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 Uncertainty is unavoidable in engineering system

 Structural mechanics entails uncertainties in material, 

geometry and load parameters (aleatory-epistemic)

 Probabilistic approach is the traditional approach

 Requires sufficient information to validate the 

probabilistic model

 Credibility of probabilistic approach when data is 

insufficient (Elishakoff, 1995; Williamson, 1990, 

Ferson and Ginzburg, 1996; Möller and Beer, 2007)

Introduction- Uncertainty



Introduction- Uncertainty

Available Information

Sufficient Incomplete

Probability Imprecise Probability

Information



Introduction- Uncertainty

Probability Imprecise Probability
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Lognormal Lognormal with interval mean

Tucker, W. T. and Ferson, S. , Probability bounds analysis in environmental risk assessments,

Applied Biomathematics, 2003.



 Nonprobabilistic approach for uncertainty modeling when 

only range information (tolerance) is available

 Represents an uncertain quantity by giving a range of possible 

values

 How to define bounds on the possible ranges of uncertainty?

 experimental data, measurements, statistical analysis, 

expert knowledge

0t t  

0 0[ ,  ]t t t   

Introduction- Interval Approach



 Simple and elegant

 Conforms to practical tolerance concept

 Describes the uncertainty that can not be appropriately 

modeled by probabilistic approach

 Computational basis for other uncertainty approaches 

(e.g., fuzzy set, random set, imprecise probability)

Introduction- Why Interval?

 Provides guaranteed enclosures
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Interval arithmetic

 Interval number represents a range of possible 

values within a closed set

}|{:],[ xxxRxxx x



Properties of Interval Arithmetic

Let x, y and z be interval numbers

1.  Commutative Law

x + y = y + x

xy = yx

2.  Associative Law

x + (y + z) = (x + y) + z

x(yz) = (xy)z

3. Distributive Law does not always hold, but

x(y + z) xy + xz



Sharp Results – Overestimation

 The DEPENDENCY problem arises when one or 
several variables occur more than once in an 
interval expression 

 f (x) = x (1 1)  f (x) = 0

 f (x) = { f (x) = x x | x x}

 f (x) = x  x , x = [1, 2]

 f (x) = [1  2, 2  1] = [1, 1]  0

 f (x, y) = { f (x, y) = x y | x x, y  y}



Sharp Results – Overestimation

 Let a, b, c and d be independent variables, each with 
interval [1, 3]
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Finite Elements

Finite Element Method (FEM) is a 

numerical method that provides 

approximate solutions to differential 

equations (ODE and PDE)



Representation of a 2-D domain by a collection of triangles and 
quadrilaterals (Reddy, J. N. An intr. to the FEM, 3rd ed., 2006)

Finite Elements



Finite Element Model (courtesy of Prof. Mourelatous)

500,000-1,000,000 equations

Finite Elements



Finite Elements

For example, in the case of one dimensional-

second order differential equation

Lx           for   f(x)      c(x)u)
dx

du
(a(x)

dx

d
 0

00 )(    ,)0( Q
dx

du
auu

Lx




with the boundary conditions 



Finite Elements

The domain is descritized into finite elements

(Reddy, J. N. An intr. to the FEM, 3rd ed., 2006)

Finite Element



The weak form over an element: find u(x) for all 

w in the appropriate Hilbert space

Finite Elements



The finite element approximation
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and the finite element model is



Finite Elements

The finite element solution is of the form

(Reddy, J. N. An intr. to the FEM, 3rd ed., 2006)

Linear Element Quadratic Element



Finite Elements- Uncertainty& Errors

 Mathematical model (validation)

 Discretization of the mathematical model 

into a computational framework 

(verification) 

 Parameter uncertainty (loading, material 

properties)

 Rounding errors



Interval Finite Elements (IFEM)

 Follows conventional FEM

 Loads, geometry and material property are expressed as 
interval quantities

 System response is a function of the interval variables 
and therefore varies in an interval

 Computing the exact response range is proven NP-hard

 The problem is to estimate the bounds on the unknown 
exact response range based on the bounds of the 
parameters



