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Abstract

The goal of this paper is to generate problems to test solvers for linear
systems. Assume that a coefficient matrix A and a right-hand side vector
b are given. If numerical computations are used to solve a linear system
Ax = b, computed results are usually different from the exact solution
due to accumulation of rounding errors. We propose a method to produce
a coefficient matrix A and a right-hand side vector b such that the exact
solution x is known. The method is useful for examining the accuracy
of computed results obtained by some numerical algorithms, and it is
useful for checking overestimation of the error bounds obtained by verified
numerical computations.
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1 Introduction

This paper is concerned with test problems for numerical linear algebra. Let F be a
set of some fixed precision binary floating-point numbers as defined by IEEE 754 [1].
For A ∈ F n×n and b ∈ F n, we consider the linear system Ax = b. Let x̂ be an
approximate solution of the linear system. If the approximate solution x̂ is obtained
by numerical computations, the result x̂ may be inaccurate due to accumulation of
rounding errors. Since it is difficult to know the error ‖A−1b− x̂‖ exactly, the residual
‖b − Ax̂‖ often is used instead. However, it is sometimes seen that there is a gap
between the residual ‖b− Ax̂‖ and the error ‖x− x̂‖, i.e., ‖x− x̂‖ may be large even
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if ‖b − Ax̂‖ is small. If the exact solution of the linear system is known, then this is
useful in the following cases:

• The accuracy of the numerical solution can be checked. For example, it will
help to analyze the behavior of convergence for iterative methods, e.g., Jacobi
and Gauss-Seidel methods as stationary iterative methods, and CG, BiCG, and
GMRES as Krylov subspace methods.

• Verified numerical computations give an upper bound of ‖x− x̂‖ by using only
numerical computations. It is difficult to check whether the obtained upper
bound is overestimated if the exact solution x is unknown. Linear systems
with known solutions are useful for checking of overestimation of the verified
numerical computations.

One may think that for given A ∈ F n×n and x ∈ F n, if we compute the right-hand
side vector b := Ax, x is the exact solution of Ax = b. However, if rounding error
occurs in the floating-point evaluation of Ax, then the vector x may not satisfy Ax = b.
Miyajima, Ogita and Oishi developed a method [2] which produces A′ ∈ Fm×m,
x′ ∈ Fm and b′ ∈ Fm from given A ∈ F n×n and x ∈ F n (m ≥ n) such that A′x′ = b′.
The matrix A′ and the vector b′ are produced using an error-free transformation [6],
where x′ is an extension of x; x′i = xi for 1 ≤ i ≤ n and x′i = 1 for n+1 ≤ i ≤ m. As an
advantage, the condition number of the coefficient matrix and the solution x ∈ F n are
free to be set. However, the size m of A′ is generally greater than n. In addition, the
structure, e.g., symmetric, persymmetic, Toeplitz and Hankel, of A′ and A is usually
different, and the number of non-zero elements in A′ is greater than in the original A.

We develop additional methods for generating test problems. For given A ∈ F n×n

and x ∈ F n, we produce A′ ∈ F n×n and b ∈ F n to satisfy A′x = b. The advantage
of our methods is that our methods preserve size of matrices and some structures of
matrices such as symmetric, persymmetic, Toeplitz, Hankel and Hessenberg, which is
useful for dealing with sparse matrices. Moreover, the number of non-zero elements in
A′ is the same as or less than that in the original matrix A. The disadvantage of our
methods is that users cannot freely set the solution x ∈ F n of the linear system. The
condition number of the coefficient matrix is free to be set under some limitations.

2 Notations and Previous Work for Test Prob-
lems

In this section, we first introduce notation we will use in this paper. Let fl(·) denote
that all operations enclosed in the parenthesis are evaluated by floating-point arith-
metic with a particular order. The rounding mode of fl(·) is rounding to the nearest
(roundTiesToEven in IEEE 754 [1]). We omit to write fl(·) for each arithmetic op-
eration in the parenthesis for simplicity, e.g., fl((a + b) + c) = fl(fl(a + b) + c) and
fl((a+ b) + (c+ d)) = fl(fl(a+ b) + fl(c+ d)) for a, b, c, d ∈ F . Let float(·) denote that
all operations enclosed in the parenthesis are evaluated by floating-point arithmetic
with any order of computations. The notations fl(·) and float(·) are used in [3]. Note
that there is no difference in working precision between them. For dot product and
matrix multiplication, we assume that divide and conquer methods, e.g., Strassen’s
method [9] and Winograd’s method [10], are not used for fl(·) and float(·). For the
dot product xT y for x and y ∈ F n, the notation float

(
xT y

)
implies that the order of

the sum of n terms is arbitrary after computing fl(xiyi). fl(xT y) indicates one of the
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orders in float
(
xT y

)
, depending on a user’s computational environment (for example,

compiler, libraries or the number of cores in the CPU).

