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Abstract

This paper proposes an original approach, based on navigation data
analysis, for underwater mosaic creation from videos recorded by an AUV
(Autonomous Underwater Vehicle). Two methods are presented: one uses
only the AUV navigation data for image merging and the other also uses
some techniques of feature extraction and image matching. The process
of image matching is described and some improvements are proposed. A
lighting correction procedure is also implemented in both cases to improve
blending quality. Besides the mosaicking methods, a technique for trajec-
tory refinement is proposed to handle the inherent uncertainties of nav-
igation data and enhance the mosaic reliability. This technique is based
on the analysis of overlapping images and it uses the interval algebra to
compare proprioceptive and exteroceptive data. The mosaicking methods
were tested in two missions carried out in the Mediterranean Sea. All
the mosaics created, some additional images and videos are available as
multimedia supporting materials.
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1 Introduction

Automatic video mosaicking of the ocean floor has many applications, such as: seabed
reconstitution, wreckage visualization, site exploration and visual navigation [14]. In
recent years, several techniques of underwater mosaic creation have been developed,
and most of them are based on image processing [19],[13].

In this paper we propose a different approach, which relies on the AUV (Au-
tonomous Underwater Vehicle) navigation data for mosaic building. The camera pose
is estimated by analysis of navigation data, and all the images taken during the mis-
sion are warped to orient them towards the north and correct projective distortion,
scaling and rotation. Based on that, two methods of mosaicking are developed: one
uses only the navigation data for image merging, and another uses feature extraction
techniques for image matching. Both methods also use a lighting correction algorithm
to improve image blending.

Previous works using only navigation data for underwater mosaicking were done
by Haywood [15] thirty years ago; however, the inaccuracies in position measurements
were too large compared to the size of a video pixel [19]. In reference [21], a new
method of creating continuous geo-referenced image tiles used for assessment of un-
derwater faunal density and diversity is proposed. The authors use only navigation
data for image blending; however, they make 1D mosaics. In this paper, we present
a 2D mosaic creation method. To have better results, we also propose a method of
trajectory refinement, using interval analysis to handle the uncertainties inherent in
the navigation data.

The feature matching technique used in this paper has a slight improvement with
regard to references [23] and [18], presenting a new procedure for outlier rejection,
in addition to RANSAC (Random Sample Consensus). Also, the mosaicking method
using feature extraction is quite different from the classical approach ([19] and [13])
based on image-correlation matching, since we use the k-nearest neighbor algorithm
to find corresponding features.

The mosaicking methods were tested on two missions carried out in the Mediter-
ranean Sea by the AUV A9 of ECA Robotics. All the mosaics created, some additional
images, videos and other supporting materials (125.6Mb in size) are available at https:
//sites.google.com/site/matheuslaranjeira1/projects/seabed-mosaics/.

The paper is organized as follows. Section 2 contains the interval algebra and the
data used to estimate the AUV position. In Section 3 the loop detection problem is
presented and the notion of t-plane is introduced. This notion will be used in Section 6
in refining the robot trajectory. Section 4 and 5 contain the image processing and
matching techniques used by the methods of mosaic creation, presented in Section 7.
Two real test-cases are described in Section 8, and some additional comparisons to
other work are made in Section 9. Section 10 concludes this paper.

2 AUV Positioning

The algorithms for mosaic creation and trajectory correction use AUV speed, attitude
and seabed altitude measurements issued from the INU (Inertial Navigation Unit) as
inputs. The INU consists of an IMU (Inertial Measurement Unit), a DVL (Doppler
Velocity Log) sensor, a GPS and a pressure sensor. The GPS data were not used for
this paper.

The speed vector is defined as v(t) = (vx(t), vy(t), vz(t)), the attitude corresponds

https://sites.google.com/site/matheuslaranjeira1/projects/seabed-mosaics/
https://sites.google.com/site/matheuslaranjeira1/projects/seabed-mosaics/
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to the three Euler angles (roll, pitch and heading) here defined as ϕ(t), θ(t) and ψ(t),
respectively, and the AUV seabed altitude is represented by h(t). These measurements
are obtained in the robot frame, that is defined by a right-handed orthogonal set
( ~XR, ~YR, ~ZR) with origin at the center of the robot. ~XR points forward, ~YR points
port-side, and ~ZR points upward.

The world frame is defined by a set ( ~XW , ~YW , ~ZW ) of orthogonal coordinates, where
~XW points northward, ~YW points westward, and ~ZW points upward. The origin of the

world frame coincides with the initial position of the robot in the mission.
The relation between the world and robot frames is given by the Euler rotating ma-

trix R(ϕ(t), θ(t), ψ(t)) and the robot translation. Therefore, the rate of displacement
ṗW (t) of the robot in the world frame is calculated by the following state equation [3]:

ṗW (t) = R(ϕ(t), θ(t), ψ(t)).vR(t), (1)

where vR(t) is the speed vector measured in the robot frame. With a simple integral,
all the positions pW (t) are calculated by

pW (t) =

∫ t

0

ṗW (τ) dτ , (2)

where the time t belongs to the interval [0, tmax] associated to the duration of the
mission.

