Interval Finite Elements and Uncertainty in Engineering Analysis and Design

Rafi L. Muhanna Georgia Institute of Technology

SCAN 2008 El Paso, Texas, October 2, 2008

Georgialnstitute of Technology

Outline

- Introduction
- Uncertainty
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Acknowledgment

Robert Mullen Hao Zhang

Outline

- Introduction
- Uncertainty
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Introduction- Uncertainty

- □ Uncertainty is unavoidable in engineering system
 - Structural mechanics entails uncertainties in material, geometry and load parameters (aleatory-epistemic)
- □ Probabilistic approach is the traditional approach
 - Requires sufficient information to validate the probabilistic model
 - Credibility of probabilistic approach when data is insufficient (Elishakoff, 1995; Williamson, 1990, Ferson and Ginzburg, 1996; Möller and Beer, 2007)

Introduction- Uncertainty

Introduction- Uncertainty

Tucker, W. T. and Ferson, S., Probability bounds analysis in environmental risk assessments, Applied Biomathematics, 2003.

Introduction- Interval Approach

 Nonprobabilistic approach for uncertainty modeling when only range information (tolerance) is available

 $t = t_0 \pm \delta$

Represents an uncertain quantity by giving a range of possible values

$$t = [t_0 - \delta, t_0 + \delta]$$

How to define bounds on the possible ranges of uncertainty?
 experimental data, measurements, statistical analysis, expert knowledge

Introduction- Why Interval?

- □ Simple and elegant
- □ Conforms to practical tolerance concept
- Describes the uncertainty that can not be appropriately modeled by probabilistic approach
- Computational basis for other uncertainty approaches
 (e.g., fuzzy set, random set, imprecise probability)

Provides guaranteed enclosures

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Interval arithmetic

Interval number represents a range of possible values within a closed set

$$\boldsymbol{x} \equiv [\underline{x}, \overline{x}] \coloneqq \{ x \in R \mid \underline{x} \le x \le \overline{x} \}$$

Properties of Interval Arithmetic

Let x, y and z be interval numbers

1. Commutative Law

x + y = y + xxy = yx

2. Associative Law

x + (y + z) = (x + y) + zx(yz) = (xy)z

3. Distributive Law does not always hold, but

$$x(y+z) \subseteq xy + xz$$

Sharp Results – Overestimation

The DEPENDENCY problem arises when one or several variables occur more than once in an interval expression

 $f(x) = x (1-1) \implies f(x) = 0$ $f(x) = \{ f(x) = x - x \mid x \in x \}$ REC
Georgialing

Sharp Results – Overestimation

Let *a*, *b*, *c* and *d* be independent variables, each with interval [1, 3]

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}, \qquad A \times B = \begin{pmatrix} [-2, 2] & [-2, 2] \\ [-2, 2] & [-2, 2] \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad B_{phys} = \begin{pmatrix} b & -b \\ -b & b \end{pmatrix}, \qquad A \times B_{phys} = \begin{pmatrix} [b-b] & [b-b] \\ [b-b] & [b-b] \end{pmatrix}$$

Ŵ

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad B_{phys}^* = \boldsymbol{b} \times \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \qquad A \times \boldsymbol{B}_{phys}^* = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Finite Element Method (FEM) is a numerical method that provides approximate solutions to differential equations (ODE and PDE)

Finite Element Model (courtesy of Prof. Mourelatous) 500,000-1,000,000 equations

For example, in the case of one dimensionalsecond order differential equation

$$-\frac{d}{dx}(a(x)\frac{du}{dx}) + c(x)u = f(x) \qquad for \qquad 0 < x < L$$

with the boundary conditions

$$u(0) = u_0, \quad \left(a\frac{du}{dx}\right)\Big|_{x=L} = Q_0$$

Georgia Institute of Technology

Finite Element

(Reddy, J. N. An intr. to the FEM, 3rd ed., 2006)