This manner is straightforwardly extended for matrix-vector products. Here, we
explain the difference between fl(·) and float(·). For example, float(xT y) < α for x
and y ∈ F 3 indicates that all of the following are satisfied:

fl((x1y1 + x2y2) + x3y3) < α,

fl(x1y1 + (x2y2 + x3y3)) < α,

fl((x1y1 + x3y3) + x2y2) < α.

Let x1 = 1, x2 = x3 = u and y1 = y2 = y3 = 1. float(xT y) 6≤ 1 since

fl(x1y1 + (x2y2 + x3y3)) = 1 + 2u.

Let u be roundoff unit, e.g., u = 2−24 for binary32 and u = 2−53 for binary64 in
IEEE 754. The constant fmax denotes the maximum floating-point number. Define
the function ufp(a) for a ∈ R as

ufp(a) :=

{
0, if a = 0,

2blog2 |a|c, otherwise.

A product of two floating-point numbers is transformed into a sum of two floating-
point numbers such that

r1r2 = r3 + r4, r3 = fl(r1r2), r1, r2, r3, r4 ∈ F . (1)

Here, assume that |r1r2| ≥ uNu−1, where uN is the minimum positive normalized
number. r3 and r4 are obtained by an error-free transformation in [5] or application
of a fused multiply-add (FMA) operation.

The following lemmas are useful for the proofs in this paper.

Lemma 2.1 Assume that uN ≤ ufp(x) < fmax for x ∈ R. If x is a multiple of ku
for k = 2i, i ∈ Z with |x| ≤ k, then x can be represented by a floating-point number,
i.e., x ∈ F .

This lemma is obtained by definition of floating-point numbers in IEEE 754.

Lemma 2.2 (Rump et al. [4]) For a and b ∈ F , there exists δ ∈ R such that

a+ b = fl(a+ b) + δ, |δ| ≤ u · ufp (fl(a+ b)) .

Next, we introduce error-free splitting proposed by Rump-Ogita-Oishi [4].

Theorem 2.1 Assume σ = 2k · 2dlog2 |a|e, k ∈ Z, a ∈ F and σ > |a| ∈ F . Floating-
point numbers b and c are obtained by

b = fl ((σ + a)− σ) , c = fl(a− b).

Then, the following properties are satisfied:

|b| ≤ 2−kσ, b ∈ uσZ, |c| ≤ uσ, fl ((σ + a)− σ) = fl (σ + a)− σ.
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We briefly explain a method by Miyajima et al. [2]. First, a coefficient matrix
A ∈ F n×n and a vector x ∈ F n are given. A matrix-vector product Ax is transformed
into an unevaluated sum of floating-point vectors such that

Ax =

k∑
i=1

b(i), b(i) ∈ F n, k ∈ N, (2)

where accurate summation algorithms in [6] can be used to obtain (2). Let I ∈
F (k−1)×(k−1) and O ∈ F (k−1)×(k−1) be the identity matrix and the zero matrix, re-
spectively. Define

B := [−b(2),−b(3), . . . ,−b(k)] ∈ F n×(k−1), e := (1, 1, . . . , 1)T ∈ F k−1.

Then, A′ ∈ F (n+k−1)×(n+k−1), x′ ∈ F n+k−1 and b′ ∈ F n+k−1 are given by

A′ :=

(
A B
O I

)
, x′ :=

(
x
e

)
, b′ :=

(
b(1)

e

)
,

where A′x′ = b′ is satisfied from (2). It is advantageous that a user can set arbi-
trary x ∈ F n. In addition, if A is ill-conditioned, then this method produces an
ill-conditional matrix A′ satisfying A′x = b′. However, the size of A′ is larger than
that of A in many cases. Moreover, if A has a special structure, then a structure of A′

is different from that of the original matrix A. For example, even if A is symmetric,
A′ becomes unsymmetric in many cases.

3 Check of Rounding Errors

If Ax = fl(Ax) is satisfied for a given coefficient matrix A and a vector x, then b
is given by fl(Ax), and the vector x is the exact solution of Ax = b. We introduce
methods which guarantee Ax = fl(Ax).

3.1 Check with Directed Rounding

Let fl5(·) and fl4(·) indicate that each operation in the parenthesis is evaluated by
floating-point arithmetic with rounding-downwards and rounding-upwards, respec-
tively. These rounding modes are defined in IEEE 754. The following theorem is
useful for checking Ax = fl(Ax).

Theorem 3.1 For x and y ∈ F n, fl5
(
xT y

)
= fl4

(
xT y

)
⇒ fl

(
xT y

)
= xT y. Here,

assume that the orders of the computations are same for fl(·), fl5(·), and fl4(·).

This theorem is valid even when overflow or underflow occurs in the floating-point
evaluation.
Proof.

For a and b ∈ F , we obtain

fl5(a ◦ b) ≤ a ◦ b ≤ fl4(a ◦ b), fl5(a ◦ b) ≤ fl(a ◦ b) ≤ fl4(a ◦ b), ◦ ∈ {+, ∗}.