FEM- Inner-Bound Methods

 Combinatorial method (Muhanna and Mullen 1995, 
Rao and Berke 1997)

 Sensitivity analysis method (Pownuk 2004)

 Perturbation (Mc William 2000)

 Monte Carlo sampling method

 Need for alternative methods that achieve

 Rigorousness – guaranteed enclosure

 Accuracy – sharp enclosure

 Scalability – large scale problem

 Efficiency



 Linear static finite element 

 Muhanna, Mullen, 1995, 1999, 2001,and Zhang 2004

 Popova 2003, and Kramer 2004

 Neumaier and Pownuk 2004

 Corliss, Foley, and Kearfott 2004

 Heat Conduction

 Pereira and Muhanna 2004

 Dynamic

 Dessombz, 2000

 Free vibration-Buckling

 Modares, Mullen 2004, and Bellini and Muhanna 2005

IFEM- Enclosure
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Naïve interval FEA

1 2 2 1 1 1

2 2 2 2 2

[2.85,  3.15] [ 2.1,  1.9] 0.5

[ 2.1,  1.9] [1.9,  2.1] 1

k k k u p

k k u p

            
           

           

u

u

1 1 1 1

2 2 2 2

1 2

/ [0.95,  1.05],   

/ [1.9,  2.1],

0.5,    1

E A L

E A L

p p

 

 

 

k

k

 exact solution: u2 = [1.429, 1.579],       u3 = [1.905, 2.105]

 naïve solution: u2 = [－0.052, 3.052],   u3 = [0.098, 3.902]

 interval arithmetic assumes that all coefficients are 

independent

 uncertainty in the response is severely overestimated (1900%)

p 1

E2, A2 , L2

1
2

E1, A1 , L1

1 2

p 2

3



Element-By-Element 

Element-By-Element (EBE) technique 

 elements are detached – no element coupling

 structure stiffness matrix is block-diagonal (k1 ,…, kNe)

 the size of the system is increased

u = (u1, …, uNe)
T

 need to impose necessary constraints for compatibility 

and equilibrium

Element-By-Element model

1 2 3 4

E1, A1, L1

u1

u2

u3 u4

1
2

E2, A2, L2



Element-By-Element

Suppose the modulus of elasticity is interval: 

ˆ(1 )                                                      

: zero-midpoint interval

The element stiffness matrix can be split 

E                        E δ

δ

into two parts, 

ˆ ˆ ˆ                 ( )

ˆ ˆ: deterministic part, element stiffness matrix evalued using ,

ˆ : interval part

: interval diagonal m

k I k k

k E

k

   k d d                                               

d

d atrix, diag( ,..., ).δ δ



Element-By-Element

1 1 1

Structure stiffness matrix:   

ˆ ˆ ˆ                         ( )                                

or

ˆ

ˆ
e e

e
N NN

K I K K

k

I

k

   

     
     

       
           

K D D

k d

K

k d

  

 :

 :

ˆElement stiffness matrix:    ( )k I k d



Constraints

Impose necessary constraints for compatibility 

and equilibrium

 Penalty method

 Lagrange multiplier method

Element-By-Element model

1 2 3 4

E1, A1, L1

u1

u2

u3 u4

1
2

E2, A2, L2



Constraints – penalty method

Constraint conditions: 0

Using the penalty method:

                       ( )                

:  penalty matrix, 

:  diagonal matrix of penalty number 

Requires a

T

i

c

Q

Q Q c c

 



 



u

K u p                            

 careful choice of the penatly number

A spring of large stiffness is added 

to force node 2 and node 3 to have 

the same displacement.