Georgia Institute of Technology

The weak form over an element: find u(x) for all w in the appropriate Hilbert space

$$0 = \int_{x_a}^{x_b} w \left[-\frac{d}{dx} \left(a(x) \frac{du}{dx} \right) + c(x)u - f(x) \right] dx$$
$$= \int_{x_a}^{x_b} \left[a \frac{dw}{dx} \frac{du}{dx} + cwu - wf \right] dx - \left[w \cdot a \frac{du}{dx} \right]_{x_a}^{x_b}$$
$$= \int_{x_a}^{x_b} \left[a \frac{dw}{dx} \frac{du}{dx} + cwu - wf \right] dx - w(x_a)Q_a - w(x_b) \cdot Q_b$$

The finite element approximation $u(x) \approx u_h(x) = \sum_{j=1}^n u_j \psi_j(x)$

and the finite element model is

 $[K]{u} = \{F\}$ $K_{ij} = \int_{x_a}^{x_b} \left(a \frac{d\psi_i}{dx} \frac{d\psi_j}{dx} + c\psi_i\psi_j \right) dx,$ $F_i = \int_{x_a}^{x_b} \psi_i f dx + \psi_i(x_a)Q_a + \psi_i(x_b)Q_b$ ECC

The finite element solution is of the form

Finite Elements- Uncertainty& Errors

- □ Mathematical model (validation)
- Discretization of the mathematical model into a computational framework (verification)
- Parameter uncertainty (loading, material properties)
- □ Rounding errors

Interval Finite Elements (IFEM)

- □ Follows conventional FEM
- Loads, geometry and material property are expressed as interval quantities
- System response is a function of the interval variables and therefore varies in an interval
- □ Computing the exact response range is proven NP-hard
- The problem is to estimate the bounds on the unknown exact response range based on the bounds of the parameters

FEM- Inner-Bound Methods

- Combinatorial method (Muhanna and Mullen 1995, Rao and Berke 1997)
- □ Sensitivity analysis method (Pownuk 2004)
- □ Perturbation (Mc William 2000)
- □ Monte Carlo sampling method
- Need for alternative methods that achieve
 - □ Rigorousness guaranteed enclosure
 - □ Accuracy sharp enclosure
 - □ Scalability large scale problem
 - □ Efficiency

IFEM- Enclosure

Linear static finite element

- □ Muhanna, Mullen, 1995, 1999, 2001, and Zhang 2004
- □ Popova 2003, and Kramer 2004
- □ Neumaier and Pownuk 2004
- □ Corliss, Foley, and Kearfott 2004
- Heat Conduction
 - □ Pereira and Muhanna 2004
- Dynamic
 - Dessombz, 2000
- □ Free vibration-Buckling

□ Modares, Mullen 2004, and Bellini and Muhanna 2005

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Naïve interval FEA

$$\begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \Rightarrow \begin{pmatrix} [2.85, 3.15] & [-2.1, -1.9] \\ [-2.1, -1.9] & [1.9, 2.1] \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}$$

- exact solution: $u_2 = [1.429, 1.579], u_3 = [1.905, 2.105]$
- naïve solution: $u_2 = [-0.052, 3.052], u_3 = [0.098, 3.902]$
- interval arithmetic assumes that all coefficients are independent
- uncertainty in the response is severely overestimated (1900%)
 REC

Element-By-Element

Element-By-Element (EBE) technique

- elements are detached no element coupling
- structure stiffness matrix is block-diagonal (k_1, \ldots, k_{Ne})
- the size of the system is increased

$$u = (u_1, \ldots, u_{Ne})^T$$

 need to impose necessary constraints for compatibility and equilibrium

Element-By-Element

Suppose the modulus of elasticity is interval:

$$\boldsymbol{E} = \hat{E}(1 + \boldsymbol{\delta})$$

 δ : zero-midpoint interval

The element stiffness matrix can be split into two parts,

$$\boldsymbol{k} = \hat{k}(\boldsymbol{I} + \boldsymbol{d}) = \hat{k} + \hat{k}\boldsymbol{d}$$

 \hat{k} : deterministic part, element stiffness matrix evalued using \hat{E} , $\hat{k}d$: interval part

d: interval diagonal matrix, $diag(\delta, ..., \delta)$.