2.1 Intervals and tubes

Due to the INU measurement uncertainties, we will associate the measurements x(tk)
with an interval [x](tk) = [x(tk)− δx, x(tk) + δx], where δx represents the uncertainty
of measurement provided by the INU manufacturer. To handle the interval data, we
will use interval analysis ([20], [2]), a set of numerical methods which allows nonlinear
problems, such as localization [8], SLAM (Simultaneous Locating and Mapping) [9] or
state estimation [1] to be solved. In our case, interval analysis and the notion of tube
will be useful to loop detection [2] and trajectory refinement, explained in sections 3
and 6.

A tube [x](t) (see, e.g., [4]) is an interval of functions [x−(t), x+(t)] that contains,
for all t ∈ [0, tmax], the intervals of measurements [x](t) . The notion of tube is
illustrated in Figure 1, extracted from [2]. Note that for all t, x−(t) ≤ x+(t).

Using interval algebra, we can rewrite equations 1 and 2 as

[ṗW ] (t) = R([ϕ](t), [θ](t), [ψ](t)).[vR](t), and (3)

[pW ] (t) =

∫ t

0

[ṗW ] (τ) dτ , (4)

where
∫ t2
t1

[x] (τ) dτ =
[∫ t2

t1
x− (τ) dτ,

∫ t2
t1

x+ (τ) dτ
]
. More details about integrals of

tubes are available in [2].

3 Overlapping Images

In this section, we explain how we can detect overlapping images by analyzing only
navigation data. The approach presented is based on the paper of C. Aubry about
proprioceptive loop detection [2].
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Figure 1: A tube [x] of R that encloses the function x, where x+ and x− are the upper
and lower bound of the tube, respectively. [x](ta) is the interval associated to the AUV
position at time ta

For any trajectory, a set of loops may be defined as

T∗
lp =

{
(t1, t2) ∈ [0, tmax]2 | p(t1) = p (t2) , t1 < t2

}
,

or

T∗
lp =

{
(t1, t2) ∈ [0, tmax]2 |

∫ t2

t1

v(τ)dτ = 0, t1 < t2

}
.

However, if we consider our trajectory to be represented by a tube, we can rewrite the
previous equation as

Tlp = {t | 0 ≤ t1 < t2 ≤ tmax, ∃v ∈ [v] ,

∫ t2

t1

v(τ)dτ = 0}, (5)

where t = (t1, t2) is called a t-pair and the set Tlp encloses T∗
lp.

Nevertheless, in our case, we are looking for the instants where the images taken
by the robot overlap. Hence, Equation 5 will be redefined as

T = {t | 0 ≤ t1 < t2 ≤ tmax, ∃v ∈ [v] ,

∫ t2

t1

v(τ)dτ ≤ dist}, (6)

where dist is a distance in meters that ensures the overlapping of images taken at
times t1 and t2. For seabed inspection, the value of dist is normally constant, since
the AUV mission is performed at a quasi-constant seabed altitude.

It is important to say that we do not assume, for mosaic building purposes, that
the missions are carried out at constant altitude. This assumption is only made in
this section to simplify the detection of overlapping. Therefore, this in no way affects
the quality of the mosaic. As explained in Section 4.2, the robot altitude (dh) is
variable in time. The authors of reference [21] also assume a stable operating altitude
in their AUV missions, which have had 3.2 meters of mean altitude and standard
deviation (SD) of 0.26 meters. In our missions we have had mean of 6.14 meters and
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SD = 0.26, which shows the reasonableness of a quasi-constant altitude hypothesis for
image overlapping detection purposes. Still, in reference [2], the authors also propose
a simple and efficient way of representing a set T by plotting its elements in a plane,
called the t-plane, as shown in Figure 2. In this paper, the t-plane will be useful to
graphically represent the t-pairs where images overlap.

Figure 2: The loops of a trajectory plotted in a t-plane

With the definition of Equation 6, we can use a set inversion test to classify the
t-pairs of a t-plane as belonging or not belonging to T. Consider a t-box [t] = [t1]× [t2]
of a t-plane. If [t] ⊂ T, all the t-pairs of [t] are times where their corresponding images
overlap. Hence, this box is said to be feasible. If [t] ∩ T = ∅, then this box is said
to be unfeasible; otherwise it is undetermined. The test used to classify boxes [t] of a
t-plane is presented in the following proposition. Proposition 1. Given a t-box [t],
let

[Ix] =
∫ [t2]

[t1]
[vx](τ)dτ , [Iy] =

∫ [t2]

[t1]
[vy](τ)dτ ,

[dist] =
√

[Ix]2 + [Iy]2 and [margin] = [0, distmax],

where [dist] = [dist−, dist+] is the distance between the positions of the robot at times
[t1] and [t2] and distmax is the maximum distance for image overlapping. We then
have the test

[t1]− [t2] ⊂ R− and
[dist] ⊂ [margin]

}
⇒ [t] ⊂ T,

and
[t1]− [t2] ⊂ R+ or
dist− > distmax

}
⇒ [t] ∩ T = ∅.

