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Affine arithmetic



Dependency problem
� The simple example

X − X ≠ [ 0, 0] (diameter: double of X)

� Affine arithmetic keeps track of first-order correlation 

between computed and input quantities

� For example, with affine arithmetic (Figueiredo’97)

X = x0 + x1·ε1 − 1 ≤ ε1 ≤ 1

(x0 + x1·ε1) − (x0 + x1·ε1) = [ 0, 0]

� Similarly, affine operations are ideally treated

(apart from the rounding error)



Non-affine operations

1
x

1

y = exp(x)

a

b

c

d

1

1

1
x

1

y = exp(x)

a b

e

f

1

A new (unused) variable is introduced to
rigorously enclose the approximation error
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Non-affine operations (continued)
A new (unused) variable is introduced to
rigorously enclose the approximation error
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Binary operations
� With ordinary interval arithmetic

A(B+C)       AB+AC (subdistributivity)

X ⁄ X ≠ [ 1, 1]

� The modified affine arithmetic of Kolev’04

A(B+C) = AB+AC if B and C are independent 

X ⁄ X = [ 1, 1]

� Optimal multiplication w.r.t. range Kolev’07

� Optimal multiplication w.r.t. width Miyajima’03

∈



Root-finding procedure



Major components

� Linearization

ILA* or LIA*

� Pruning the box

based on CP, LP

� Splitting the box

(not discussed here)
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Interval Linear Approximation Linear Interval Approximation

L(x) = A(x − z) + f(z) L(x) = Ax + B

Advantages of LIA

� Keeps track of dependencies (coefficient matrix)

� The solution set has a simpler form (convex)

� LP is directly applicable



Pruning

� Hull solution is straightforward

� In the LP pruning, the following 2n LP subproblems
have to be solved
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Comparing the pruning techniques I

Discarded with LP

Not disc. with CP

Kolev’06
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Comparing the pruning techniques II

Kolev’06
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Much smaller part is 
kept with LP pruning

There may be a solution in X



Revised LP pruning

According to the ideas of Tobias Achterberg

� Only the first LP subproblem has to be

solved from scratch, after that just Phase II is used

� If xj = xj,L / xj,U then min / max xj can be skipped, resp.

� Sequence of variables: find the non-basic variable that is 

the closest to its lower / upper bound and has not yet been 

considered in the pruning step

� LP object is not deallocated between two iteration 

(memory pool)
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Numerical examples
(Separations)



Liquid-liquid 
equilibrium (LLE)

Two liquid phases are 
separated, components 
are distributed between 
phases

Solution for the necessary 
conditions is computed 
(nonlinear system of 
equations)



Liquid-liquid equilibrium (LLE)
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LLE results

Method 

[s]

 timetotal
 

CP/AA timetotal

 timetotal
 iterations 

CP/AAiterations

iterations
 

]s[

 timecycle

µ
 

CP/AA timecycle

 timecycle
 

IN/GS 26.1 22.7 120234 85.5 217 0.27 

AA/CP 1.15 1.00 1407 1.00 817 1.00 

 

Method 

[s]

 timetotal
 

CP/AA timetotal

 timetotal
 

iterations 

CP/AAiterations

iterations
 

]ms[

 timecycle
 

CP/AA timecycle

 timecycle
 

IN/GS >318000 >1.36·104 — — — — 

AA/CP 23.3 1.00 7715 1.00 3.01 1.00 

 

C = 2

C = 3

Baharev’08   Not state-of-the-art IN/GB! (C-XSC)



Distillation columns



Distillation columns
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Results with a single stage

Method 
time 

[s] AA/CPtimetotal

IN/GStimetotal
 cycles 

AA/CPcycles

IN/GScycles
 

cycle 

time 

[ms] AA/CPtimecycle

IN/GStimecycle
 
boxes

Cluster
 

IN/GS 280.7 63.2 271491 160.9 1.03 0.39 3 

AA/CP 4.44 1.00 1687 1.00 2.63 1.00 8 

 

Method 
time 

[s] AA/CPtimetotal

IN/GStimetotal
 cycles 

AA/CPcycles

IN/GScycles
 

cycle 

time 

[ms] AA/CPtimecycle

IN/GStimecycle
 
boxes

Cluster
 

AA/CP 4.44 4.23 1687 5.68 2.63 0.74 8 

AA/LP 1.05 1.00 297 1.00 3.54 1.00 1 

 

Linearization techniques (N = 1)

Pruning techniques



Extractive distillation column
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Distillation column (continued)

N time (s) boxes simplex 

iterations 

12   22.10 19   247522 

16 54.15 29 500041 

22 92.13 33 709058 

 
Revised implementation: memory pool,
LP pruning enhanced

Initial intervals are fairly wide
Hundreds of variables



Distillation columns
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for j = 1, …, N   (i.e. for each stage)



Convex envelopes in LP pruning
     z ≥ xL y + yL x – xL yL 
 z = xy   z ≥ xU y + yU x – xU yU 
     z ≤ xL y + yU x – xL yU 
     z ≤ xU y + yL x – xU yL 

The initial intervals are varied
 with env. without env. with / without env. 

time (s) 42.65 9.49 4.50 
boxes examined 7 9 0.78 

simplex iterations 176411 78803 2.24 
 
 with env. without env. with / without env. 

time (s) 161.1 54.15 2.97 
boxes examined 17 29 0.59 

simplex iterations 656571 500041 1.31 
 



Multiple steady states

Binary mixture (C = 2)

Lw (spec.)

yD = ?

F, z (spec.)

VB (spec.)

Multiple solutions

Instead of the complicated equations of γ:
yj = αxj ⁄ ((α−1) xj + 1)

 

Lw 

yD 

Jacobsen’91



Multiple steady states (results)
Only convex envelopes are used + LP pruning

Mixed AA/IA

Lw 
(kg/min) 

V 
(kmol/min) 

number of 
solutions 

time (s) box cluster box 

58.50 2.0 3 1427 48175 341 
96.00 3.0 5 >3600 − − 
98.75 3.0 3 >3600 − − 

 

Lw 
(kg/min) 

V 
(kmol/min) 

number of 
solutions 

time (s) box cluster box 

58.50 2.0 3 0.22 507 0 
96.00 3.0 5 0.25 267 0 
98.75 3.0 3 0.20 227 0 

 



Conclusions



Conclusions

� Numerical evidence suggests that affine arithmetic 
is a competing linearization compared to the 
Interval Newton method

� The revised LP pruning proved to be an efficient 
pruning technique in certain cases

� The solver written in C++ should be interfaced with 
a modeling language

� DAG based propagation technique should be 
studied
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