A computer-assisted Band-Gap Proof for 3D Photonic Crystals

Henning Behnke¹ Vu Hoang² Michael Plum²

1) TU Clausthal, Institute for Mathematics, 38678 Clausthal, Germany

2) Univ. of Karlsruhe (TH), Faculty of Mathematics, 76128 Karlsruhe, Germany

Photonic Crystals

We consider periodic optic media (photonic crystals). In such media light is absorbed for all frequencies which are not within a **band gap**.

(www.cfn.uni-karlsruhe.de)

In nanotechnology, photonic crystals are fabricated and band gaps can be observed.

Photonic crystal: periodic dielectric medium such that electromagnetic waves of certain frequencies *cannot propagate* in it.

Range of the prohibited frequencies: (complete) band gap

Physical reason: destructive interference

Practical interest: Design periodic materials which *have* band gaps!

Analytically very difficult!

Here: Computer-assisted proof of band gap.

Physical model: Homogeneous Maxwell's equations (c = 1)

$$\operatorname{curl} E = -\frac{\partial B}{\partial t}, \quad \operatorname{curl} H = \frac{\partial D}{\partial t},$$
$$\operatorname{div} B = 0, \quad \operatorname{div} D = 0,$$

together with the constitutive relations

$$D = \varepsilon E, \quad B = \mu H$$

(E electric field, H magnetic field, D displacement field, B magnetic induction field)

 ε, μ : material tensors. *Isotropic* material: ε, μ scalar real-valued functions, not time-dependent

 ε electric permittivity, μ magnetic permeability.

Photonic crystal: non-magnetic, i.e. $\mu \equiv 1$, $B \equiv H$.

Look for *monochromatic* waves:

$$E(x,t) = e^{i\omega t}E(x), \quad H(x,t) = e^{i\omega t}H(x)$$

Maxwell's equations give

 $\operatorname{Curl} E = -i\omega H$, $\operatorname{Curl} H = i\omega \varepsilon E$, $\operatorname{div} H = 0$, $\operatorname{div}(\varepsilon E) = 0$.

Applying curl to the first two equations gives two decoupled systems:

curl curl
$$E = \omega^2 \varepsilon E$$

and
div(εE) = 0
curl $\frac{1}{\varepsilon}$ curl $H = \omega^2 H$
div $H = 0$

Operator theoretical formulation

$$L^{2}_{\operatorname{div}}(\mathbb{R}^{3}) := \{ u \in L^{2}(\mathbb{R}^{3})^{3} : \operatorname{div} u = 0 \} \quad \begin{cases} \subset L^{2}(\mathbb{R}^{3})^{3} \operatorname{closed} \\ \subset H(\operatorname{div}, \mathbb{R}^{3}) \end{cases}$$
$$\mathcal{H} := L^{2}_{\operatorname{div}}(\mathbb{R}^{3}) \cap H(\operatorname{curl}, \mathbb{R}^{3})$$

Maxwell's equation for *H*-field $(\operatorname{curl}_{\varepsilon}^{1}\operatorname{curl} H = \omega^{2}H, \operatorname{div} H = 0)$ reads, for u := H,

$$u \in \mathcal{H} \setminus \{0\}, \ \int_{\mathbb{R}^3} \frac{1}{\varepsilon} (\operatorname{curl} u) \cdot \overline{(\operatorname{curl} v)} dx = \omega^2 \int_{\mathbb{R}^3} u \cdot \overline{v} dx \text{ for each } v \in \mathcal{H}$$

or, using $B[u,v] := \int_{\mathbb{R}^3} \frac{1}{\varepsilon} (\operatorname{curl} u) \cdot \overline{(\operatorname{curl} v)} dx + \int_{\mathbb{R}^3} u \cdot \overline{v} dx \quad (u,v \in \mathcal{H}), \ \lambda := \omega^2 + 1,$

$$u \in \mathcal{H} \setminus \{0\}, \ B[u,v] = \lambda \int_{\mathbb{R}^3} u \cdot \overline{v} dx \text{ for all } v \in \mathcal{H}$$
 (*)

