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Affine arithmetic



" S
Dependency problem

m The simple example
X=X#[0,0] (diameter: double of X)

m Affine arithmetic keeps track of first-order correlation
between computed and input quantities

m For example, with affine arithmetic (Figueiredo’97)
X=X, + X6q -1<¢ <1
(% +Xpe1) = (% +X61) =0, 0]

m Similarly, affine operations are ideally treated
(apart from the rounding error)



Non-affine operations

A new (unused) variable Is introduced to
rigorously enclose the approximation error

A v=exp(x) A v =exp(x)

minrange



Non-affine operations (continued)

A new (unused) variable Is introduced to
rigorously enclose the approximation error

A v =cap(z)

mixed AA/IA
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Binary operations

m With ordinary interval arithmetic
A(B+C) LI AB+AC (subdistributivity)
X/ X#£[1, 1]

m [he modified affine arithmetic of Kolev’'04

A(B+C) = AB+AC If B and C are independent
X/X=[1, 1]

m Optimal multiplication w.r.t. range Kolev’'O7

m Optimal multiplication w.r.t. width Miyajima’03



Root-finding procedure



Major components

m Linearization

ILA* or LIA*

m Pruning the box

based on CP, LP

m Splitting the box

(not discussed here)

* Kolev'06



Interval Linear Approximation Linear Interval Approximation
A y = x> —0.16

A y=2?—0.16

L(X) =A(Xx — 2) +1(2
Advantages of LIA

L(x) =AX + B

® Keeps track of dependencies (coefficient matrix)

® The solution set has a simpler form (convex)

® LPis directly applicable



" S
Pruning

L(X)=Ax+B xUOX
= Hull solution is straightforward
Y=-A"B
=XNY

= |n the LP pruning, the following 2n LP subproblems
have to be solved

min/max x; forall ]

subjectto
-h, < AX< b,
X, £ X< X,



Comparing the pruning techniques |
L(X)=Ax+B xUOX

No solution in X

1Y = —A'B
Xnew — ) Discarded with LP
P AT =XNY Not disc. with CP
1

Kolev'06



Comparing the pruning techniques Il
L(X)=Ax+B xUOX

There may be a solution in X

_— Y =—A"'B

new
XLP

- X" =XNY

X Much smaller part is
kept with LP pruning

Kolev'06
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min/max x; forall |

Revised LP pruning

subjectto
—h, < Ax<-b,
According to the ideas of Tobias Achterberg X, < X< X,

= Only the first LP subproblem has to be
solved from scratch, after that just Phase Il is used
= It x =% /x,then min/maxx can be skipped, resp.

= Sequence of variables: find the non-basic variable that is
the closest to its lower / upper bound and has not yet been
considered In the pruning step

= LP object is not deallocated between two iteration
(memory pool)



Numerical examples
(Separations)



Liquid-liquid
equilibrium (LLE)

Two liquid phases are
separated, components
are distributed between
phases

Solution for the necessary
conditions Is computed
(nonlinear system of
equations)
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Liquid-liquid equilibrium (LLE)
R
Zyizl i=12...,C
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LLE results

C=2
Method | totaltime total time _ _ iterations cycletime cycletime
[s] totaltimean ; cp terations iterationsa ,cp | [1s] cycletimesa /cp
IN/GS 26.1 22.7 120234 85.5 217 0.27
AA/CP 1.15 1.00 1407 1.00 817 1.00
C=3
Method | totaltime totaltime iterations iterations cycletime cycletime
[s] totaltimea, ; cp iterationsys ;cp | [MY cycletimeaa /cp
IN/GS | >318000 >1.36-10 — — — —
AA/CP 23.3 1.00 7715 1.00 3.01 1.00

Baharev'’08 Not state-of-the-art IN/GB! (C-XSC)




Distillation columns
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Distillation columns

forj=1, ..., N (i.e. for each stage)
2%, =1
Zyi,i:]' 1=1 2, ... C
LioXiatViaY wtFz, =LXx, +V,y .
ij/li Yi i :Vj+1z/1i Yiin

Iny, . (X;, T,) + In>qj+(A B/(C +T.)=Iny, , +InP

Iny; (X, T)“'”(ZXa/\.aijl Z cxb/\b' : ab(T)‘Vm Xr{— kabj
Py XN Vo Al



Results with a single stage

Linearization techniques (N=1)

: cycle .

ti totaltime cycle cycletime
Method me _ IN/GS cycles INGS time ) IN/GS | Cluster

[S] totaltlmeAA/CP cycle%A/CP ms] cycletlmeAA/CP boxes
IN/GS | 280.7 63.2 271491160.9 1.08 0.39 3
AA/CP, 444 1.00 168Y 1.00 2.63 1.00 8
Pruning technigues

ti totaltime cycle cycle cycletime

ime
Method _ INIGS cycles IN/GS time ) IN/GS | Cluster

[S] totaltlmeAA/CP CyCIeSAA/CP ] cycletlmeAA/CP boxes
AA/CP| 444 4.23 1687 5.68 2.63 0.74 8
AA/LP| 1.05 1.00 297 1.00 3.54 1.00 1




Extractive distillation column

+——pA

A+D m=—

@l nnnnnn
i



Distillation column (continued)

Initial intervals are fairly wide
Hundreds of variables

N |time(s) | boxes| smplex

Iterations

12| 22.10, 19| 247522
16| 54.15] 29| 500041
22| 92.13| 33| 709058

Revised implementation: memory pool,
LP pruning enhanced %i
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Distillation columns

forj=1, ..., N (i.e. for each stage)
2%, =1

Zyi,i:]' 1=1 2, ... C

LioXiatViaY wtFz, =LXx, +V,y .

ij/li Yi i :Vj+1z/1i Yiin

Iny, . (X;, T,) + In>qj+(A B/(C +T.)=Iny, , +InP

Iny; (X, T)“'”(ZXa/\.aijl Z cxb/\b' : ab(T)‘Vm Xr{— kabj
Py XN Vo Al



Convex envelopes in LP pruning
ZZX YTV X—XW
ZXuY TYWX—=X W
Z=X Y TWX—X W
Z=XuY +tYX—XuW
The initial intervals are varied

Z = XY

with env.| without env.| with / without env.
time (s) 42.65 9.49 4.50
boxes examined / 9 0.78
simplex iterationg 176411 78803 2.24
with env.| without env.| with / without env.
time (s) 161.1 54.15 2.97
boxes examined 17 29 0.59
simplex iterationg 656571 500041 1.31
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Multiple steady states

Yp =7 4

YD

F, z (spec. L (Spec.)

>

TN

LV (spec.)

>

Lw

Binary mixture (C = 2) Multiple solutions
Jacobsen’9l

Instead of the complicated equations of v:

Y, = ax/((a=1)x + 1)



"
Multiple steady states (results)

Only convex envelopes are used + LP pruning

L V number of| time (s) box cluster bok
(kg/min) | (kmol/min) | solutions

58.50 2.0 3 1427| 48175 341

96.00 3.0 5 >3600 - -

98.75 3.0 3 >3600 - -
Mixed AA/IA

Lw V number of| time (s) box cluster box
(kg/min) | (kmol/min) | solutions

58.50 2.0 3 0.22 507 0

96.00 3.0 5 0.25 267 0

98.75 3.0 3 0.20 227 0




Conclusions



Conclusions

m Numerical evidence suggests that affine arithmetic
IS a competing linearization compared to the
Interval Newton method

m The revised LP pruning proved to be an efficient
pruning technigue in certain cases

m The solver written in C++ should be interfaced with
a modeling language

m DAG based propagation technique should be
studied
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