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Introduction
Non-deterministic modelling in engineering

Non-determinism in modelling
Every aspect in the numerical model or solution procedure that
introduces doubt or scatter on the outcome of the analysis

in design procedures
present in all phases of design process
appearing in different forms

has to be taken into account
→ represented using non-deterministic mathematical concepts
parametric approach: uncertainty on parameters is processed
to uncertainty on output quantities
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Introduction
Non-deterministic modelling in engineering

COROT

Baffle

Secondary
mirror

Primary
mirror

Camera

abstraction of environment
loads, connections, ...

quanti�cation of model properties
geometry, material, ...

numerical procedure
discretisation, numerical properties, ...

SCATTER

scatter: caused by variation in design (variability, aleatory)

doubt: caused by uncertainty of designer (uncertainty,
epistemic)
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Introduction
Non-deterministic modelling in engineering

different tools for dealing with parametric non-determinism:
variability

sampling methods
random processes
stochastic methods
. . .

uncertainty
interval methods
fuzzy approach
interval probabilities
info-gap
. . .
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Introduction
Fuzzy uncertainty analysis in engineering

Fuzzy uncertainty analysis
input: membership functions of fuzzy model properties
output: membership function of output quantity

 

x
 

   fuzzy
      analysis 

 

y

 
 

m(x)

nominal model

fuzzy input

m(y)

fuzzy output

~

~

implementation: using α-sublevel technique
added value in design procedures

definition of tolerances
design for robustness
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Introduction
Fuzzy uncertainty analysis in engineering

α-level strategy
m

1

0

m

Þ
aa ba f(a ,b )a a

a
~

b
~

.25

.5

.25
f(a,b)

~ ~

interval analysis is core of fuzzy analysis
selection of number of α-levels is a trade-off between
accuracy and numerical cost
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Introduction
Fuzzy uncertainty analysis in engineering

Definition of tolerances
interval concept very appropriate representation of tolerances
in early design stage
derive allowable tolerance intervals:

critical valuecritical value

safety
margin
safety
margin

aa

fuzzy input fuzzy output
m

m

m

a

a
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Implementation strategies

Basic interval problem
If deterministic FE analysis is represented by f (x), uncertain
parameters bounded by x I , find the set of possible outputs y :

yS =

{
y |
(
x ∈ x I

)(
y = f

(
x
))}

output set yS can adopt any form in output space
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→ hypercubic approximation
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Implementation strategies
interval arithmetic

approaching the exact interval result from outside
based on interval arithmetics
can be subject to conservatism due to dependency problem

optimization
approaching the exact interval result from inside

y
i

= min
x∈x I

fi
(
x
)
, i = 1 . . . n

y i = max
x∈x I

fi
(
x
)
, i = 1 . . . n

global optimization → computationally expensive
approximate optimization schemes

DOE: full factorial (vertex method), 3-level FF, . . .
local series expansion about interval mid-value
using global surrogate models
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Response surface approaches
Objective

principal idea RSA for interval analysis
1 to build a surrogate model based on limited information of

the goal function f (x)

2 to use knowledge from this surrogate model to speed up
optimization

Two methods are used in this work:
1 Taylor expansion in interval mid-point to perform

monotonicity check (sensitivity analysis)
see also A. Pownuk, “General Interval FEM Program Based on
Sensitivity Analysis”, NSF workshop on Reliable Engineering Computing,
February 20-22, 2008, Savannah, Georgia, USA, pp.397-428

2 Kriging approach for global response surface modelling
see also M. De Munck, D. Moens, W. Desmet, and D. Vandepitte, “A
kriging based optimization algorithm for interval and fuzzy frf analysis,”
in 8th. World Congress on Computational Mechanics (WCCM8),
(Venice), 2008
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Response surface approaches
Taylor expansion

Taylor expansion: procedure
1 build first order approximation of partial derivative of output

function in mid-point of the uncertainty space

∂f (x)

∂xi
≈

∂f (x0)

∂xi
+ ∑

j

∂f 2(x0)

∂xi∂xj
(xj − xj0)

2 evaluate partial derivatives in vertex points(
∂f
∂xi

)l
≈

∂f (x0)

∂xi
−∑

j

∣∣∣∣∂f 2(x0)

∂xi∂xj

∣∣∣∣∆xj(
∂f
∂xi

)u
≈

∂f (x0)

∂xi
+ ∑

j

∣∣∣∣∂f 2(x0)

∂xi∂xj

∣∣∣∣∆xj
where ∆xj =

xu
j −x l

j
2

3 condition for monotonicity

0 /∈

[(
∂f
∂xi

)l
,

(
∂f
∂xi

)u
]

4 if monotonicity is detected, function is evaluated at optimal
vertex combinations