Element-By-Element

 \Box Element stiffness matrix: $\mathbf{k} = \hat{k}(I + d)$

Structure stiffness matrix:

$$\boldsymbol{K} = \hat{K}(\boldsymbol{I} + \boldsymbol{D}) = \hat{K} + \hat{K}\boldsymbol{D}$$

or

Constraints

Impose necessary constraints for compatibility and equilibrium

□ Penalty method

□ Lagrange multiplier method

Element-By-Element model

Constraints – penalty method

Constraint conditions: $c\mathbf{u} = 0$ Using the penalty method:

 $(\boldsymbol{K}+\boldsymbol{Q})\boldsymbol{u}=\boldsymbol{p}$

$$Q$$
: penalty matrix, $Q = c^T \eta c$

 η : diagonal matrix of penalty number η_i

Requires a careful choice of the penatly number

A spring of large stiffness is added to force node 2 and node 3 to have the same displacement.

Constraints – Lagrange multiplier

Constraint conditions: $c\mathbf{u} = 0$

Using the Lagrange multiplier method:

$$\begin{pmatrix} \boldsymbol{K} & \boldsymbol{c}^T \\ \boldsymbol{c} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{0} \end{pmatrix}$$

 λ : Lagrange multiplier vector, introdued as new unknowns

Load in EBE

Nodal load p_b

$$\boldsymbol{p}_b = (\boldsymbol{p}_1, \dots, \boldsymbol{p}_{Ne})$$

where
$$\boldsymbol{p}_i = \int \psi^T \boldsymbol{f}(x) \, dx$$

Suppose the surface traction f(x) is described by an interval function: $f(x) = \sum_{j=0}^{m} a_j x^j$ p_h can be rewritten as

$$\boldsymbol{P}_b = \boldsymbol{M} \boldsymbol{F}$$

- *M* : deterministic matrix
- *F* : interval vector containing the interval coefficients of the surface traction

Fixed point iteration

- For the interval equation Ax = b,
 - preconditioning: RAx = Rb, *R* is the preconditioning matrix
 - transform it into $g(x^*) = x^*$:

 $R b - RA x_0 + (I - RA) x^* = x^*, \qquad x = x^* + x_0$

• **Theorem** (Rump, 1990): for some interval vector x^* ,

if $g(x^*) \subseteq int(x^*)$ then $A^H b \subseteq x^* + x_0$

• Iteration algorithm:

iterate: $\mathbf{x}^{*(l+1)} = \mathbf{z} + \mathbf{G}(\boldsymbol{\varepsilon} \cdot \mathbf{x}^{*(l)})$ where $\mathbf{z} = R\mathbf{b} - R\mathbf{A}x_0$, $\mathbf{G} = I - R\mathbf{A}$, $R = \hat{A}^{-1}$, $\hat{A}x_0 = \hat{b}$