By using it recursively, the proof is finished. �
Theorem 3.1 can be straightforwardly extended to a product of the matrix A and

the vector x, i.e., fl5(Ax) = fl4(Ax)⇒ fl(Ax) = Ax. Remark that fl5(Ax) 6= fl4(Ax)
does not imply Ax 6∈ F n.

We write an algorithm with codes for MATLAB, which detects a rounding error
based on Theorem 3.1.
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Algorithm 1 The following function checks whether a rounding error occurs in fl(Ax)
and produces a vector r ∈ F n. The output ri = 0 indicates that a rounding error occurs

in the evaluation of

n∑
j=1

aijxj. The output ri = 1 indicates that a rounding error never

occurs in the evaluation of

n∑
j=1

aijxj.

function r = Check(A, x)
r = zeros(size(A, 1), 1);
a = feature(′setround′, Inf) %a keeps the rounding mode before switching
y1 = A ∗ x;
feature(′setround′,−Inf)
y2 = A ∗ x;
r(y1 == y2) = 1;
feature(′setround′, a); %restore the previous rounding mode

end

Note that fl5
(
xT y

)
= fl4

(
xT y

)
⇐ fl

(
xT y

)
= xT y is not necessarily satisfied, as

the following example illustrates.

fl ((1 + 1.5u) + 0.5u) = fl ((1 + 2u) + 0.5u) = 1 + 2u,

fl5 ((1 + 1.5u) + 0.5u) = 1, fl4 ((1 + 1.5u) + 0.5u) = 1 + 4u.

In addition, fl5(Ax) = fl4(Ax) ⇒ fl(Ax) = Ax is valid, but fl5(Ax) = fl4(Ax) ⇒
float(Ax) = Ax is not satisfied. Let the first row of A ∈ F 3×3 and x ∈ F 3 be

a11 = a12 = u, a13 = 1, x1 = x2 = x3 = 1.

Then,

fl5 ((a11x1 + a12x2) + a13x3) = fl5 ((u + u) + 1) = 1 + 2u,

fl4 ((a11x1 + a12x2) + a13x3) = fl4 ((u + u) + 1) = 1 + 2u.

Therefore, no rounding error occurs in this case. However, if we change the order of
evaluation, we get different results:

fl ((a13x3 + a11x1) + a12x2) = fl ((1 + u) + u) = 1.

Next, assume that a routine for the dot product uses fused multiply-add (FMA).
We use notation FMA(a, b, c) for a, b, c ∈ F ; the nearest floating-point number to ab+ c
is obtained by FMA(a, b, c). Let x and y ∈ F 2 be

x1 = −u + 2u2, x2 = 1 + 2u, y1 = 1, y2 = 1− u.

Then,
FMA5(x2, y2, fl5(x1y1)) = 1, FMA4(x2, y2,fl4(x1y1)) = 1,

and
fl5(x1y1 + x2y2) = 1, fl4(x1y1 + x2y2) = 1 + 4u.

The result of Algorithm 1 depends on the computational order of fl(·) and users’
computational environments.
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Figure 1: Image of τ in (5). τi is the unit in the last non-zero bit in the significand of
xi.

3.2 Check without Directed Rounding

Since there are some computational environments where we cannot switch the rounding
modes, we will give a theorem for verifying Ax = fl(Ax) using only rounding to
the nearest mode (roundTiesToEven), which is the default rounding mode in many
computational environments. The idea is based on a technique using overflow in [8].
Assume that A ∈ F n×n and x ∈ F n are given. Let a constant c ∈ R be

c = 2r, r ∈ N, c

2
∈ F , c 6∈ F .

For binary64, c = 2ufp(fmax) = 21024. We define two constants d1 and d2 such that

d1d2 = cu, for example, d1 = 2486 and d2 = 2485 for binary64. (3)

We find a vector v and a constant τ such that

vi : = min
1≤j≤n

vij , aij ∈ vijZ, aij 6∈ 2vijZ (4)

τ : = min
1≤i≤n

τi, xi ∈ τiZ, xi 6∈ 2τiZ, (5)

where vij , τi ∈ {2k | k ∈ Z}. Figure 1 shows an image of τ . Then,

ȧij := d1/vi · aij , ẋ := d2/τ · x, t := fl
(
Ȧẋ
)
. (6)

Theorem 3.2 Assume that a vector t is produced by (6). If

ti 6∈ {Inf, −Inf, NaN} (7)

is satisfied for all i, then fl
(
Ȧẋ
)

= Ȧẋ.

Proof.
The proof consists of two parts; there is no rounding error in the all products ȧikẋkj

and no rounding error occurs in the summation. Using (4), (5), and the scalings (6),
we have

ȧij ∈ d1Z, ẋj ∈ d2Z.
These and (3) yield

ȧikẋk, fl (ȧikẋk) ∈ d1d2Z = cuZ. (8)
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The assumption (7) says that overflow never occurred in fl
(
Ȧẋ
)

. It derives

|fl (ȧikẋk) | < c. (9)

The assumption of Lemma 2.1 is satisfied from (8) and (9). Hence, we obtain fl (ȧikẋk) =
ȧikẋk.