The proposed procedure used to characterize the t-plane is a branch and bound
algorithm similar to SIVIA (Set Inverter Via Interval Analysis) [17], [2]. In this algo-
rithm, the t-plane will be partitioned into boxes that will be classified according to the
test described previously. The inputs of the algorithm are the tubes [vx] and [vy], the
accuracy ε, the distance distmax and the duration of the mission tmax. The algorithm
returns three subpavings: Tin containing the boxes [t] that have been proved inside T;
Tout containing the boxes [t] which do not belong to T; and T? containing small boxes
[t] for which nothing is known. This procedure is described in detail in Algorithm 1.

The subpaving Tin contains the set of t-pairs for which it is certain that there
are overlapping images. It represents the main outcome of the algorithm, and it
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Algorithm 1 Overlapping(in: ε, tmax, distmax, [vx], [vy])

1: Q := {[0, tmax]× [0, tmax]},Tin = ∅,T? := ∅,Tout := ∅
2: if Q 6= ∅ then
3: take an element [t] in Q
4: else
5: return Tin,T?,Tout

6:

{
[Ix] :=

∫ [t2]

[t1]
[vx](τ)dτ ; [Iy] :=

∫ [t2]

[t1]
[vy](τ)dτ

[dist] :=
√

[Ix]2 + [Iy]2; [margin] := [0, distmax]

7: if [t1]− [t2] ⊂ R+ or dist− > distmax then
8: Tout := Tout ∪ [t]; go to 2

9: if [t1]− [t2] ⊂ R− and [dist] ⊂ [margin] then
10: Tin := Tin ∪ [t]; go to 2

11: if width([t]) < ε then
12: T? := T? ∪ [t] ; go to 2

13: Bisect [t] and store the resulting boxes in Q; go to 2

will be useful in Section 6, for the trajectory refinement. A selected t-pair and its
corresponding overlapping images are shown in Figure 3.

4 Image Processing

4.1 Image distortions

During underwater missions, the camera is not always parallel to the seabed. The AUV
has some movements in roll and pitch that may be relevant, and the pictures taken
may have some perspective distortions that should be corrected, besides rotation and
scaling. We propose a method of compensation based on the analysis of the camera’s
field of view. A similar approach was successfully used in reference [21].

Each picture taken during the mission is associated with a quadrilateral that cir-
cumscribes the region imaged, defined by the intersection between the camera field of
view and the seabed in the image-taking instant. The coordinates of each corner of
the quadrilateral (A,B,C,D) in both robot and world frames can be calculated, since
the Euler matrix, the robot altitude and position are known (see Figure 4).

4.2 The coordinates of image corners

To calculate the coordinates of the aforementioned quadrilateral, we define some quan-
tities: δh is the robot seabed altitude in the instant tk when the image was taken; the
horizontal and vertical aperture of the camera are represented, respectively, by αH

and αV . We also assume that the camera is at the center of the AUV and that the
marine relief is almost flat.

The line connecting the camera center to point P (A, B, C or D) has the following
equation (in the robot frame):

xR = +−zR. tan(αV /2) and yR = +−zR. tan(αH/2), (7)
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(a) (b)

(c)

Figure 3: (a) Selection of a t-pair (in zone e) in a t-plane: Tin in red, Tout in blue and
T? in green. (b) The corresponding trajectory: the center of the path is represented by
the black line and the uncertainty of the position by the blue band. (c) The overlapping
images of the selected t-pair

where +− depends on the location of P. We also know that the intersection between
this line and the seabed occurs at zF = −δh in a frame F, that is the world frame
translated to the robot center. So, from the Euler rotation matrix, we have

zF =

− xR sin(θ) + yR cos(θ) sin(ϕ) + zR cos(θ) cos(ϕ) = −δh.
(8)

If we replace, in Equation 8, the values of xR and yR defined in Equation 7, we can
define zR as

zR :=
−δh

cos(θ) cos(ϕ)− tan(αH/2) cos(θ) sin(ϕ) + tan(αV /2) sin(θ)
.

Since zR is known, xR and yR are also known.
Now that we have found the coordinates of the corner in the robot frame, we can

change to the world reference through the equation

pA
W (tk) = R(ϕ(tk), θ(tk), ψ(tk)).pA

R(tk) + pAUV
W (tk), (9)
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(a) (b)

Figure 4: 3D simulation of seabed reconstitution from video images. (a) Visualization
of the camera’s field of view and its intersection with the seabed. (b) An example of
mosaic in a 3D simulation

where pAUV
W (tk) and pA

W (tk) are, respectively, the coordinates of the AUV position
and the image corner at time tk in the world frame. The coordinates of the other
corners are calculated in a similar way.