No dependency handling
 REC

Georgialnstitute of Technology

Fixed point iteration

Interval FEA calls for a modified method which exploits the special form of the structure equations $(\mathbf{K} + \mathbf{Q})\mathbf{u} = \mathbf{p}$ with $\mathbf{K} = \hat{K} + \hat{K}\mathbf{D}$ Choose $R = (\hat{K} + Q)^{-1}$, construct iterations: $\boldsymbol{u}^{*(l+1)} = \boldsymbol{R}\boldsymbol{p} - \boldsymbol{R}(\boldsymbol{K} + \boldsymbol{Q})\boldsymbol{u}_{0} + (\boldsymbol{I} - \boldsymbol{R}(\boldsymbol{K} + \boldsymbol{Q}))(\boldsymbol{\varepsilon} \cdot \boldsymbol{u}^{*(l)})$ $= R\mathbf{p} - u_0 - R\hat{K}\mathbf{D}(u_0 + \boldsymbol{\varepsilon} \cdot \boldsymbol{u}^{*(l)})$ $= Rp - u_0 - R\hat{K}M^{(l)}\Delta$ if $\boldsymbol{u}^{*(l+1)} \subseteq \operatorname{int}(\boldsymbol{u}^{*(l)})$, then $\boldsymbol{u} = \boldsymbol{u}^{*(l+1)} + u_0 = R\boldsymbol{p} - R\overset{\vee}{K}\boldsymbol{M}^{(l)}\boldsymbol{\Delta}$ Δ : interval vector, $\Delta = (\delta_1, ..., \delta_N)^T$ The interval variables $\delta_1, ..., \delta_{N_a}$ appear only once in each iteration.

REC

Convergence of fixed point

- The algorithm converges if and only if $\rho(|G|) < 1$ smaller $\rho(|G|) \Rightarrow$ less iterations required, and less overestimation in results
- To minimize $\rho(|G|)$:

> choose $R = \hat{A}^{-1}$ so that G = I - RA has a small spectral radius

➢ reduce the overestimation in G $G = I - RA = I - (\hat{K} + Q)^{-1} (\hat{K} + Q + \hat{K}D) = -R\hat{K}D$

Stress calculation

Conventional method: $\sigma = CBu_{\rho}$, (severe overestimation) C: elasticity matrix, B: strain-displacement matrix Present method: $\boldsymbol{E} = (1+\boldsymbol{\delta})\hat{E}, \quad \boldsymbol{C} = (1+\boldsymbol{\delta})\hat{C}$ $\sigma = CBLu$ $= CBL(Rp - R\hat{C}M^{(l)}\Delta)$ $= (1 + \delta)(\hat{C}BLRp - \hat{C}BLR\hat{K}M^{(l)}\Delta)$

L: Boolean matrix, $Lu = u_e$

Georgialnstitute of Technology

Element nodal force calculation

Conventional method: $f = T_e(ku_e - p_e), \quad \text{(severe overestimation)}$ Present method: $\text{in the EBE model, } T(Ku - p_b) = \begin{pmatrix} (T_e)_1(k_1(u_e)_1 - (p_e)_1) \\ \vdots \\ (T_e)_{N_e}(k_{N_e}(u_e)_{N_e} - (p_e)_{N_e}) \end{pmatrix}$

from $(\mathbf{K} + Q)\mathbf{u} = \mathbf{p}_c + \mathbf{p}_b \Rightarrow T(\mathbf{K}\mathbf{u} - \mathbf{p}_b) = T(\mathbf{p}_c - Q\mathbf{u})$ Calculate $T(\mathbf{p}_c - Q\mathbf{u})$ to obtain the element nodal forces

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Numerical example

- Examine the rigorousness, accuracy, scalability, and efficiency of the present method
- Comparison with the alternative methods
 - the combinatorial method, sensitivity analysis method, and Monte Carlo sampling method
 - □ these alternative methods give inner estimation

Four-bay forty-story frame

Examples — Load Uncertainty

Four-bay forty-story frame

Loading B

mar mar mar 77777 min

Loading C

Loading D Geo nologiy

Examples - Load Uncertainty

Four-bay forty-story frame

Total number of floor load patterns

 $2^{160} = 1.46 \times 10^{48}$

If one were able to calculate

10,000 *patterns / s*

there has not been sufficient time since the creation of the universe (4-8) billion years? to solve all load patterns for this simple structure

Material A36, Beams W24 x 55, Columns W14 x 398

Four-bay forty-story frame

Four bay forty floor frame - Interval solutions for shear force and bending moment of first floor columns

