
B&B schema
OBR: intuitions & theorems
CP: intuition
Experiments
```

```
Computing "sharp'
upper bounds
```

```
Statement of the problem
Newton for
under-constrained systems
```

rvew upper bounding strategie

Experiments

Experiments

- Compares 4 versions of the branch and bound algorithm:
 - without OBR
 - with unsafe OBR
 - with safe OBR based on Kearfott's approach
 - with safe OBR based on CP techniques

implemented with Icos using Coin/CLP and Coin/IpOpt

- On 78 benches (from Ryoo & Sahinidis 1995, Audet thesis and the coconut library)
- All experiments have been done on PC-Notebook/1Ghz.

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Experimental Results (2): Synthesis

Synthesis of the results:

	$\Sigma_t(s)$	%saving
no OBR	2384.36	-
unsafe OBR	881.51	63.03%
safe OBR Kearfott	1975.95	17.13%
safe OBR CP	454.73	80.93%

(with a timeout of 500s)

Safe CP-based OBR faster than unsafe OBR !

... because wrong domains reductions prevent the upper-bounding process from improving the current upper bound !!

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Computing "sharp" upper bounds

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition

Experiment

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding strategie

Experiments

Conclusio

30

Statement of the problem

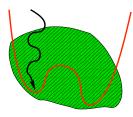
Upper bounding

- local search
 - \rightarrow approximate feasible point x_{approx}
- epsilon inflation process
 and proof

 \rightarrow provide a feasible box x_{proved}

• compute
$$\bar{\mathbf{f}}^* = min(\bar{\mathbf{f}}(x_{proved}), \bar{\mathbf{f}}^*)$$

- Critical issue: to prove the existence of a feasible point in a reduced box
 - Singularities
 - Guess point too far from a feasible region (local search works with floats)



CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition

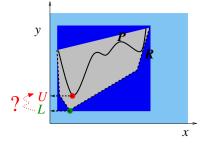
Computing "sharp" upper bounds Statement of the problem

newton for under-constrained system

strategie

Experiments

Using the lower bound to get an upper-bound



Branch&Bound step where P is the set of feasible points and R is the linear relaxation

Idea: modify the lower bound ... to get an upper-bound !

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

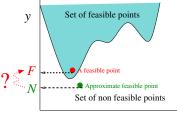
Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition

Computing "sharp" upper bounds Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Lower bound: a good starting point to find a feasible upper-bound ?



х

N, optimal solution of *R*, not a feasible point of *P* but (may be) **a good starting point**:

- BB splits the domains at each iteration: smaller box → N nearest from the optima of P
- Proof process inflates a box around the guess point ~> compensate the distance from the feasible region

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds Statement of the problem Newton for under constrained systems New upper bounding demogra

Experiments

Method

- Correction procedure to get a better feasible point from a given approximate feasible point
 - → to exploit Newton-Raphson for under-constrained systems of equations (and Moore-Penrose inverse)

good convergence when the starting point is nearly feasible

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Exportments

Computing "sharp" upper bounds Statement of the problem Newton for under-constrained systems

New upper bounding strategie

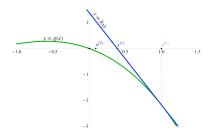
Experiments

Handling square systems of equations

►
$$g = (g_1, ..., g_m) : R^n \longrightarrow R^m (n = m)$$

 \rightarrow Newton-Raphson step:
 $x^{(i+1)} = x^{(i)} - J_g^{-1}(x^{(i)})g(x^{(i)})$

Converges well if the exact solution to be approximated is not singular



CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