The goal of calculating these coordinates is to correct the perspective effect in the
images and also orient them towards the north. Before explaining the derivation, we
need to change the units of these coordinates, from meters to pixels. This procedure
is explained in the next subsection.

4.3 Changing the coordinates from meters to pixels

To convert the coordinates from meters to pixels, the first step is to define a constant
kpx = Pixels

Meters
valid for all images. This ratio represents the correspondence between

the displacement in meters of a point on the seabed and its displacement in the image
in pixels. It means that each point of mosaic has coordinates in pixels and meters.
The strategy of fixed seabed resolution was also used in reference [21]; however, the
authors assign navigation coordinates to the image center there.

Suppose that Ptk = {pA
W (tk),pB

W (tk),pC
W (tk),pD

W (tk)} is a set containing the co-
ordinates in meters of the four corners (A,B,C,D) of an image taken at time tk. So,
the four corners P0r, P1r, P2r and P3r have their coordinates in pixels calculated as
follows:

Pir(x, y) = kpx.

[
−Py(i) + max(Py)
−Px(i) + max(Px)

]
, (10)

where i = 0, 1, 2, 3 is the index of the corners in the set P, and Px and Py are the x
and y coordinates of corners in P. The relation between pixel coordinates and meters
coordinates is explicit in Figure 5: ~Ximg = −~YR and ~Yimg = − ~XR.



124 Laranjeira, Jaulin, and Tauvry, Building Underwater Mosaics

4.4 Image warping

The linear transformation A.Ps + B = Pr that deforms the original picture to com-
pensate for its distortions is represented in Figure 5. The coordinates (in pixels)
Ps and Pr are, respectively, the coordinates of the original and compensated image.

Considering Pi =

[
Pix
Piy

]
, the terms of the matrices

Figure 5: Schematic of perspective effect compensation from the application of a linear
transformation

A =

[
a00 a01
a10 a11

]
and B =

[
b0
b1

]
are calculated as follows:

a00 = P1rx−P0rx
P1sx

; a01 = P3rx−P0rx
P3sy

;

a10 =
P1ry−P0ry

P1sx
; a11 =

P3ry−P0ry
P3sy

;

b0 = P0rx and b1 = P0ry.

Once these coefficients are known, we can apply the transformation A.Ps+B = Pr to
each pixel of the image, as in Algorithm 2, where the pseudo-functions calculateCoord,
pixCoord and calcCoef implement the calculations of subsections 4.2, 4.3 and 4.4,
respectively. An example of perspective effect correction is shown in Figure 6.

4.5 Lighting correction

It was observed that the images taken by the AUV were not homogeneously lighted:
the middle of the picture was much brighter than the edges. This poses a problem for
a clear mosaic, as shown in images Online Resource 1 and Online Resource 2, available
as multimedia supporting material.

The method presented here for lighting correction is similar to what is proposed
in [21]. We were also inspired by [7], where lighting correction relies on finding a
lighting model for all images in the mosaic. Initially, the plan was to use the most
representative image of the seabed as a reference for the equalization of illumination.
However, we realized that for several different reference images the resulting lighting
model was very similar. So, we have chosen the first picture taken in the mission as
the basis for the lighting correction. This first image is always taken at a altitude
above 15 meters, so the seabed is blurred and we can easily deduce the lighting model.
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Algorithm 2 LinTransf(in: imgk, dh,p
AUV
W , ϕ, θ, ψ, kpx, t)

1: imgres := ∅
2: P := calculateCoord(pAUV

W (t), ϕ(t), θ(t), ψ(t), dh(t))
3: (P0r, P1r, P3r) := pixCoord(kpx,P)
4: (A,B) := calcCoef(imgk, P0r, P1r, P3r)
5: r = 0, c = 0, cres = 0, rres = 0
6: while r < nbrows(imgk) do
7: while c < nbcolumns(imgk) do
8: cres := A(0, 0).c+A(0, 1).r +B(0)
9: rres := A(1, 0).c+A(1, 1).r +B(1)

10: imgres(cres, rres) := imgk(c, r)
11: r + +, c+ +

return imgres

(a) (b)

Figure 6: The original image taken by the AUV (a) and the result after applying
Algorithm 2 (b)

The image of reference (imgcalib) is subdivided by a grid of 10 × 10 subregions,
and the average gray level is calculated for each subregion. The gray level of each
subregion is stored in a matrix, called the calibration matrix (calib), which has the
same dimensions as the images taken by the AUV. Before it can be used, the calibration
matrix is smoothed, as shown in Figure 7. The average gray level (Ḡ) of the calibration
image is also calculated.