Elements		1		2		3	
Nodes		1	6	2	7	3	8
Combinatio	on solution	Total number of required combinations = $1.461501637 \times 10^{48}$					
Interval	Axial force (kN)	[-2034.5, 185.7]		[-2161.7, 0.0]		[-2226.7, 0.0]	
solution	Shear force (kN)	[-5.1, 0.9]		[-5.8, 5.0]		[-5.0, 5.0]	
	Moment (kN m)	[-10.3, 4.5]	[-15.3, 5.4]	[-10.6, 9.3]	[-17, 15.2]	[-8.9, 8.9]	[-16, 16]

Ge

 $F_{min} = -(0.062 + 0.139 + 0.113) \ 20 = -4.28 \ kN$

 $F_{max} = (0.464 + 0.309 + 0.258 + 0.192 + 0.128 + 0.064) 20 = 28.3 kN$

-0.062

-0.113

-0.139

Georgialnstitute

0.128

0.064

Examples – Load Uncertainty

> Three-Span Beam

 $A_1, A_2, A_3, A_4, A_5, A_6$: [9.95, 10.05] cm² (1% uncertainty) For all other members: [5.97, 6.03] cm² (1% uncertainty) Modulus of elasticity for all members: 200,000 MPa $p_1 = [190, 210]$ kN, $p_2 = [95, 105]$ kN

 $p_3 = [95,105] \text{ kN}, p_4 = [85.5,94.5] \text{ kN} (10\% \text{ uncertainty})$

Georgialnstitute of Technology

Truss structure - results

Table: results of selected responses

Method	<i>u</i> ₅ (LB)	<i>u</i> ₅ (UB)	$N_7(LB)$	<i>N</i> ₇ (UB)			
Combinatorial	0.017676	0.019756	273.562	303.584			
Naïve IFEA	-0.011216	0.048636	-717.152	1297.124			
δ	163.45%	146.18%	362%	327%			
Present IFEA	0.017642	0.019778	273.049	304.037			
δ	0.19%	% 0.11% 0.19%		0.15%			
unit: u_5 (m), N_7 (kN). LB: lower bound; UB: upper bound.							

Ge

Truss structure – results

- for moderate uncertainty (\leq 5%), very sharp bounds are obtained
- for relatively large uncertainty, reasonable bounds are obtained in the case of 10% uncertainty:

Comb.: $u_5 = [0.017711, 0.019811]$, IFEM: $u_5 = [0.017252, 0.020168]$ (relative difference: 2.59%, 1.80% for LB, UB, respectively)

Truss with a large number of interval variables

	p p	p p	story X ba	N N	N
				y _{Iv} e	^{IV} V
C			3×10	123	246
Ρ			4×12	196	392
<i>p</i>			4×20	324	648
P			5×22	445	890
<i>p</i>			5×30	605	1210
r —			6×30	726	1452
А			6×35	846	1692
2	tiinin - Tiinin	tinin tinin	6×40	966	1932
	- ma	@L	7×40	1127	2254
	$\mathbf{A}_i = [0.995, 1.005]$ $\mathbf{F}_i = [0.995, 1.005]$	$A_0,$ E for $i-1$ N	8×40	1288	2576
	REC	L_0 101 $i - 1,, I_e$		orgialnstit Technolog	iute Jy

Scalability study

vertical displacement at right upper corner (node D): $v_D = a \frac{PL}{E_0 A_0}$ Table: displacement at node D

	Sensitivity Analysis		Present IFEA				
Story×bay	LB^*	UB *	LB	UB	δ_{LB}	δ_{UB}	wid/ d_0
3×10	2.5143	2.5756	2.5112	2.5782	0.12%	0.10%	2.64%
4×20	3.2592	3.3418	3.2532	3.3471	0.18%	0.16%	2.84%
5×30	4.0486	4.1532	4.0386	4.1624	0.25%	0.22%	3.02%
6×35	4.8482	4.9751	4.8326	4.9895	0.32%	0.29%	3.19%
7×40	5.6461	5.7954	5.6236	5.8166	0.40%	0.37%	3.37%
8×40	6.4570	6.6289	6.4259	6.6586	0.48%	0.45%	3.56%
$\delta_{LB} = LB - LB^* / LB^*, \ \delta_{LB} = UB - UB^* / UB^*, \ \delta_{LB} = (LB - LB^*) / LB^*$							