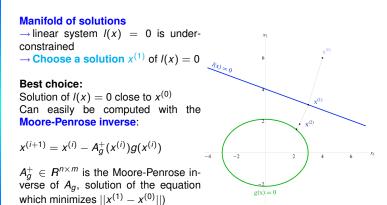
Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Handling under-constrained systems of equations



CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds Statement of the problem Newton for under-constrained systems

New upper bounding strategie

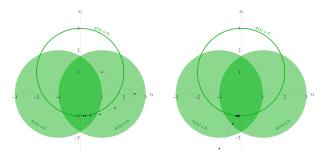
Experiments

Handling under-constrained systems of equations and inequalities

- Under-constrained systems of equations and inequalities
 introduce slack variables
- Initial values for the slack variables have to be provided

Slightly positive value

- \rightarrow to break the symmetry
- \rightarrow good convergence



CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition

Computing "sharp" upper bounds Statement of the problem Newton for

under-constrained systems

New upper bounding strategie

Experiments

A new upper bounding strategie

Function UpperBounding(IN **x**, x_{LP}^* ; OUT \mathcal{S}')

% S': list of proven feasible boxes % x_{LP}^* : the optimal solution of the LP relaxation of $\mathcal{P}(\mathbf{x})$ $S' := \emptyset$ $x_{corr}^* := \text{FeasibilityCorrection}(x_{LP}^*)$ % Improving x_{LP}^* feasibility $\mathbf{x}_p := \text{InflateAndProve}(x_{corr}^*, \mathbf{x})$ if $\mathbf{x}_p \neq \emptyset$ then $S' := S' \cup \mathbf{x}_p$ endif return S'

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems

OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for

New upper bounding strategie

Experiment

Experiments (1)

- Significant set of benchmarks of the COCONUT project
- Selection of 35 benchmarks where Icos did find the global minimum while relying on an unsafe local search
- 31 benchmarks are solved within a 30s time out
- Almost all benchmarks are solved in much less time and with much more proven solutions

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

B&B schema OBR: intuitions & theorems CP: intuition Exceriments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Experiments (2)

Name	(n,m)	LS: t(s)	UB/LB: t(s)
alkyl	(14, 7)	-	1.54
circle	(3, 10)	1.98	0.84
ex14 1 2	(6, 9)	-	1.74
ex14 1 3	(3, 4)	-	0.42
ex14_1_6	(9, 15)	-	12.44
ex14_1_8	(3, 4)	-	-
ex2_1_1	(5, 1)	0.09	0.04
ex2_1_2	(6, 2)	-	0.24
ex2_1_3	(13, 9)	-	1.32
ex2_1_4	(6, 5)	0.52	0.43
ex2_1_6	(10, 5)	1.61	0.35
ex3_1_3	(6, 6)	1.03	0.29
ex3_1_4	(3, 3)	6.51	0.14
ex4_1_2	(1, 0)	18.84	17.03
ex4_1_6	(1, 0)	0.11	14.28
ex4_1_7	(1, 0)	0.07	0.01
ex5_4_2	(8, 6)	-	18.15
ex6_1_2	(4, 3)	0.51	0.52
ex6_1_4	(6, 4)	7.45	8.92
ex7_3_5	(13, 15)	-	-
ex8_1_6	(2, 0)	-	0.39
ex9_1_1	(13, 12)	-	-
ex9_1_10	(14, 12)	-	3.76
ex9_1_4	(10, 9)	-	0.49
ex9_1_5	(13, 12)	-	2.68
ex9_1_8	(14, 12)	-	3.76
ex9_2_1	(10, 9)	-	0.68
ex9_2_4	(8, 7)	2.94	0.69
ex9_2_5	(8, 7)	-	-
ex9_2_7	(10, 9)	-	0.68
ex9_2_8	(6, 5)	-	0.53
house	(8, 8)	-	0.90
nemhaus	(5, 5)	0.02	0.01

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp" upper bounds

Statement of the problem Newton for under-constrained systems

New upper bounding strategie

Experiments

Conclusio

40

Conclusion

CSP refutation techniques

- allow a safe and efficient implementation of OBR
- can outperform standard mathematical methods
- might be suitable for other unsafe method

Safe global constraints

- ► provide an efficient alternative to local search: → good starting point for a Newton method ~→ feasible region
- drastically improve the performances of the upper-bounding process

CSP & Global Optimization

Michel Rueher

Motivations

The Problem Trends in global optimisation Example of flaw due to a lack of rigour

Basics on CSP

Numeric CSP Local consistencies Filtering Linear Relaxation

Using CSP to boost safe OBR

DOOSI SAIE ODH B&B schema OBR: intuitions & theorems CP: intuition Experiments

Computing "sharp' upper bounds

Statement of the problem Newton for under-constrained systems New upper bounding

Experiments