Figure 7b represents the lighting model of the images taken in the mission. There-
fore, the lighting correction of a generic image imgk(i, j) is made by applying the
model to all its pixels using the equation

imgk(i, j) =
Ḡ× imgk(i, j)

calib(i, j)
, (11)

where (i, j) are the coordinates of a pixel in imgk.



126 Laranjeira, Jaulin, and Tauvry, Building Underwater Mosaics

(a) (b)

Figure 7: Lighting model represented by a calibration matrix raw (a) and smoothed
(b)

5 Image Matching

Our objective with image matching is to deduce the robot displacement between two
overlapping images. This calculation has two uses: mosaic synthesis and trajectory
correction. The image matching method is the same for these two purposes, and will
be explained in the following paragraphs.

5.1 The detection of interest points

The first step to match two images is to detect the significant points (called points
of interest) of these two images. In other words, we must find, for each image, which
pixels have an easily recognizable surroundings. Once these points of interest are
detected, the next step is to match them.

There are several algorithms employed to allow the detection and mapping of sig-
nificant points [12]. For this project, the SURF (Speeded Up Robust Features) [5]
algorithm was used for the detection and characterization of points of interest. This
choice was made due to the results presented in reference [12], as well as due to previ-
ous work done at ENSTA Bretagne, where SURF was successfully used. An interesting
alternative to SURF is proposed in [24]. The only pre-made image processing used to
assist in the interest point detection is a contrast enhancement by histogram equaliza-
tion (see the difference by comparing figures 8 and 3).

SURF uses the “Fast Hessian detector” for interest point detection [5]. Consider
a point x = (x, y) in an image I, the Hessian matrix H in x at a scale σ is defined by

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ),

]

where Lxx(x, σ) is the convolution of the Gaussian second order derivative
∂2

∂x2
g(σ)

with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ) [5]. Pixels with
an abrupt variation in gray level in their surroundings are detected by calculating the
Hessian determinant: the greater the determinant is, the more steeply the gray level
varies. These pixels are selected as points of interest.

To be invariant to scale, “Fast-Hessian” is applied to an image pyramid made from
recursive smoothing and downsampling, to get out of the base and achieve the highest
level of the pyramid [5]. Points of interest are thus detected in all levels of the pyramid
(multi-scale detection).
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5.2 Feature extraction

After detection, the points of interest must be characterized, so we can identify them
in different images. SURF uses the vector v = (

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|) as a de-

scriptor of points of interest. The values dx and dy are the Haar wavelet response in
the horizontal and vertical direction, respectively.

A quadratic grid oriented with 4×4 square subregions is defined around the interest
point. Each square has a subdivision of 2 × 2, where the values of dx and dy are
calculated and referenced to the prevailing orientation of the grid. This ensures the
descriptor is invariant to image rotation. The dominant orientation of the grid is
deduced from a sliding rotating window, which is explained in detail in [5] and [6].
The descriptor of SURF has a total of 64 dimensions (4 summations calculated in 16
sub-regions).

5.3 Matching interest points

Now that the points of interest have been detected and characterized, it is possible to
find them in different images. The mapping of corresponding points is based on the
k-Nearest Neighbor algorithm using some filters of false matches inspired by references
[18] and [23]. Four filtering tests have been established.

Consider two images: imgA and imgB . The first step is simply to detect and store
the coordinates of the feature points in sets kpA and kpB , where

kpA = {(x0, y0), (x1, y1), ..., (xn, yn)}

is a set with n key-points of imgA (idem for kpB). Their descriptors will be computed
and stored in sets desA and desB , where

desA = {{v00, ...,v015}, ..., {vn0, ...,vn15}}

has n descriptors of key-points in kpA. Then, the k-Nearest Neighbor algorithm will
choose the two best (nearest) matches in desB , and vice versa, for each element of
desA. Hence, two sets are generated, matchesAB and matchesBA, where

matchesAB ={{{Idx0A, Idx00B , dst00}, {Idx0A, Idx01B , dst01}}
, ...,

{{IdxmA , Idxm0
B , dstm0}, {IdxmA , Idxm1

B , dstm1}}}

has m matches. IdxA is the index of the descriptor in the set desA and dst is the
distance between the matched descriptors.

The choice of the two best matches is based on the euclidean distance between
descriptors. The smaller this distance is, the more similar the compared features
are. If the measured distance is very low for the best match and much larger for the
second best match, we can safely accept the first match as the right one, since it is
unambiguously the best choice. On the contrary, if these distances are very close,
there is a real possibility of making an error, and both matches should be rejected.
Therefore, pairs will be selected if the ratio of the distance of the best match to the
distance of the second best match is not greater than the empirical threshold. This
first filtering test is called the ratio test.

A lot of ambiguity is removed with the ratio test, and the sets of correspondences
matchesAB and matchesBA are relatively reliable. We will now extract the matches
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that are in agreement with both sets through a symmetry test. This test requires that
both points must be the best candidate for each other for a match pair to be accepted.