Let an intermediate result θ ∈ F in the summation

n∑
k=1

fl (ȧikẋk) after computing

all products fl (ȧikẋk) be obtained by a computation of

θ = fl(α1 + α2), α1, α2 ∈ F .

From (8) and the assumption “no overflow”, we have

θ, α1, α2 ∈ ucZ, |θ|, |α1|, |α2| < c. (10)

If a rounding error first occurs at the evaluation of θ, then from Theorem 2.2, the
following δ exists such that

θ = α1 + α2 + δ, 0 6= |δ| ≤ u · ufp(θ) ≤ 1

2
uc. (11)

From (10), both θ and α1 + α2 are in ucZ. However, δ 6∈ ucZ from (11). Therefore,

no rounding error occurs in fl
(
Ȧẋ
)

because the equality (11) is contradiction. �

Both Ȧ and ẋ are obtained by the scaling from A and b using constants of powers
of two, respectively. Therefore, if neither overflow nor underflow occurs in fl(Ax) and

Ȧẋ = fl
(
Ȧẋ
)

is guaranteed by Theorem 3.2, then Ax = fl(Ax) is also satisfied. Note

that even if we find ±Inf or NaN in the vector t, Ax = fl(Ax) may be satisfied. Theorem
3.2 is a little weaker than Theorem 3.1. For example, let the first row of A ∈ F 3×3

and x ∈ F 3 be

a11 = a12 = u, a13 = 1, x1 = x2 = x3 = 1.

Then,
(
Ȧẋ
)
1

becomes Inf, however,

fl5 ((a11x1 + a12x2) + a13x3) = fl4 ((a11x1 + a12x2) + a13x3)

= 1 + 2u = a11x1 + a12x2 + a13x3.

Next, we develop a reproducible method for the check of a rounding error.

Theorem 3.3 Define a vector t̂ := fl
(
|Ȧ||ẋ|

)
, where Ȧ and ẋ are obtained in (6). If

t̂i 6∈ {Inf, −Inf, NaN}

is satisfied for all i, then float
(
Ȧẋ
)

= Ȧẋ.

Proof.

fl
(
|Ȧ||ẋ|

)
= |Ȧ||ẋ| is proved similar to Theorem 3.2. From (8), we have

fl ( ˙aij ẋj) , ˙aij ẋj ∈ ucZ.
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Since

ucZ 3 float

(∑
j∈K

| ˙aij ||ẋj |

)
≤ float

(∑
j∈L

| ˙aij ||ẋj |

)
< c, ∅ 6= K ⊆ L ⊆ {1, 2, . . . , n},

float
(
Ȧẋ
)

= Ȧẋ is satisfied. �

Note that we use fl(·) for Theorem 3.3, but float
(
Ȧẋ
)

= Ȧẋ is guaranteed. More-

over, even if a routine for the matrix-vector product uses FMA or divide and conquer
methods such as the Winograd method, Theorem 3.3 is still valid. It means that if

|Ȧ||ẋ| = fl
(
|Ȧ||ẋ|

)
is verified using a matrix-vector product routine, then it is also

verified in other environments, even if a matrix-vector product routine is different.
Therefore, the method in Theorem 3.3 is reproducible.

If Ax = fl(Ax) is guaranteed by Theorem 3.1, 3.2, or 3.3, we obtain b := fl(Ax)
satisfying Ax = b. This check works as a filter, and it should be applied first. If this
filter does not pass, then we move to new methods given in the next section.

4 Basic Perturbation Method

For a brief introduction, we propose several methods to generate A′ and b such that
A′x = b with x = (1, 1, . . . , 1)T from a given nonsingular matrix A.

4.1 General Matrix

First, we assume that the condition number of a given matrix A is at most smaller
than u−1. Next, A is divided such that A = A′ + ∆, A′,∆ ∈ F n×n. We adopt the
error-free transformation introduced in [4, Algorithm 3.2] to obtain A′ and ∆. Let a
vector β be defined as

βi := dlog2 nie , (12)

where ni (≤ n) is the number of non-zero elements in i-th row in the matrix A.
Alternatively, we can set βi = dlog2 ne for simple implementation. Let σ be defined as

σi := 2βi · 2gi , gi := dlog2 max
1≤j≤n

|aij |e, (13)

where max
1≤j≤n

|aij | 6= 0 from the assumption det(A) 6= 0. Let e = (1, 1, . . . , 1)T ∈ F n.

The matrices A′ and ∆ are obtained by

A′ := fl
((
A+ σ · eT

)
− σ · eT

)
, ∆ := fl

(
A−A′

)
. (14)

We now prove that A′x = float (A′x).

Theorem 4.1 Let A′ be obtained by (14) for a given A ∈ F n×nand x := (1, 1, . . . , 1)T .
Then, A′x = float (A′x).

Proof.