Lax-Milgram yields selfadjoint operator $T: L^2_{div}(\mathbb{R}^3) \to \mathcal{H} \subset L^2_{div}(\mathbb{R}^3)$,

$$B[Tr,v] = \int_{\mathbb{R}^3} r \cdot \bar{v} dx \quad (r \in L^2_{\mathsf{div}}(\mathbb{R}^3), v \in \mathcal{H}),$$

 $D(A) := \operatorname{range}(T) \subset \mathcal{H}, \ A := T^{-1} \text{ selfadjoint. } (*) \Leftrightarrow u \in D(A) \setminus \{0\}, \ Au = \lambda u$

Now let $\varepsilon \in L^{\infty}(\mathbb{R}^3)$ (with $\varepsilon \ge \varepsilon_{\min} > 0$) be periodic with periodicity cell $\Omega \subset \mathbb{R}^3$ (bounded parallelogram). Standard crystal: $\Omega = (0, 1)^3$

Floquet-Bloch theory gives: The *spectrum* σ of (*) has *band-gap* structure; more precisely:

$$\sigma = \bigcup_{n \in \mathbb{N}} I_n,$$

where I_n are compact real intervals with min $I_n \to \infty$ as $n \to \infty$.

 I_n is called the *n*-th spectral band.

"Usually", the bands I_n overlap. But there *might* be gaps between them.

These are the band-gaps of prohibited frequencies mentioned earlier.

Floquet-Bloch theory tells further:

$$I_n = \{\lambda_{k,n} : k \in K\}$$

where K is the Brillouin zone (compact set in \mathbb{R}^3 , determined by $\Omega, K = [-\pi, \pi]^3$ if $\Omega = (0, 1)^3$), and $\lambda_{k,n}$ *n*-th eigenvalue of (written formally)

 $|\operatorname{curl}\left(\frac{1}{\varepsilon}\operatorname{curl} u\right) + u = \lambda u$ on Ω , divu = 0 on Ω , $e^{-ik \cdot x}u(x)$ satisfies periodic b.c. on $\partial\Omega$

 $\lambda_{\cdot,n}$ is called the *n*-th branch of the *dispersion relation*.

Precise formulation of (*k*-dependent) problem on Ω :

(Problem with periodic boundary condition: trace of $u \in \mathcal{H}$ only in $H^{-\frac{1}{2}}(\partial\Omega)$.) G discrete lattice associated with Ω ($G = \mathbb{Z}^3$ if $\Omega = (0,1)^3$). Extension operator $E : L^2(\Omega)^3 \to L^2_{\text{loc}}(\mathbb{R}^3)^3$, (Ev)(x+g) := v(x) ($x \in \Omega$, $g \in G$). Then boundary condition ($e^{-ik \cdot x}u(x)$ periodic) together with the required smoothness on Ω reads:

$$E(e^{-ik \cdot u}) \in H_{\mathsf{loc}}(\mathsf{curl}, \mathbb{R}^3) \cap H_{\mathsf{loc}}(\mathsf{div}, \mathbb{R}^3)$$

Let

$$\mathcal{H}_k := \{ u \in L^2(\Omega)^3 : \mathsf{div} u = \mathsf{0}, \ E(e^{-ik \cdot}u) \in H_{\mathsf{loc}}(\mathsf{curl}, \mathbb{R}^3) \cap H_{\mathsf{loc}}(\mathsf{div}, \mathbb{R}^3) \}$$

Eigenvalue problem generated by Floquet-Bloch theory $(\operatorname{curl}(\frac{1}{\varepsilon}\operatorname{curl} u) + u = \lambda u \text{ on } \Omega$, $\operatorname{div} u = 0 \text{ on } \Omega$, $e^{-ik \cdot x}u(x)$ satisfies periodic b.c. on $\partial\Omega$) now reads:

$$u \in \mathcal{H}_{k} \setminus \{0\}, \quad \int_{\Omega} \frac{1}{\varepsilon} (\operatorname{curl} u) \cdot \overline{(\operatorname{curl} v)} dx + \int_{\Omega} u \cdot \overline{v} dx = \lambda \int_{\Omega} u \cdot \overline{v} dx \quad (EWP_{k})$$
$$=:B_{\Omega}(u,v) \quad \text{for all } v \in \mathcal{H}_{k}$$