13/25



D

ee dp na ur kte gim ue tn krt eW

E nl gac ii nn ea eh ric ne g

M

--

K AT H O L I E K E U N I V E R S I T E I T

Introduction

RSA
Objective
Taylor expansion
Kriging approach

Application

Conclusions

Response surface approaches
Taylor expansion

f(x)

xxl xux0

properties
+ very efficient calculation
+ improved confidence in vertex results
+ reliable for low order behavior
- does not capture higher order behavior
- no solution when non-monotonicity is detected
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Response surface approaches
Taylor expansion

f(x)

xxl xux0

vertex locations represent
exact interval result

properties
+ very efficient calculation
+ improved confidence in vertex results
+ reliable for low order behavior
- does not capture higher order behavior
- no solution when non-monotonicity is detected
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Response surface approaches
Kriging approach

Kriging approach: principle
Kriging (DACE) approximation
objective: build a reliable response surface with a limited
number of samples
principle idea: errors are no longer considered independent

model:

f̃ (xi ) =
n

∑
k=1

ak f̃k(xi ) + ε(xi )

correlation:

Corr
(
ε (xi ) , ε (xj )

)
= exp

(
− d (xi , xj )

)
d(xi , xj ) =

k

∑
h=1

θh
∣∣xih − xjh

∣∣ph

DACE stochastic process model

f̃ (xi ) = µ+ ε(xi )
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Response surface approaches
Kriging approach

Kriging model: example

16/25



D

ee dp na ur kte gim ue tn krt eW

E nl gac ii nn ea eh ric ne g

M

--

K AT H O L I E K E U N I V E R S I T E I T

Introduction

RSA
Objective
Taylor expansion
Kriging approach

Application

Conclusions

Response surface approaches
Kriging approach

Kriging approach: procedure
1 build initial Kriging RS f̃ (x) based on space filling design
2 repeat until convergence:

generate set of candidate points x i for improved RS, and
calculate f̃ (x i ) and maximum error ∆f̃ (x i )
search for point(s) with the maximum expected improvement

min
i

[
f̃ (x i )−∆f̃ (x i )

]
max

i

[
f̃ (x i ) + ∆f̃ (x i )

]
rebuild f̃ (x) by adding selected point(s) to Kriging RS

3 perform optimization on f̃ (x)
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Response surface approaches
Kriging approach

f(x)

xxl xu

step1: initial Kriging RS

properties
+ requires limited number of sampling points
+ finds local extrema
+ easily extendable towards multi-objective optimization
+ surface can be re-used at different α-levels
- extrema evaluated on surrogate model
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Response surface approaches
Kriging approach

f(x)

xxl xu

step 2.1: candidate
response points

properties
+ requires limited number of sampling points
+ finds local extrema
+ easily extendable towards multi-objective optimization
+ surface can be re-used at different α-levels
- extrema evaluated on surrogate model
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Response surface approaches
Kriging approach

f(x)

xxl xu

step 2.2: maximum
expected improvement

properties
+ requires limited number of sampling points
+ finds local extrema
+ easily extendable towards multi-objective optimization
+ surface can be re-used at different α-levels
- extrema evaluated on surrogate model
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Response surface approaches
Kriging approach

f(x)

xxl xu

step 2.3: add selected points
to Kriging RS

properties
+ requires limited number of sampling points
+ finds local extrema
+ easily extendable towards multi-objective optimization
+ surface can be re-used at different α-levels
- extrema evaluated on surrogate model
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Doubly reinforced beam
Deterministic model

Doubly reinforced beam: deterministic case
objective: given geometry and material properties, determine
the allowable external bending moment

fcc 
b 

Strains 

Nsc εsc 
εcc 

Cross section εs 

d 
As 

Asc εcy x 

Ns=Asfs 

Nc 

Stresses 

Neutral Axis 

Stress-strain curves 

fy 

σ 

Strains 

Es 

Mild steel fco 
Concrete 

εco εcu 

σ 
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Doubly reinforced beam
Deterministic model

Doubly reinforced beam: deterministic case
→ implicit non-linear problem solved using deterministic iterative

solution scheme on εcc
for increasing εcc

1 express all forces Nsc , Ns and Nc as a function of x
2 horizontal equilibrium yields quadratic equation in x:

Ax2 + Bx + C = 0 (1)

with A(εcc), B(AS ,ASC ,ES) and C(AS ,ASC ,ES)
3 from x , the location of the resultant compression force in

concrete is determined
4 finally, the internal moment of resistance MR is determined

stop when either εcc , fs or fsc reaches physical limit
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Doubly reinforced beam
Uncertain model

Doubly reinforced beam: problem with uncertainty
fuzzy uncertainty has been defined on geometric and material
properties of steel: AS ,ASC ,ES

triangular fuzzy membership functions, with a base interval
[−5%,+5%]

objective: given an external bending moment, determine the
tolerances on geometry and the allowable interval on the
Young’s modulus

→ solved using interval arithmetic approach, Taylor and Kriging
approach
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Doubly reinforced beam
Results
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→ Taylor expansion: 1 + 2× 10 = 21 function evaluations
→ Kriging approach: 20 function evaluations
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Conclusions

2 response surface methodologies were presented to
approximate interval solutions in numerical analysis
the Taylor approach proved to be a very efficient calculation
scheme, resulting in improved confidence in vertex results
the Kriging approach is applicable for non-monotonic
functions, requiring a minimal amount of sampling points
for the doubly reinforced concrete beam problem, both
methods yield very accurate interval results
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