Since x = (1, 1, . . . , 1)T , the problem is to prove float

(
n∑
j=1

a′ij

)
=

n∑
j=1

a′ij , for all i.

If ni > u−1, then all a′ij become zero, so that there is no rounding error in float (A′x).
Hereafter, we assume ni ≤ u−1. From (2.1), we have

a′ij ∈ uσiZ, |a′ij | ≤ 2−βiσi. (15)
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From the definition of βi in (12), we have

ni2
−βi ≤ 1. (16)

From (15), (16), and the assumption on ni, we obtain

uσiZ 3 float

(
n∑
j=1

|a′ij |

)
≤ float

(
ni∑
j=1

2−βiσi

)
≤ ni2−βiσi ≤ σi. (17)

This satisfies the assumption of Lemma 2.1, so there is no rounding error in float (A′x).
�

Because the vector b is obtained by float (A′x), A′x = b is satisfied.

4.2 Structured Matrix

If a matrix A has a structure which gives rules for aij = akl, e.g., symmetric, per-
symmetric, Toeplitz, Hankel, and so forth, the structure of A′ obtained in (14) is
often different to that of A. In this subsection, we proposed a method to preserve the
structure of A.

We use the constant βi defined in (12) and the vector σ defined in (13). Let Qij
be a set of indices, for example, Qij = {i, j} for a symmetric matrix. Matrices A′ and
∆ are obtained as follows:

A′ := fl ((A+ F )− F ) , ∆ := fl
(
A−A′

)
, F ∈ F n×n, fij = max

k∈Qij

σk. (18)

Since fij ≥ σi for all i and j, we can prove fl (A′x) = A′x similar to Theorem 4.1.
If we simply set Qij = {1, 2, . . . , n}, then aij = akl ⇒ a′ij = a′kl is satisfied, since
the computations for aij and akl in (18) are the same. Therefore, the structures are
preserved. It means that

σ := max
1≤i≤m

2βi · 2gi , gi := dlog2 max
1≤j≤n

|aij |e

is defined, and
A′ := fl ((A+ σE)− σE) , ∆ := fl

(
A−A′

)
,

where eij = 1 for all (i, j) pairs. For a simple implementation, we can set

σ := 2dlog2 ne · 2h, h := dlog2 max
1≤i,j≤n

|aij |e.

This approach cannot be directly applied to a skew symmetric matrix, e.g.,

σi = 1, aij = u⇒ a′ij = 0, σi = 1, aji = −u⇒ a′ji = −u.

For this matrix, we compute only a′ij (i ≤ j), and a′ji is obtained by −a′ij .

4.3 Preserving Positive Definiteness

Let a matrix A be symmetric and positive definite. If a matrix A′ is obtained by the
methods introduced in subsections 4.2, the matrix A′ may not be a positive definite.
Hence, we proposed a method which preserves positive definiteness of a matrix. First,
we compute a matrix B by

B := fl ((A+ 2F )− 2F ) , ∆ := fl (A−B) , (19)
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where the matrix F was defined in (18). Then A = B + ∆. We set a diagonal matrix
∆′ as

δ′ii := 2nufii, 2nu ≤ 1,

and we compute A′ by

A′ := fl
(
B + ∆′

)
. (20)

For the proof of the positive definiteness, we review two well-known lemmas in linear
algebra.

Lemma 4.1 Let A = AT and B = BT ∈ Rn×n. If both A and B are positive definite,
then A+B is positive definite.

Lemma 4.2 For A = AT ∈ Rn×n, if A is diagonal dominant, and all diagonal entries
in A are positive, then A is positive definite.

The following theorem explains why A′ in (20) is also positive definite.

Theorem 4.2 Assume that 2niu ≤ 1 for all i. For A′ in (20) and x = (1, 1, . . . , 1)T ,
fl (A′x) = A′x, and A′ is symmetric and positive definite if A is symmetric and positive
definite.

Proof.
First, we prove A′ := fl (B + ∆′) = B + ∆′. For off-diagonal elements in A′,

a′ij = bij + δ′ij is trivially proved since ∆′ is a diagonal matrix. From (2.1), we have

bij ∈ 2ufijZ, |bij | ≤ 2−βifij . (21)

Then, 2ufijZ 3 bij + δ′ii ≤ 2fij from the assumption on ni. Hence, Lemma 2.1 says

bij + δ′ii = fl
(
bij + δ′ii

)
. (22)

From (21), (22), and the assumption of ni, we have

2ufijZ 3 float

(
n∑
j=1

a′ij

)
≤ float

((
2−βifij + 2niufij

)
+2−βifij + . . .+ 2−βifij

)
= ni2

−βifij + 2niufij ≤ 2fij .