Strategy for proving gap:

1) Choose finitely many grid points in K

- 2) Compute verified eigenvalue enclosures for $\lambda_{k,1}, \ldots, \lambda_{k,N}$ (N chosen fixed) for k in the grid
- 3) Use perturbation type argument to deduce from 2) also enclosures for $\lambda_{k,1}, \ldots, \lambda_{k,N}$ for k between grid-points

Together enclosure for $\lambda_{k,1}, \ldots, \lambda_{k,N}$ for all $k \in K$

- \rightarrow enclosures for the bands I_1, \ldots, I_N
- \rightarrow If a gap in these enclosures occurs: proof of gap

Perturbation argument:

Let $\mathcal{H}_k^0 \supset \mathcal{H}_k$ be given by omitting the condition divu = 0 in \mathcal{H}_k , i.e. $\mathcal{H}^{0}_{\mathcal{V}} := \{ u \in L^{2}(\Omega)^{3} : E(e^{-ik \cdot}u) \in H_{\mathsf{loc}}(\mathsf{curl}, \mathbb{R}^{3}) \cap H_{\mathsf{loc}}(\mathsf{div}, \mathbb{R}^{3}) \}$ and consider, besides (EWP_k) , the problem with \mathcal{H}_k^0 instead of \mathcal{H}_k : $u \in \mathcal{H}_k^0 \setminus \{0\},\$ $\int_{\Omega} \frac{1}{\varepsilon} (\operatorname{curl} u) \cdot \overline{(\operatorname{curl} v)} dx + \int_{\Omega} u \cdot \overline{v} dx = \lambda \int_{\Omega} u \cdot \overline{v} dx \quad \text{for all} \quad v \in \mathcal{H}_k^0 \quad (\mathsf{EWP}_k^0)$ $\lambda = 1$ is an eigenvalue of infinite multiplicity of (EWP_k^0) . (For each $\varphi \in H^2(\Omega)$ s.t. $e^{-ik \cdot x} \nabla \varphi(x)$ satisfies periodic b.c., $\nabla \varphi$ is an eigenfunction.)

This is the only difference between the spectra of (EWP_k) and $(EWP_k^0)!$

Defining $w(x) := e^{-ik \cdot x}u(x)$, we obtain the equivalent problem

$$w \in \mathcal{H}^{0} \setminus \{0\},$$

$$\int_{\Omega} \frac{1}{\varepsilon} [\operatorname{curl} w + ik \times w] \cdot \overline{[\operatorname{curl} v + ik \times v]} dx + \int_{\Omega} w \cdot \overline{v} dx = \lambda \int_{\Omega} w \cdot \overline{v} dx$$
for all $v \in \mathcal{H}^{0}$

$$for all v \in \mathcal{H}^{0}$$

where

$$\mathcal{H}^{0} := \{ w \in L^{2}(\Omega)^{3} : Ew \in H_{\mathsf{loc}}(\mathsf{curl}, \mathbb{R}^{3}) \cap H_{\mathsf{loc}}(\mathsf{div}, \mathbb{R}^{3}) \}$$
(independent of $k \neq k$

Let k be one of the gridpoints (to be) chosen in the Brillouin zone K; consider perturbation k + h of k.

Theorem: Let $[a, b] \subset \mathbb{R}$ be an interval such that, for some $n \in \mathbb{N}$,

$$(1 <) \lambda_{k,n} < a < b < \lambda_{k,n+1}$$

(whence $[a, b] \subset$ resolvent set of unperturbed problem (EWP_k^0)), and let $|h| < \delta_k$, where $\delta_k > 0$ is such that

$$\delta_k \cdot \max\left\{1, \frac{1}{\varepsilon_{\min}} + \delta_k\right\} \cdot \max\left\{\frac{\lambda_{k,n}}{a - \lambda_{k,n}}, \frac{\lambda_{k,n+1}}{\lambda_{k,n+1} - b}\right\} \le 1.$$

Then, [a, b] is contained in the resolvent set of the perturbed problem (EWP_{k+h}^{0}) .