1 2 3 4
1

2

E1, A1, L1
E2, A2, L2



Constraints – Lagrange multiplier

Constraint conditions: 0

Using the Lagrange multiplier method:

                                                         
00

:  Lagrange multiplier vector, introdued as new unk

T

c

c

c
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u pK

λ

λ nowns



Load in EBE

Nodal load pb

pb = (p1,…, pNe)

where pi = ∫ψTf (x) dx

Suppose the surface traction f(x) is described by an interval 

function: 

pb can be rewritten as 

Pb = M F

M : deterministic matrix

F : interval vector containing the interval coefficients of the 

surface traction
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Fixed point iteration 
 For the interval equation Ax = b, 

 preconditioning: RAx = Rb, R is the preconditioning matrix

 transform it into g (x* ) = x*:

R b – RA x0+ (I – RA) x* = x*,  x = x* + x0

 Theorem (Rump, 1990): for some interval vector x* ,

if g (x* )  int (x* )

then AH b  x* + x0

 Iteration algorithm: 

 No dependency handling

*( 1) *( )

1

0 0

iterate:    ( ) 

ˆˆ ˆwhere ,  , ,  

l l

R R x I R R A Ax b





  

     

x z G ε x

z b A G A



Fixed point iteration

1

*( 1)

0

Interval FEA calls for a modified method which exploits

the special form of the structure equations

ˆ ˆ           ( ) with 

ˆChoose ( ) ,  construct iterations:

( ) ( ( )l

Q K K

R K Q

R R Q u I R Q





  

 

     

K u p K = D

u p K K *( )

*( )

0 0

( )

0

*( 1) *( ) *( 1) ( )

0

1

1

)( )

ˆ         ( )

ˆ         

int( ),  then 

: interval vector, ,...,

The interval variables ,...,  appear only o

e

e

l

l

l

l l l l

T

N

N

R u RK u

R u RK

u R R K

 

 


 



   

  

   

Δ

if Δ

Δ Δ = ( )

ε u

p D + ε u

p M

u u u = u p M

nce in each iteration.
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Convergence of fixed point 

 The algorithm converges if and only if

 To minimize ρ(|G|):

 :

 1

1ˆchoose  so that  has a small spectral radiusR A I R  G A

(| |) 1 G

1

reduce the overestimation in 

ˆ ˆ ˆ ˆ( ) ( )I R K Q K Q K RK      

G

G = A = I D D

smaller (| |)  less iterations required, 

and less overestimation in results

 G



Stress calculation

 Conventional method:

 Present method:

                   , (severe overestimation)

: elasticity matrix, : strain-displacement matrix

eB

B

ζ C u

C

( )

( )

ˆˆ(1 ) ,   (1 )

ˆ  ( )

ˆ ˆ ˆ  (1 )( )

l

l

E C

BL

BL R RC

CBLR CBLRK

   





 

Δ

Δ

E δ C δ

ζ C u

= C p M

= δ p M

:  Boolean matrix, eL L u u



Element nodal force calculation

 Conventional method:

 Present method:

( ),    (severe overestimation)e e eT f ku p

1 1 1 1( ) ( ( ) ( ) )

in the EBE model, ( )

( ) ( ( ) ( ) )
e e e e

e e e

b

e N N e N e N

T

 
 

   
  

T k u p

Ku p

T k u p



from ( ) ( ) ( )

Calculate ( ) to obtain the element nodal forces 

for all elements.

c b b c

c

Q T T Q

T Q

      



K u p p Ku p p u
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Numerical example

 Examine the rigorousness, accuracy, scalability, and 

efficiency of the present method

 Comparison with the alternative methods 

 the combinatorial method, sensitivity analysis method, 

and Monte Carlo sampling method

 these alternative methods give inner estimation

x
xi

x

xo

i o: exact solution, : inner bound, : outer boundx x x



Examples – Load Uncertainty

 Four-bay forty-story frame



Examples – Load Uncertainty

 Four-bay forty-story frame

Loading  A Loading  B Loading  C Loading  D



Examples – Load Uncertainty

 Four-bay forty-story frame

Total number of floor load patterns

2160 = 1.46  1048

If one were able to calculate

10,000 patterns / s

there has not been sufficient time since
the creation of the universe (4-8 ) billion
years ? to solve all load patterns for this
simple structure

Material  A36, Beams  W24 x 55,
Columns  W14 x 398

14.63 m (48 ft)

1 5

6 10

201 205

196 200

357 360

1 5
201 204

17.64 kN/m (1.2 kip/ft)



Examples – Load Uncertainty

 Four-bay forty-story frame

Four bay forty floor frame - Interval solutions for shear force and bending moment of first floor columns

