Comparing Inclusion Techniques on Chemical Engineering Problems

<u>Ali Baharev, Endre Rév</u>

Dep. of Chemical and Environmental Process Engineering,

Budapest University of Technology and Economics; Hungary

Outline

- Affine arithmetic
- Root-finding procedure
- Numerical examples
 - affine vs. interval arithmetic
 - convex envelopes
- Conclusions

Affine arithmetic

Dependency problem

The simple example

 $X - X \neq [0, 0]$ (diameter: double of X)

- Affine arithmetic keeps track of first-order correlation between computed and input quantities
- For example, with affine arithmetic (Figueiredo'97) $X = x_0 + x_1 \cdot \varepsilon_1 \qquad -1 \le \varepsilon_1 \le 1$ $(x_0 + x_1 \cdot \varepsilon_1) - (x_0 + x_1 \cdot \varepsilon_1) = [0, 0]$
- Similarly, affine operations are ideally treated (apart from the rounding error)

Non-affine operations

A new (unused) variable is introduced to rigorously enclose the approximation error

Non-affine operations (continued) A new (unused) variable is introduced to rigorously enclose the approximation error

Binary operations

- With ordinary interval arithmetic $A(B+C) \subseteq AB+AC$ (subdistributivity) $X/X \neq [1, 1]$
- The modified affine arithmetic of Kolev'04
 A(B+C) = AB+AC if B and C are independent
 X/X = [1, 1]
- Optimal multiplication w.r.t. range Kolev'07
- Optimal multiplication w.r.t. width Miyajima'03

Root-finding procedure

Major components

Linearization

ILA* or LIA*

Pruning the box

based on CP, LP

Splitting the box

(not discussed here)

* Kolev'06

Advantages of LIA

- Keeps track of dependencies (coefficient matrix)
- The solution set has a simpler form (convex)
- LP is directly applicable

Pruning

$$\boldsymbol{L}(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B} \quad \boldsymbol{x} \in \boldsymbol{X}$$

Hull solution is straightforward

$$\boldsymbol{Y} = -\boldsymbol{A}^{-1}\boldsymbol{B}$$

$$X^{new} = X \cap Y$$

 In the LP pruning, the following 2n LP subproblems have to be solved

min/max x_i for all j

subject to

$$-b_U \le Ax \le -b_L$$
$$x_L \le x \le x_U$$

Comparing the pruning techniques I L(x) = Ax + B $x \in X$

No solution in **X**

Kolev'06

Comparing the pruning techniques II L(x) = Ax + B $x \in X$

There may be a solution in **X**

Much smaller part is kept with LP pruning

Kolev'06

Revised LP pruning

min/max x_j for all j subject to

 $-b_{II} \leq Ax \leq -b_{II}$

 $x_{I} \leq x \leq x_{II}$

According to the ideas of *Tobias Achterberg*

- Only the first LP subproblem has to be solved from scratch, after that just Phase II is used
- If $x_j = x_{j,L} / x_{j,U}$ then min / max x_j can be skipped, resp.
- Sequence of variables: find the non-basic variable that is the closest to its lower / upper bound and has not yet been considered in the pruning step
- LP object is not deallocated between two iteration (memory pool)

Numerical examples (Separations)

Liquid-liquid equilibrium (LLE)

Two liquid phases are separated, components are distributed between phases

Solution for the necessary conditions is computed (nonlinear system of equations)

Liquid-liquid equilibrium (LLE) $\sum_{i} x_i = 1$ $\sum y_i = 1$ $i = 1, 2, \dots, C$ $\lambda \cdot x_i + (1 - \lambda) \cdot y_i = z_i$ $\ln \gamma_i(\mathbf{x}) + \ln x_i = \ln \gamma_i(\mathbf{y}) + \ln y_i$ $\sum_{i=1}^{C-1} (x_i - y_i)^2 > \varepsilon$ i=1 $\ln \gamma_i(\mathbf{x}) = \frac{\sum_{j=1}^{C} \tau_{ji} G_{ji} x_j}{\sum_{k=1}^{C} G_{ki} x_k} + \sum_{j=1}^{C} \frac{x_j G_{ij}}{\sum_{k=1}^{C} G_{kj} x_k} \cdot \left(\tau_{ij} - \frac{\sum_{l=1}^{C} \tau_{lj} G_{lj} x_l}{\sum_{k=1}^{C} G_{kj} x_k} \right)$