Even with the symmetry test, it is still possible to have mismatches, particularly
with images containing very similar objects. A third test taking into account the
location of objects in the images should be applied. This additional filtering test is
based on RANSAC, and uses the fundamental matrix to reject matches that do not
obey the epipolar constraint. This constraint imposes that for a match pair to be
accepted, the feature point of the second image should be on the epipolar line of its
corresponding pair in the first image.

Algorithm 3 DevTest(in: matchesR, kpA, kpB)

1: S := ∅, matchesF := ∅, i := 0
2: while i ≤ length(matchesR) do
3: posA := kpA(matchesR(i)→ IdxA)
4: posB := kpB(matchesR(i)→ IdxB)
5: δ := posB − posA
6: S := S ∪ δ
7: i+ +

8: i := 0
9: while i ≤ length(S) do

10: shift := S(i)
11: if S− σS ≤ shift ≤ S + σS then
12: matchesF := matchesF ∪matchesR(i)

return matchesF

The fourth and final test is the test of the standard deviation. It is necessary
because there may be a false match on an epipolar line which will not be filtered
by the RANSAC method. An example is shown in Figure 8, where we see that the
displacements of the false matching points are too far from the mean shift of the rest of
interest points. So, the false matches can be filtered only if we consider the matching
points whose displacement is near to the mean shift to be valid. The deviation test is
an innovative algorithm presented in this paper, and it is not explained in reference
[18] as the others are. Therefore, we present it in Algorithm 3, where matchesR is the
matching set issued from the RANSAC test, and S and σS are the average and the
standard deviation of S.

It may seem inconsistent if we assume a quasi-planar marine relief and, at the
same time, we use RANSAC, which is an algorithm based on a fundamental matrix
model. Indeed, this approach can only yield good results if the objects placed on the
sea-floor have a small height relative to the robot’s overflight altitude. This is the
most important limitation of the proposed feature based mosaic building technique.
It is also the main reason for which navigation methods for mosaic building are more
reliable, since there is no way that wrong 3D models or limitations in image matching
jeopardize the mosaic quality.
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(a)

(b)

Figure 8: Filtering of RANSAC outliers with a standard deviation test. (a) Mismatches
do not filtered by RANSAC. The white lines are the epipolar lines. (b) Good matches
preserved after applying the standard deviation test

6 Refinement of Trajectory

In this section, we compare the proprioceptive and exteroceptive data to refine the
AUV trajectory and make better underwater mosaics.

The trajectory adjustment is made from the comparison between the position
estimation issued from the INU and a correction proposed by a pair of overlapping
images selected from the t-plane. Considering a pair of images, we can associate it with
an interval representing the AUV displacement between the image-taking instants. So,
if we compare the position given by the INU with the displacement calculated by image
matching techniques, the certainty of positioning will be improved, since it must obey
both inertial and visual constraints.

First we calculate the AUV displacement between two overlapping images. As we
are interested in a displacement in meters referenced to the world frame, we cannot
use the procedure of Algorithm 3. Otherwise, it is calculated as in Algorithm 4, where
PA(0) and PB(0) are the top left corner coordinates (in meters) of images A and B.
D and σD are the mean and the standard deviation of D.

If the images A and B were taken in t1 and t2, the new positions [p](t1) and [p](t2)
will be reset as

[p] (t1) = [p](t1) ∩ ([p](t2) + [∆])
[p] (t2) = [p](t2) ∩ ([p](t1)− [∆])

.
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Algorithm 4 DeltaPos(in : matchesF , kpA, kpB , kpx,PA,PB)

1: D := ∅, i := 0
2: while i ≤ length(matchesF ) do
3: P0rA := pixCoord(kpx,PA(0))
4: P0rB := pixCoord(kpx,PB(0))

5: posA := PA(0)− kpA[matchesF (i)→IdxA]−P0rA
kpx

6: posB := PB(0)− kpB [matchesF (i)→IdxB ]−P0rB
kpx

7: dpos := posB − posA
8: D := D ∪ dpos
9: [∆] = [D− σD,D + σD]

10: return [∆]

Note that both positions are adjusted, in times t1 and t2, since both are uncertain.
The goal of this procedure is to reduce this uncertainty through the comparison of
inertial and visual information. This point adjustment is propagated for the entire
trajectory as in Algorithm 5, where [p], [v], tmax and dτ were presented in Section 2.
If more image pairs are selected, more adjustments can be done and the trajectory
estimate will be more certain. An example of successive trajectory adjustments is
shown in a video (Online Resource 8) uploaded as multimedia supporting material.
Figure 9 shows the difference between the original and adjusted trajectory.