Elements 1 2 3

Nodes 1 6 2 7 3 8

Combination solution Total number of required combinations = 1.461501637  1048

Interval Axial force (kN) [-2034.5, 185.7] [-2161.7, 0.0] [-2226.7, 0.0]

solution Shear force (kN) [-5.1, 0.9] [-5.8, 5.0] [-5.0, 5.0]

Moment (kN m) [-10.3, 4.5] [-15.3, 5.4] [-10.6, 9.3] [-17, 15.2] [-8.9, 8.9] [-16, 16]



Examples – Load Uncertainty

 Ten-bay truss

A = 0.006 m2

E = 2.0 108 kPa

F = [-4.28, 28.3] kN

Fmin = -(0.062+0.139+0.113) 20= -4.28 kN

Fmax= (0.464+0.309+0.258+0.192+0.128+0.064) 20 =28.3 kN

1

2

21

22

10 @ 4 = 40 m

5 m

20kN 20 kN 20kN 20kN 20kN 20kN 20 kN 20kN 20kN

1 2 11

12 13 20 21

22 31

-0.062
-0.139

-0.113

0.464

0.309
0.258

0.192
0.128

0.064



Examples – Load Uncertainty

 Three-Span Beam

4 m 4 m 4 m

12 m

1 2 3 46 kN /m

1.6

11.2kNm 11.2 kNm

4.8 kNm

1.6

7.2 kNm

9.707 kNm 9.707 kNm

1.733 m 1.733 m2.267 m 2 m 2 m 2.267 m



4.5m4.5m 4.5m4.5m

4.5m

1

2 5 6

8

743

1

2
3

4

5

6

7

8

9

10

11

12

14

13

15

P1P2 P3

P4

Truss structure

1 2

3 4

[190,210] kN, [95,105] kN 

[95,105] kN, [85.5,94.5] kN (10% uncertainty)

 

 

p p

p p

A1,A2,A3,A4,A5,A6:[9.95,10.05]cm2 (1% uncertainty)

For all other members: [5.97, 6.03] cm2 (1% uncertainty)

Modulus of elasticity for all members: 200,000 MPa



Truss structure - results

Method u5(LB) u5(UB) N7(LB) N7(UB)

Combinatorial 0.017676 0.019756 273.562 303.584

Naïve IFEA – 0.011216 0.048636 – 717.152 1297.124

 163.45% 146.18% 362% 327%

Present IFEA 0.017642 0.019778 273.049 304.037

 0.19% 0.11% 0.19% 0.15%

Table: results of selected responses

unit: u5 (m), N7 (kN). LB: lower bound; UB: upper bound.
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Uncertainty in cross-sectional area

u
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m
)

Comb. LB

Comb. UB

IFEA LB

IFEA UB

Truss structure – results

5

 for moderate uncertainty ( 5%), very sharp bounds are obtained

 for relatively large uncertainty, reasonable bounds are obtained 

  in the case of 10% uncertainty:

  Comb.: = [0.017711,0.019811],  I

 



u 5FEM: = [0.017252,0.020168] 

  (relative difference: 2.59%, 1.80% for LB,  UB, respectively)

u



Truss with a large number of interval variables

A
B

m@L

n@L

C D

p p

p

p

p

p p
story×bay Ne Nv

3×10 123 246

4×12 196 392

4×20 324 648

5×22 445 890

5×30 605 1210

6×30 726 1452

6×35 846 1692

6×40 966 1932

7×40 1127 2254

8×40 1288 2576
0

0

[0.995,1.005] ,  

[0.995,1.005]   for 1,...,

i

i e

A

E i N



 