Corollary: Let the assumptions of the Theorem hold for *all* gridpoints k in K, and suppose that

$$\bigcup_{\text{gridpoints } k \in K} \text{Ball}(k, \delta_k) \supset K.$$

Then, [a, b] is contained in a spectral band-gap.

Remaining task: Compute enclosures for eigenvalues $\lambda_{k,1}, \ldots, \lambda_{k,N}$ of (EWP_k) for all *gridpoints* k; $N \in \mathbb{N}$ chosen fixed. Let $k \in K$ denote a fixed gridpoint now.

First step: Compute approximate eigenpairs to

$$u \in \mathcal{H}_{k} \setminus \{0\}, \quad \int_{\Omega} \frac{1}{\varepsilon} (\operatorname{curl} u) \cdot \overline{(\operatorname{curl} v)} dx + \int_{\Omega} u \cdot \overline{v} dx = \lambda \int_{\Omega} u \cdot \overline{v} dx \quad (EWP_{k})$$
$$=:B_{\Omega}(u,v) \quad \text{for all } v \in \mathcal{H}_{k}$$

by Ritz method with appropriate basis functions in \mathcal{H}_k

Second step: Upper eigenvalue bounds by Rayleigh-Ritz method (with approximate eigenfunctions as basis functions)

Third step: Lower eigenvalue bounds by Lehmann-Goerisch method

Rayleigh-Ritz-Method (upper bounds)

Fix k in the grid.

Theorem. Let $\tilde{u}_{k,1}, \ldots, \tilde{u}_{k,N} \in \mathcal{H}_k$ be linearly independent (approximate eigenfunctions),

$$\mathbf{A} = \left(B_{\Omega}(\tilde{u}_{k,n}, \tilde{u}_{k,m}) \right)_{n,m=1,\dots,N}$$
$$\mathbf{B} = \left(\langle \tilde{u}_{k,n}, \tilde{u}_{k,m} \rangle_{L^2} \right)_{n,m=1,\dots,N}$$

and let $\Lambda_{k,1} \leq \cdots \leq \Lambda_{k,N}$ be the eigenvalues of

$$\mathbf{A}\mathbf{x} = \mathbf{\Lambda}\mathbf{B}\mathbf{x}.$$

Then

$$\lambda_{k,n} \leq \Lambda_{k,n}$$
 $(n = 1, \dots, N).$

14

Lehmann-Goerisch-Method

for *lower* eigenvalue bounds (k in the grid still fixed):

Choose a fixed shift parameter $\gamma > -1$. Compute additional approximations $\tilde{\sigma}_{k,n}$ satisfying, for $n = 1, \ldots, N$,

$$\begin{split} &\frac{1}{\varepsilon} \tilde{\sigma}_{k,n} \in H(\operatorname{curl}, \Omega), \quad E\left(e^{-ik \cdot} \frac{1}{\varepsilon} \tilde{\sigma}_{k,n}\right) \in H_{\mathsf{loc}}(\operatorname{curl}, \mathbb{R}^3), \\ &\tilde{\sigma}_{k,n} \approx \frac{1}{\tilde{\lambda}_{k,n} + \gamma} \operatorname{curl} \tilde{u}_{k,n} \end{split}$$

Moreover, suppose that $\beta \in \mathbb{R}$ is known such that

$$\Lambda_{k,N} < \beta - \gamma \le \lambda_{k,N+1}$$

Theorem (Goerisch). Define

$$\begin{split} \mathbf{A} &= \left(B_{\Omega}(\tilde{u}_{k,m},\tilde{u}_{k,n}) \right)_{m,n=1,\dots,N} \in \mathbb{C}^{N,N}, \\ \mathbf{B} &= \left(\langle \tilde{u}_{k,m},\tilde{u}_{k,n} \rangle_{L^{2}} \right)_{m,n=1,\dots,N} \in \mathbb{C}^{N,N}, \\ \mathbf{S} &= \left(\langle \frac{1}{\varepsilon} \tilde{\sigma}_{k,m}, \tilde{\sigma}_{k,n} \rangle_{L^{2}} \right)_{m,n=1,\dots,N} \in \mathbb{C}^{N,N}, \\ \mathbf{T} &= \frac{1}{\gamma+1} \left(\langle \tilde{u}_{k,m} - \operatorname{curl}\left(\frac{1}{\varepsilon} \tilde{\sigma}_{k,m}\right), \tilde{u}_{k,n} - \operatorname{curl}\left(\frac{1}{\varepsilon} \tilde{\sigma}_{k,n}\right) \rangle_{L^{2}} \right)_{m,n=1,\dots,N} \in \mathbb{C}^{N,N} \end{split}$$