Algorithm 5 TrajRef(in : [p], [v], t1, t2, tmax, dτ, [∆])

1: [p] (t1) = [p](t1) ∩ ([p](t2) + [∆])
2: [p] (t2) = [p](t2) ∩ ([p](t1)− [∆])
3: k = t1
4: while k ≤ tmax do
5: [p](k + 1) = [p](k + 1) ∩ ([p](k) + [v](k).dτ)
6: k + +

7: k = t2
8: while k > 0 do
9: [p](k) = [p](k) ∩ ([p](k + 1)− [v](k).dτ)

10: k −−
return [p]

7 Building Mosaics

The mosaic is built after the path adjustment, so that the robot position is consistent
with the proprioceptive and exteroceptive observations. This will make a mosaic more
faithful to the reality of the seabed. Two techniques have been developed for mosaic
building: one uses only the inertial data from the INU and the other uses the tools of
image matching described in Section 5.

The main advantages of the first method over the image matching tools are re-
duced computation time and heightened robustness to seabed changes. With image
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(a) Original trajectory (b) Adjusted trajectory

Figure 9: Example of trajectory refinement. The red circle indicates the place of
adjustment

matching, if the robot drives on a sandy bottom, for example, it will be much more
difficult to find significant points in the images. The attitude and velocity data ob-
tained from the INU, on the contrary, are always reliable and we are confident the
mosaic is created faithful to reality, despite sometimes having less net picture fittings
than we could have using the techniques of image matching.

7.1 Mosaic from inertial data

The first step is to determine the mosaic size. Consider now that

P ={{pA
W (t0),pB

W (t0),pC
W (t0),pD

W (t0)},

..., {pA
W (tmax),pB

W (tmax),pC
W (tmax),pD

W (tmax)}}

is a set containing the coordinates in meters of the corners of all images taken during
a mission. Therefore, the mosaic size in square meters is calculated as follows:

∆Px = max(Px)−min(Px) and
∆Py = max(Py)−min(Py),

so, S = ∆Px ×∆Py.

The conversion to pixels is simply made by Spix = k2pix.S, and the coordinates in pixels
of the corners of an image imgk to be added to a mosaic imgmos are calculated using
Equation 10.

Algorithm 6 describes the method of building mosaics using only inertial data,
based on calculations and functions already presented in previous sections. It is similar
to Algorithm 2; however, P contains the coordinates of corners of all images taken
during the mission. The function lightCorrection implements the lighting correction
presented in Section 4.5.

7.2 Mosaic from image matching

For construction of the mosaic from inertial data, it is also necessary for the image
matching method to first undergo the image processing procedures (lighting correction
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Algorithm 6 MosaicINU(in: imgfile, dh,pAUV
W , ϕ, θ, ψ, kpx)

1: imgk := ∅, k := 0
2: P := calculateCoord(pAUV

W , ϕ, θ, ψ, dh)
3: (∆x,∆y) := calculateMosaicSize(P)
4: imgmos := createV oidImage(∆x,∆y)
5: while k ≤ length(imgfile) do
6: imgk := read(imgfile(k))
7: imgk := lightCorrection(imgk)
8: (P0r, P1r, P3r) := pixCoord(kpx,P)
9: (A,B) := calcCoef(imgk, P0r, P1r, P3r)

10: r = 0, c = 0, cres = 0, rres = 0
11: while r < nbrows(imgk) do
12: while c < nbcolumns(imgk) do
13: cres := A(0, 0).c+A(0, 1).r +B(0)
14: lres := A(1, 0).c+A(1, 1).r +B(1)
15: imgmos(cres, rres) := imgk(c, r)
16: l + +, c+ +

17: k + +
return imgmos

and distortion compensation). However, the location of the images in the mosaic is
not defined by the coordinates of their corners in the world frame but by the average
displacement of points of interest between successive images. With this method, the

Figure 10: Connection between two images from the displacement of points of interest.
The red rectangle defines the size of the mosaic after the addition of the new image
imgB

mosaic is constructed from an initial image to be enlarged by the successive addition
of images, as in Figure 10. Algorithm 7 describes the method, where FLT is a function
that implements Algorithm 2 and addToMosaic(D, imgsrc, imgdst) is a function that
places the image imgsrc in image imgdst displaced D pixels from the last added image.

Compared with the inertial method described previously, image matching provides
better connections between images, so the mosaic becomes more readable and under-
standable. A disadvantage is that use of image processing tools always leaves the
veracity of the results uncertain.
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Algorithm 7 MosaicFeatures (in: imgfile, dh,pAUV
W , ϕ, θ, ψ, kpx)

1: imgA := ∅, imgB := ∅, imgmos := ∅, k := 1
2: imgA := read(imgfile(0))
3: imgA := lightCorrection(imgA)
4: imgA := FLT (imgA, dh,p

AUV
W , ϕ, θ, ψ, kpx, 0)

5: addToMosaic([0, 0], imgA, imgmos)
6: while k ≤ length(imgfile) do
7: imgB := read(imgfile(k))
8: imgB := lightCorrection(imgB)
9: imgB := FLT (imgB , dh,p

AUV
W , ϕ, θ, ψ, kpx, k)

10: (matches, kpA, kpB) := features(imgA, imgB)
11: for all elements of matches do
12: posA := kpA(matches→ IdxA)
13: posB := kpB(matches→ IdxB)
14: δ := −(posB − posA)
15: D := D ∪ δ
16: addToMosaic(D, imgB , imgmos)
17: imgA := imgB
18: k + +

return imgmos

8 Test Cases and Results

The techniques of mosaic building were implemented in software developed on QtCre-
ator using the language C++ and the library OpenCV for image processing.