A

E



Scalability study

Sensitivity Analysis Present IFEA

Story×bay LB* UB * LB UB LB UB wid/d0

3×10 2.5143 2.5756 2.5112 2.5782 0.12% 0.10% 2.64%

4×20 3.2592 3.3418 3.2532 3.3471 0.18% 0.16% 2.84%

5×30 4.0486 4.1532 4.0386 4.1624 0.25% 0.22% 3.02%

6×35 4.8482 4.9751 4.8326 4.9895 0.32% 0.29% 3.19%

7×40 5.6461 5.7954 5.6236 5.8166 0.40% 0.37% 3.37%

8×40 6.4570 6.6289 6.4259 6.6586 0.48% 0.45% 3.56%

LB = |LB－ LB*|/ LB*, LB = |UB－ UB*|/ UB* , LB = (LB－ LB*)/ LB*

0 0

vertical displacement at right upper corner (node D): D

PL

E A
v a

Table: displacement at node D



Efficiency study

Story×bay Nv Iteratio

n

ti tr t ti/t tr/t

3×10 246 4 0.14 0.56 0.72 19.5% 78.4%

4×20 648 5 1.27 8.80 10.17 12.4% 80.5%

5×30 1210 6 6.09 53.17 59.70 10.2% 89.1%

6×35 1692 6 15.11 140.23 156.27 9.7% 89.7%

7×40 2254 6 32.53 323.14 358.76 9.1% 90.1%

8×40 2576 7 48.454 475.72 528.45 9.2% 90.0%

ti : iteration time, tr : CPU time for matrix inversion, t : total comp. CPU time 

Table: CPU time for the analyses with the present method (unit: seconds)

 majority of time is spent on matrix inversion



Efficiency study

Nv Sens. Present

246 1.06 0.72

648 64.05 10.17

1210 965.86 59.7

1692 4100 156.3

2254 14450 358.8

2576 32402 528.45
0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000 2500

Number of interval variables

C
P

U
 t

im
e
 (

se
c
)

Sensitivity Analysis method

Present interval FEA

Computational time: a comparison of  the senstitivity analysis method

 and the present method
Computational time (seconds)

9 hr 9 min



Plate with quarter-circle cutout

 

number of element: 352

element type: six-node isoparametric quadratic triangle

results presented: , ,  and  at node FA E xx yyu v ζ ζ

thickness: 0.005m

Possion ratio: 0.3

load: 100kN/m

modulus of elasticity: 

= [199, 201]GPaE 



Plate with quarter-circle cutout 

Monte Carlo sampling* Present IFEA

Response LB UB LB UB

uA (10－5 m) 1.19094 1.20081 1.18768 1.20387

vE (10－5 m) －0.42638 －0.42238 －0.42894 －0.41940

σxx (MPa) 13.164 13.223 12.699 13.690

σyy (MPa) 1.803 1.882 1.592 2.090

Table: results of selected responses

*106 samples are made.

Case 1: the modulus of elasticity for each element varies independently

in the interval [199, 201] GPa.



Imprecise Probability

P2P1

2 m 2 m

4 m

Two-bar truss



Imprecise Probability

-10 0 10 20 30
0

0.5

1

 p1

-10 0 10 20 30 40 50 60
0

0.5

1

 p2

P-Box for P1
P-Box for P2

kNkN



Imprecise Probability

P-Box for displacement of the bar end

obtained using FE analysis and Risk Calc (Ferson)

-0.0001 0.0001 0.0003 0.0005
0

0.5

1

 u3

m
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Conclusions

 Development and implementation of IFEM

 uncertain material, geometry and load parameters are described by 
interval variables

 interval arithmetic is used to guarantee an enclosure of response

 Enhanced dependence problem control 
 use Element-By-Element technique

 use the penalty method or Lagrange multiplier method to impose 
constraints

 modify and enhance fixed point iteration to take into account the 
dependence problem

 develop special algorithms to calculate stress and element nodal force



Conclusions

 The method is generally applicable to linear 

static FEM, regardless of element type

 Evaluation of the present method
 Rigorousness: in all the examples, the results obtained by 

the present method enclose those from the alternative 

methods

 Accuracy: sharp results are obtained for moderate 

parameter uncertainty (no more than 5%); reasonable 

results are obtained for relatively large parameter 

uncertainty (5%~10%)



Conclusions

 Scalability: the accuracy of the method remains at the 

same level with increase of the problem scale

 Efficiency: the present method is significantly superior 

to the conventional methods such as the combinatorial, 

Monte Carlo sampling, and sensitivity analysis method

 IFEM forms a basis for generalized models of 

uncertainty in engineering

 The present IFEM represents an efficient method 

to handle uncertainty in engineering applications
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