If the matrix $N = A + (\gamma - 2\beta)B + \beta^2(S + T)$ is positive definite, and if the eigenvalues

$$\theta_1 \ge \theta_2 \ge \cdots \ge \theta_N$$

of the eigenvalue problem

$$\left(\mathbf{A} + (\gamma - \beta)\mathbf{B}\right)\mathbf{x} = \theta\mathbf{N}\mathbf{x}$$

are negative, we have $\beta - \gamma - \frac{\beta}{1-\theta_n} \leq \lambda_{n,k}$ for $n = 1, \dots N$.

16

Spectral Homotopy

For determining β such that $\Lambda_{k,N} < \beta - \gamma \leq \lambda_{k,N+1}$, let

$$\varepsilon_s(x) := (1-s)\varepsilon_{\max} + s\varepsilon(x) \qquad x \in \Omega, \ 0 \le s \le 1,$$

and consider the family of eigenvalue problems

$$u \in \mathcal{H}_k \setminus \{0\}, \ \int_{\Omega} \frac{1}{\varepsilon_s(x)} (\operatorname{curl} u) \cdot \overline{(\operatorname{curl} v)} dx + \int_{\Omega} u \cdot \overline{v} dx = \lambda^{(s)} \int_{\Omega} u \cdot \overline{v} dx$$

for all $v \in \mathcal{H}_k$,

 $0 \le s \le 1$, k still fixed in the grid. Eigenvalues $(\lambda_n^{(s)})_{n \in \mathbb{N}}$. For s = 0: eigenvalues $\lambda_n^{(0)}$ are known For s = 1: $\lambda_n^{(1)} = \lambda_{k,n}$ $(n \in \mathbb{N})$. Lemma. For each fixed $n \in \mathbb{N}$,

$$\lambda_n^{(s)} \le \lambda_n^{(t)}$$
 for $0 \le s \le t \le 1$.

(Proof by Poincaré's min-max principle.)

Spectral Homotopy

Concrete case: $\Omega = (0,1)^3$, $\varepsilon(x) := \begin{cases} 1 & \text{if } \left| x - \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \right| < \frac{1}{2} \\ 25 & \text{otherwise} \end{cases}$ Basis functions: combination of a) plane waves: $A_n^{(k)} e^{i(2\pi n+k)\cdot x}$, $n \in \mathbb{Z}^3$, $A_n^{(k)} \in \mathbb{C}^3$, $A_n^{(k)} \cdot (2\pi n+k) = 0$ b) certain functions which are non-zero only on the ball $\left| x - \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \right| < \frac{1}{2}$, constructed via polynomials in r and spherical harmonics in φ, θ . By symmetry, only the following part of the Brillouin zone K needs to be considered: show[B, T]

19

jointly with V. Hoang, C. Wieners:

2D-situation: $\varepsilon = \varepsilon(x_1, x_2)$, polarized wave E = (0, 0, u)

$$\Rightarrow 0 = \operatorname{div}(\varepsilon E) = \frac{\partial}{\partial x_3}(\varepsilon u) = \varepsilon \frac{\partial u}{\partial x_3}, \quad \text{ i.e. } \frac{\partial u}{\partial x_3} = 0, \quad u = u(x_1, x_2).$$
$$\Rightarrow \operatorname{curl} \operatorname{curl} E = \begin{pmatrix} 0\\ 0\\ -\Delta u \end{pmatrix}$$