Therefore, no rounding error is produced in the evaluation of

n∑
j=1

a′ij . The rest of this

proof is written for the positive definiteness of A′. From the computations (19) and
(20), we have A′ = B + ∆′ = A−∆ + ∆′. Since −∆ + ∆′ is diagonal dominant with
positive diagonal entries, Lemmas 4.1 and 4.2 prove the positive definiteness of A′. �

4.4 Improvement by Iterations

We show how to make ∆ in (14) as small as possible. A matrix A′ is obtained by

a′ij := fl

(
(aij +

σi
wi

)− σi
wi

)
, δij := fl

(
aij − a′ij

)
, wi := 2ki , ki ∈ N ∪ {0}, (23)
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where the vector σ is defined in (13). If we set wi := 1 for all i, then A′x = float (A′x)
is guaranteed by Theorem 4.1. The concern is to check whether a rounding error
occurs in the evaluation of A′x setting wi ≥ 2. It is possible to prove A′x = fl (A′x)
using the methods introduced in Section 3. We employ a trial-and-error approach for
the following two cases.

• The structure is preserved: If fl

(
n∑
j=1

a′ijxj

)
=

n∑
j=1

a′ijxj for ∀i, then wi := 2∗wi

for all i and compute (23). These procedures are continued until fl

(
n∑
j=1

a′ijxj

)
6=

n∑
j=1

a′ijxj for ∃i.

• The structure need not to be preserved: Set

K =

{
i | fl

(
n∑
j=1

a′ijxj

)
=

n∑
j=1

a′ijxj

}
.

We update wi := 2 ∗ wi for all i ∈ K and compute (23). These procedures are

continued until fl

(
n∑
j=1

a′ijxj

)
6=

n∑
j=1

a′ijxj for ∀i.

After these procedures, we set wi := wi/2 and compute (23).

4.5 MATLAB Algorithms

We introduce several algorithms for generating A′ and b such that A′x = b for x =
(1, 1, . . . , 1)T . All algorithms are written in MATLAB-like code. In algorithms, we use
a matrix C instead of the matrix A′, because the meaning of A′ in MATLAB is the
transposed matrix of A. First, we introduce algorithms based on Sections 4.1 and 4.2.

Algorithm 2 The following algorithm produces C ∈ F n×n and b ∈ F n from a non-
singular matrix A ∈ F n×n such that Cx = b, x = (1, 1, . . . , 1)T .

function [C, b] = generate ones(A)
n = size(A, 1);
y = max(abs(A), [ ], 2);
σ = 2ˆceil(log2(n)) ∗ 2.ˆceil(log2(y));
T = repmat(σ, 1, n);
C = (A+ T )− T ;
b = C ∗ ones(n, 1);

end

Algorithm 3 The following algorithm produces C ∈ F n×n and b ∈ F n from a non-
singular matrix A ∈ F n×n such that Cx = b, x = (1, 1, . . . , 1)T . If aij = akl, then
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cij = ckl.
function [C, b] = generate ones str(A)
n = size(A, 1);
y = max(abs(A(:)));
σ = 2ˆceil(log2(n)) ∗ 2.ˆceil(log2(y));
C = (A+ σ)− σ;
b = C ∗ ones(n, 1);

end

Next, we introduce an algorithm for a sparse matrix.

Algorithm 4 The following algorithm produces C ∈ F n×n and b ∈ F n from a non-
singular sparse matrix A ∈ F n×n such that Cx = b, x = (1, 1, . . . , 1)T . If aij = akl,
then cij = ckl. Namely, the structure of A and C is the same.

function [C, b] = generate ones sp(A)
n = size(A, 1);
y = max(abs(A(:)));
σ = 2ˆceil(log2(n)) ∗ 2ˆceil(log2(y));
T = σ ∗ spones(A);
C = (A+ T )− T ;
b = C ∗ ones(n, 1);

end

Finally, we introduce the iterative refinement based on discussion in Section 4.4.

Algorithm 5 The following algorithm produces C and b from a non-singular matrix
A such that Cx = b, x = (1, 1, . . . , 1)T . The structure of C is the same to that of A.

function [C, b] = generate ones itr(A)
n = size(A, 1); x = ones(n, 1); r = check(C, x);
if sum(r) == n
C = A; b = A ∗ x; return;

end

y = max(abs(A(:)));
σ = 2ˆceil(log2(n)) ∗ 2ˆceil(log2(y))/2;
while 1
C = (A+ σ)− σ;
r = check(C, x);
if sum(r) ∼= n, break; , end

σ = σ/2;
end

C = (A+ 2 ∗ σ)− 2 ∗ σ;
b = C ∗ ones(n, 1);

end

In the beginning of Algorithm 5, we check whether rounding errors occur in fl(Ax).
If this check is not applied, then the program may not terminate due to an infinite
loop. For example, if we set

A =

(
1 1
1 1

)
, σ =

(
2k

2k

)
, k ∈ N.
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then fl (A′x) = Ax is satisfied for all k ∈ F . If k < −1074 for binary64, then 2k is
rounded to zero, so that the computation never terminates.