LLE results

C = 2

Method	total time [s]	$\frac{\text{total time}}{\text{total time}_{AA/CP}}$	iterations	$\frac{\text{iterations}}{\text{iterations}_{AA/CP}}$	cycle time [µs]	$\frac{\text{cycle time}}{\text{cycle time}_{AA/CP}}$
IN/GS	26.1	22.7	120234	85.5	217	0.27
AA/CP	1.15	1.00	1407	1.00	817	1.00

C = 3

Method	total time	total time	iterations	iterations	cycle time	cycle time
	[s]	total time _{AA/CP}		iterations _{AA/CP}	[ms]	cycle time _{AA/CP}
IN/GS	>318000	$>1.36 \cdot 10^4$				—
AA/CP	23.3	1.00	7715	1.00	3.01	1.00

Baharev'08 Not state-of-the-art IN/GB! (C-XSC)

Distillation columns

$$\begin{aligned} \textbf{Distillation columns} \\ \text{for } j = 1, ..., N \quad (i.e. \text{ for each stage}) \\ \sum_{i} x_{i,j} = 1 \\ \sum_{i} y_{i,j} = 1 \\ i = 1, 2, ..., C \\ L_{j-1}x_{i,j-1} + V_{j+1}y_{i,j+1} + F_j z_{i,j} = L_j x_{i,j} + V_j y_{i,j} \\ V_j \sum_{i} \lambda_i y_{i,j} = V_{j+1} \sum_{i} \lambda_i y_{i,j+1} \\ \ln \gamma_{i,j}(\mathbf{x}_j, T_j) + \ln x_{i,j} + (A_i - B_i/(C_i + T_j)) = \ln y_{i,j} + \ln P \\ \overline{\ln \gamma_i(\mathbf{x}, T)} = -\ln\left(\sum_{a=1}^{C} x_a \Lambda_{ia}\right) + 1 - \sum_{b=1}^{C} \frac{x_b \Lambda_{bi}}{\sum_{a} x_a \Lambda_{ia}}; \quad \Lambda_{ab}(T) = \frac{V_b^m}{V_a^m} \exp\left(-\frac{k_{ab}}{R_G T}\right) \end{aligned}$$

a=1

Results with a single stage

Linearization techniques (N = 1)

Method	time [s]	total time _{IN/GS} total time _{AA/CP}	cycles	cycles _{IN/GS}	cycle time [ms]	cycle time _{IN/GS} cycle time _{AA/CP}	Cluster boxes
IN/GS	280.7	63.2	271491	160.9	1.03	0.39	3
AA/CP	4.44	1.00	1687	1.00	2.63	1.00	8

Pruning techniques

Method	time [s]	total time _{IN/GS} total time _{AA/CP}	cycles	cycles _{IN/GS}	cycle time [ms]	cycle time _{IN/GS} cycle time _{AA/CP}	Cluster boxes
AA/CP	4.44	4.23	1687	5.68	2.63	0.74	8
AA/LP	1.05	1.00	297	1.00	3.54	1.00	1

Extractive distillation column

Distillation column (continued) Initial intervals are fairly wide Hundreds of variables

N	time (s)	boxes	simplex
			iterations
12	22.10	19	247522
16	54.15	29	500041
22	92.13	33	709058