Maxwell's equation gives, with $\lambda = \omega^2$, $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$

$$(*) \qquad -\Delta u = \lambda \varepsilon u$$

equation on whole of \mathbb{R}^2

Let $\Lambda = \mathbb{Z}^2$, $\Omega = (0,1)^2$ and $K = [-\pi,\pi]^2$. We set $\varepsilon(x) = 1$ for $x \in [1/16, 15/16]^2$ and $\varepsilon(x) = 5$ else. By symmetry we have the same spectrum for $k = (k_1, k_2)$, $(-k_1, k_2)$, $(k_1, -k_2)$, (k_2, k_1)

eigenvalues $\lambda_{k,1},...,\lambda_{k,5}$ for all $k \in K$

eigenfunctions $u_{k,1}, ..., u_{k,6}$ for $k = (\pi, \pi)$

Spectral Homotopy for k = (2.5130, 0.4046)

 $\begin{array}{l} \lambda_{10}^{(s)} \geq 27.13 \ \text{for} \ s \geq 1/32 \quad \lambda_{7}^{(s)} \geq 23.37 \ \text{for} \ s \geq 19/32 \\ \lambda_{9}^{(s)} \geq 24.90 \ \text{for} \ s \geq 4/32 \quad \lambda_{6}^{(s)} \geq 22.81 \ \text{for} \ s \geq 22/32 \\ \lambda_{8}^{(s)} \geq 23.85 \ \text{for} \ s \geq 8/32 \quad \lambda_{5}^{(s)} \geq 22.47 \ \text{for} \ s \geq 28/32 \end{array}$

29

Spectral Homotopy for k = (2.5130, 0.4046)

s	0	4/32	8/32	19/32
λ_1	(1.295, 1.296)	(1.402, 1.403)	(1.528, 1.529)	(2.017, 2.018)
λ_2	(2.875, 2.876)	(3.114, 3.115)	(3.396, 3.397)	(4.526, 4.527)
λ_{3}	(8.174, 8.175)	(8.840, 8.841)	(9.594, 9.595)	(12.189, 12.190)
λ_4	(9.754, 9.755)	(10.563, 10.564)	(11.523, 11.524)	(15.397,15.398)
λ_5	(10.208,10.209)	(11.048, 11.049)	(12.019, 12.020)	(15.575, 15.577)
λ_6	(11.788,11.789)	(12.783,12.784)	(14.019, 14.020)	(19.920, 19.921)
λ_7	(15.507,15.508)	(16.778, 16.779)	(18.236, 18.237)	(23.339,23.373)
λ_8	(20.246,20.247)	(21.907,21.913)	(23.786,23.832)	
λ_9	(22.386,22.387)	(24.210,24.213)		
λ_{10}	(24.419,24.420)			

s	19/32	22/32	28/32	1
λ_1	(2.017, 2.018)	(2.204, 2.205)	(2.690, 2.691)	(3.127, 3.128)
λ_2	(4.526, 4.527)	(4.979, 4.980)	(6.220, 6.221)	(7.433, 7.434)
λ_3	(12.189, 12.190)	(13.046, 13.048)	(14.981, 14.985)	(16.445,16.452)
λ_4	(15.397,15.398)	(16.653, 16.655)	(19.383, 19.389)	(21.422,21.450)
λ_5	(15.575, 15.577)	(17.188, 17.190)	(22.451,22.465)	
λ_6	(19.920, 19.921)	(22.809,22.813)		
λ_7	(23.339,23.373)			

A Verified Band Gap This figure illustrates the covering

 $K \subset \bigcup_{k \in \operatorname{grid}} \operatorname{Ball}(k, r_k)$

Eigenvalue bounds (in grid) and perturbation arguments give $\lambda_{k,3} \leq 18.2$, $\lambda_{k,4} \geq 18.25$ for all $k \in K$.

This proves the existence of a band gap

$$(18.2, 18.25) \subset (\lambda_{\max,3}, \lambda_{\min,4})$$

for the spectral problem $-\Delta u = \lambda \varepsilon u$ in \mathbb{R}^2 .

The proof requires the close approximation of more than 5000 eigenvalues and eigenfunctions (for 100 vectors $k \in \text{grid}$ with up to 7 homotopy steps each) and takes about 90 h computing time.