We now show numerical results. Floating-point matrices are generated by

A = gallery(′randsvd′, n, cnd, 3, n, n, 1); (24)

in MATLAB. We present relative change of the condition number

|cond(A)− cond(A′)|
cond(A)

by methods with and without the iterative refinement in Fig. 2 for n = 1000 and
n = 10000. The figures indicate that the iterative refinement is effective.
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Figure 2: Relative changes of the condition number (left: n = 1000, right: n = 10000)

Note that even if the condition number of the matrix A is greater than u−1, it is
possible to obtain A′ such that A′x = b. However, the condition number of A is much
different from that of A′ in many cases.

5 Generalized Method

In the previous section, we only set x = (1, 1, · · · , 1)T as the exact solution. Here,
we extend this construction to any given x. Assume that a coefficient matrix A is
non-singular, and a vector x 6= 0 . Set the vector θ as{

θj = 2kj , kj ∈ Z, xj ∈ θjZ, xj 6∈ 2θjZ, if xj 6= 0,
θj = 0 otherwise.

(25)

Let several constants be defined as

σi := 2βi · 2gi , gi :=

{
dlog2 ϕie, ϕi 6= 0
0, otherwise

, ϕi := max
1≤j≤n

|aijxj |. (26)

If the structure of the matrix needs to be preserved, then let ϕ be

ϕi := max
1≤i,j≤n

|aijxj |
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instead of (26). We set a vector σ′ as

σ′ :=
2

min
j
θj
· σ. (27)

The matrix A′ is obtained by

a′ij := fl
((
aij + σ′i

)
− σ′i

)
. (28)

Here, we introduce the following lemma for a relation of aij and a′ij .

Lemma 5.1 For a′ij in (28), |a′ij | ≤ 2|aij | is satisfied.

Proof.
From the definition of σ′ in (27), σ′i > |aij | holds for all i. If uσ′i > |aij |, then

fl (σ′i + aij) = 0 yields a′ij = 0, and the lemma is proven trivially. Hence, we assume
uσ′i ≤ |aij | < σ′i. We define δij as a rounding error for fl (σ′i + aij) such that

fl
(
σ′i + aij

)
= σ′i + aij + δij , |δij | ≤ u · ufp

(
σ′i + aij

)
,

which is obtained by Theorem 2.2. Since σ′i is a power of two, ufp (σ′i + aij) = σ′i.
Therefore, |δij | ≤ uσ′i. From Theorem 2.1, we have

a′ij = fl
((
σ′i + aij

)
− σ′i

)
= fl

(
σ′i + aij

)
− σ′i = aij + δij .

Finally, we obtain

|a′ij | = |aij + δij | ≤ |aij |+ |δij | ≤ |aij |+ uσ′i ≤ 2|aij |.

�
The following theorem proves that A′x = float (A′x) is satisfied.

Theorem 5.1 Assume that niu ≤ 1 for all i. For the matrix A′ obtained by (28),
A′x = float (A′x) is satisfied.

Proof.

If ϕi = 0, then

n∑
j=1

a′ijxj = float

(
n∑
j=1

a′ijxj

)
= 0, so that we assume ϕi 6= 0

hereafter. Using Lemma 3.3 in [4], a′ij ∈ uσ′i for all (i, j) pairs. Therefore, from (25),
we have

a′ijxj ∈ uσ′iθjZ ⊆ uσ′i ·min
j
θjZ. (29)

From the definition of σ in (26),

σi = 2βi · 2dlog2 max |aijxj |e ≥ 2βi · 2log2 max |aijxj | = 2βi ·max |aijxj | ≥ 2βi |aijxj |. (30)

Using (30) and (27), an upper bound of |aijxj | is obtained as

|aijxj | ≤
1

2βi
σi =

1

2βi+1
σ′i min

j
θj . (31)

From Lemma 5.1 and (31), we have

|a′ijxj | ≤ 2|aijxj | ≤
1

2βi
σ′i min

j
θj . (32)
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From (29) and (32), fl
(
a′ijx

)
= a′ijx by Lemma 2.1. Hence, using the assumption of

ni, we finally obtain

uσ′i ·min
j
θjZ 3 float

(
n∑
j=1

a′ijxj

)
≤ float

(
n∑
j=1

fl
(
|a′ijxj |

))
≤ ni

2βi
min
j
θjσ
′
i ≤ min

j
θjσ
′
i.

From this and Lemma 2.1, it is proved that no rounding error occurs in fl (A′x). �
If ufp(xi)/θi is large, then σ′i becomes huge compared to |aij |. In the worst case,

A′ becomes the zero-matrix. For example, setting xi = 1 + 2u makes A′ the zero
matrix. It is possible to preserve positive definiteness by the diagonal shift as in the
discussion in Section 3.3.

6 Applications of Linear Systems with Exact So-
lutions

In this section, we apply linear systems with exact solutions to verified numerical
computations and iterative methods in turn.