Efficiency study

Table: CPU time for the analyses with the present method (unit: seconds)

Story×bay	N_{v}	Iteratio	t _i	t _r	t	t_i/t	t_r/t
		n					
3×10	246	4	0.14	0.56	0.72	19.5%	78.4%
4×20	648	5	1.27	8.80	10.17	12.4%	80.5%
5×30	1210	6	6.09	53.17	59.70	10.2%	89.1%
6×35	1692	6	15.11	140.23	156.27	9.7%	89.7%
7×40	2254	6	32.53	323.14	358.76	9.1%	90.1%
8×40	2576	7	48.454	475.72	528.45	9.2%	90.0%

 t_i : iteration time, t_r : CPU time for matrix inversion, t: total comp. CPU time

• majority of time is spent on matrix inversion

Efficiency study

Computational time: a comparison of the sensitivity analysis method and the present method

Number of interval variables

Computational time (seconds)

N_{v}	Sens.	Present
246	1.06	0.72
648	64.05	10.17
1210	965.86	59.7
1692	4100	156.3
2254	14450	358.8
2576	32402	528.45
	9 hr	9 min

Georgia Institute of Technology

Plate with quarter-circle cutout

thickness: 0.005mPossion ratio: 0.3load: 100kN/mmodulus of elasticity: $\boldsymbol{E} = [199, 201]GPa$

number of element: 352

element type: six-node isoparametric quadratic triangle results presented: u_A , v_E , σ_{xx} and σ_{yy} at node F

Plate with quarter-circle cutout

Case 1: the modulus of elasticity for each element varies independently in the interval [199, 201] GPa. Table: results of selected responses

	Monte Carlo	o sampling*	Present IFEA				
Response	LB	UB	LB	UB			
$u_A (10^{-5} \mathrm{m})$	1.19094	1.20081	1.18768	1.20387			
$v_E (10^{-5} \mathrm{m})$	-0.42638	-0.42238	-0.42894	-0.41940			
σ_{xx} (MPa)	13.164	13.223	12.699	13.690			
σ_{yy} (MPa)	1.803	1.882	1.592	2.090			
*10 ⁶ samples are made.							

Imprecise Probability

Two-bar truss

Geo

i te

Imprecise Probability

Georgia Institute of Technology

Imprecise Probability

P-Box for displacement of the bar end obtained using FE analysis and Risk Calc (Ferson)

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Conclusions

Development and implementation of IFEM

- uncertain material, geometry and load parameters are described by interval variables
- interval arithmetic is used to guarantee an enclosure of response
- Enhanced dependence problem control
 - use Element-By-Element technique
 - use the penalty method or Lagrange multiplier method to impose constraints
 - modify and enhance fixed point iteration to take into account the dependence problem
 - develop special algorithms to calculate stress and element nodal force

Conclusions

- The method is generally applicable to linear static FEM, regardless of element type
- Evaluation of the present method
 - Rigorousness: in all the examples, the results obtained by the present method enclose those from the alternative methods
 - Accuracy: sharp results are obtained for moderate parameter uncertainty (no more than 5%); reasonable results are obtained for relatively large parameter uncertainty (5%~10%)

Conclusions

- Scalability: the accuracy of the method remains at the same level with increase of the problem scale
- Efficiency: the present method is significantly superior to the conventional methods such as the combinatorial, Monte Carlo sampling, and sensitivity analysis method
- IFEM forms a basis for generalized models of uncertainty in engineering
- The present IFEM represents an efficient method to handle uncertainty in engineering applications

Center for Reliable Engineering Computing (REC)

Thank You

We handle computations with care

Ge