Revised implementation: memory pool, LP pruning enhanced

$$\begin{aligned} \textbf{Distillation columns} \\ \text{for } j = 1, \ \dots, \ N \quad (i.e. \text{ for each stage}) \\ & \sum_{i} x_{i,j} = 1 \\ & \sum_{i} y_{i,j} = 1 \\ & i = 1, 2, \dots, C \end{aligned} \\ \begin{aligned} L_{j-1}x_{i,j-1} + V_{j+1}y_{i,j+1} + F_{j}z_{i,j} = L_{j}x_{i,j} + V_{j}y_{i,j} \\ & V_{j}\sum_{i}\lambda_{i} \ y_{i,j} = V_{j+1}\sum_{i}\lambda_{i} \ y_{i,j+1} \\ & \ln \gamma_{i,j}(\mathbf{x}_{j}, T_{j}) + \ln x_{i,j} + (A_{i} - B_{i}/(C_{i} + T_{j}) = \ln y_{i,j} + \ln P \\ \hline \ln \gamma_{i}(\mathbf{x}, T) = -\ln\left(\sum_{a=1}^{C} x_{a}\Lambda_{ia}\right) + 1 - \sum_{b=1}^{C} \frac{x_{b}\Lambda_{bi}}{\sum_{a=1}^{C} x_{a}\Lambda_{ia}} ; \quad \Lambda_{ab}(T) = \frac{V_{b}^{m}}{V_{a}^{m}} \exp\left(-\frac{k_{ab}}{R_{G}T}\right) \end{aligned}$$

I

Convex envelopes in LP pruning

$$z \ge x_L y + y_L x - x_L y_L$$
$$z = xy$$
$$z \ge x_U y + y_U x - x_U y_U$$
$$z \le x_L y + y_U x - x_L y_U$$
$$z \le x_U y + y_L x - x_U y_L$$

The initial intervals are varied

	with env.	without env.	with / without env.
time (s)	42.65	9.49	4.50
boxes examined	7	9	0.78
simplex iterations	176411	78803	2.24

	with env.	without env.	with / without env.
time (s)	161.1	54.15	2.97
boxes examined	17	29	0.59
simplex iterations	656571	500041	1.31

Multiple steady states

Binary mixture (C = 2) Jacobsen'91

Multiple solutions

Instead of the complicated equations of γ :

$$y_j = \alpha x_j / ((\alpha - 1) x_j + 1)$$

Multiple steady states (results)

Only convex envelopes are used + LP pruning

L_w	V	number of	time (s)	box	cluster box
(kg/min)	(kmol/min)	solutions			
58.50	2.0	3	1427	48175	341
96.00	3.0	5	>3600	_	—
98.75	3.0	3	>3600		

Mixed AA/IA

L_w	V	number of	time (s)	box	cluster box
(kg/min)	(kmol/min)	solutions			
58.50	2.0	3	0.22	507	0
96.00	3.0	5	0.25	267	0
98.75	3.0	3	0.20	227	0

Conclusions

Conclusions

- Numerical evidence suggests that affine arithmetic is a competing linearization compared to the Interval Newton method
- The revised LP pruning proved to be an efficient pruning technique in certain cases
- The solver written in C++ should be interfaced with a modeling language
- DAG based propagation technique should be studied

Acknowledgement

This work was supported by the Hungarian Scientific Research Foundation ("OTKA") K062099.

References

- Baharev A, Rev E; 2008. Reliable Computation of Equilibrium Cascades with Affine Arithmetic. AIChE J, 54(7), 1782-1797
- Figueiredo LH, Stolfi J; 1997. Self-Validated Numerical Methods and Applications. Brazilian Mathematics Colloquium monographs
- Jacobsen EW, Skogestad S; 1991. Multiple Steady States in Ideal Two-Product Distillation. AIChE J, 37(4), 499-511
- Kolev LV; 2004. An improved interval linearization for solving non-linear problems. Numerical Algorithms, 37, 213–224
- Kolev LV; 2006. Some ideas towards global optimization of improved efficiency. Presented at GICOLAG Workshop, Wien, Austria, 4-8 December
- Kolev LV; 2007. Optimal multiplication of G-intervals. Reliable Computing, 13(5), 399–408
- Miyajima S, Miyata T, Kashiwagi M; 2003. On the Best Multiplication of the Affine Arithmetic. IEICE Trans. Vol. J86-A, No. 2, 150-159 (in Japanese)