6.1 Application to Verified Numerical Computations

We examine upper bounds obtained by verified numerical computations. We focus on
a method based on

‖x̂−A−1b‖∞ ≤
‖R(Ax̂− b)‖∞
1− ‖RA− I‖∞

≤ α ∈ F , ‖RA− I‖∞ < 1, R ≈ A−1, (33)

where x̂ ∈ F n is an approximate solution, and I is the identity matrix. An accurate
dot product algorithm with error bounds [6, Dot2Err] is used for enclosure of Ax̂− b
in (33). We generate matrices using (24) and execute Algorithm 5. We set x̂ =
(c, c, . . . , c)T ∈ F n. Figures 3 and 4 show a ratio

α

‖x̂−A−1b‖∞
=

α

|1− c| (34)

for c = 1 + 2u · 10p, p = 0, 3, 6, 9 and n = 1000 (100 examples for each condition
number: cond(A) = i · 10j , i = {1, 2, . . . , 9}, j = {1, 2, . . . , 12}). Table 1 shows the
minimum, median, average, maximum of the ratio (34).

Table 1: Comparison of the ratio (34)

p minimum median average maximum
0 1.0000000012 1.00098 44.7 2721
3 1.0000000012 1.0000013 1.053 4.25
6 1.0000000000024 1.00000026 1.0081 1.18
9 1.0000000000024 1.00000026 1.0082 1.18

If cond(A) < 1010, the ratio (34) becomes very close to 1, namely, an upper bound
α expresses almost the exact error. If an approximate solution is inaccurate, then the
verification method produces a reasonable upper bound, even if a generated matrix
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is ill-conditioned. For example, if c = 1 + 2u · 106 or c = 1 + 2u · 109, the ratio
(34) is less than 1.2, which is independent of the condition number. However, if an
approximation is very accurate (c = 1 + 2u), and the condition number of A is large,
then it is observed that the ratio (34) is over 2000 in the worst case. Therefore, the
error bound α is overestimated in this case.
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Figure 3: c = 1 + 2u (left) and c = 1 + 2 · 103u (right)
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Figure 4: c = 1 + 2 · 106u (left) and c = 1 + 2 · 109u (right)

6.2 Application to Iterative Methods

We introduce an application to iterative methods for a linear system Ax = b. Let x̂
be an approximate solution. For checking the convergence of iterative methods, the
residual norm ‖Ax̂− b‖2 is usually used. However, there are sometimes gaps between
the residual and the error. Therefore, if linear systems with exact solutions are given
by the proposed methods, then we can check the error norm ‖x− x̂‖2 exactly, and it
is useful for researchers working on the iterative methods.

We examine the conjugate gradient method (CG method) with an initial vector
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x0 as follows.

r0 = b−Ax0;
p0 = r0;
while 1

αk = (rTk rk)/(pTkApk);
xk+1 = xk + αkpk;
rk+1 = rk − αkApk;
if ‖rk+1‖2 < 1e− 15 ∗ ‖b‖2

break;
end

βk = (rTk+1rk+1)/(rTk rk);
pk+1 = rk+1 + βkpk;

end

We check the relative residual norm, the stopping criterion, and the relative error norm
such as

‖b−Ax̂k‖2
‖b‖2

,
‖rk+1‖2
‖b‖2

,
‖x̂− x‖2
‖x‖2

by numerical examples. Test matrices are obtained from Matrix Market [7]. A′ and b
are generated by Algorithm 5. Then, A′x = b with x = (1, 1, . . . , 1)T . Figures 5 and 6
show the relative residual norm, the stopping criterion, and the relative error norm
for several matrices for the CG method. The initial vector is x0 = (0, 0, . . . , 0)T . We
observe that the residual norm and the value for the stopping criterion are both small,
but the error norm is relatively large in Table 5 (bcsstk15). In addition, the value for
the stopping criterion decreases, but the error norm is not changed in Table 6 (nos7).
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Figure 5: bcsstk15 and bcsstk16 from Matrix Market

One may think that analysis forA′x = b is not useful because the original coefficient
matrix is A. Therefore, we next check the difference of the convergence between
Ax = b and A′x = b. The matrix A is bcsstk15 from Matrix Market, and we set all

xi = 2(1 − 2−k) =

k∑
j=1

2−j+1. The leading k bits in the significand in xi are 1’s, and

the rest in the significand are 0’s. Figures 7 – 9 show the behavior of the convergence
for several k. If k = 5 and k = 20, the behaviors of the CG method for Ax = b and
A′x = b are almost identical. However, the result is meaningless for k = 35, since
there are big differences between A and A′.
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Figure 6: nos3 and nos7 from Matrix Market
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Figure 7: Ax = b and A′x = b for k = 5
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Figure 8: Ax = b and A′x = b for k = 20
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Figure 9: Ax = b and A′x = b for k = 35

Conclusion

We proposed a method to produce a linear system with the exact solution. The system
is useful for checking the overestimation of verified numerical computations. We hope
our method contributes the progress of iterative methods for linear systems.

We do not think that our method is an unique method for obtaining A′x = b.
The alternative is to replace some of the significant bits of aij by 0 properly, or to
transform integer data for A after proper scaling for the matrix A. Our methods use
only matrix operations, so they are easy to implement in MATLAB or C with BLAS.
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