The software was tested with data from two missions carried out in the Mediter-
ranean Sea by the AUV A9 of ECA Robotics. The first mission was on a wreck, where
2027 photos were taken during 10 minutes (sampling period of 40ms for navigation
data). The second mission was on a posidonia field, with 4806 photos taken during 25
minutes and navigation data available every 500ms (even if measurements were made
every 40ms). The mosaics from the wreck are available as multimedia supporting
material (Online Resources 3 and 4).

In terms of performance, the mission on the wreck had the mosaic built by both
methods; however, the mission over the posidonia had its mosaic made only by the
inertial method, since the images were not rich enough in interest points. The 2027
photos taken on the wreck were mosaicked in 1782ms using only proprioceptive data,
contrasted with 1062470ms if we use also image matching. It proves that the proprio-
ceptive method is extremely fast, since we need less than 9ms to add a picture to the
mosaic. The 4806 photos of the second mission were mosaicked in 8601ms (less than
2ms per photo). Even with more photos, the mosaic was built faster because there
was less navigation data to be read. The tests were made on an ordinary computer
with a 2.3GHz Quad Core processor and 4Gb of memory; Table 1 summarizes the
comparison between both mosaicking methods.

The trajectory refinement was tested on the wreck mission, and an uploaded video
(Online Resource 7) shows a reduction of 17% in the relative error of object place-
ment in a loop. It mignt seem a small improvement, but if we consider that we
pass from 94cm to 78cm of relative error, we realize that it is a significant result.
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The uncertainty of positioning at the end of the mission was also reduced, from
(∆x = 14.37,∆y = 13.32)m to (∆x = 9.14,∆y = 5.58)m. To better be tested,
trajectory refinement should be applied to longer missions, so the uncertainties of
measurement can accumulate and be more relevant.

The use of interval algebra for trajectory refinement has the additional advantage
of low computational effort, when compared to alternative Bayesian approaches [16],
[11]. For example, Algorithm 5 is run on 5ms when applied to the mission over a
wreck, and all the navigation data with all its uncertainties can be stored in a 1Mb
file. Interval algebra seems then to be an appropriate approach for future on-line
SLAM.

With respect to mosaicking quality, we achieve, in consecutive image blending, a
root means square pixel reprojection deviation of (x = 2.1, y = 2.0)px, calculated on
a set of 233,203 matched key-points (see Table 1). If we don’t use image matching,
we have a deviation of (x = 6.2, y = 9.0)px, which is also a significant result, since
we have used kpx = 60 and, therefore, the uncertainty of positioning of objects on the
seafloor is (x = 10.3, y = 15.0)cm. Such data attest to the quality and reliability of
the mosaicking methods proposed in this paper.

Measurement
Mosaicking method

Only navigation With feature extraction

Root Means Square deviation (x, y) (x = 6.2, y = 9.0) px (x = 2.1, y = 2.0) px
Time of mosaicking 17, 824 ms 1, 062, 470 ms

Table 1: Comparison between mosaicking methods in a mission on a wreck (2027
photos)

9 Additional Comparisons to Other Work

Underwater mosaicking techniques have been extensively developed during the past
10 years, and some prior relevant contributions must be mentioned and compared
to those in this paper. Mosaicking using feature extraction and navigation data was
achieved by the authors of [10]. Each image of the mosaic was assigned to the camera
geographical location and rotated in heading, as pitch and roll were assumed to be
stable enough. In this paper, we have presented a more complete approach, since a
three-dimensional rotation was applied to correct perspective distortions, and all the
mosaic pixels have their equivalent coordinates in meters. The authors of [21] also use
3D rotation for perspective correction while creating continuous geo-referenced image
tiles using only navigation data. However, their method was tested on the creation of
one-dimensional mosaics, while in this paper we are in a 2D context.

Regarding feature based mosaicking, Pizarro and Singh (2003) [22] have presented
an effective method for producing mosaics from ROV (Remotely Operated Vehicle)
images. Unfortunately, their method would not be efficient over large areas, with small
errors magnifying along the trajectory, particularly in featureless seabed zones [21].
In our case, we do not have this problem since we can use navigation data for mosaic
creation in featureless zones.



Reliable Computing 22, 2016 135

10 Conclusion

This paper has presented two methods of underwater mosaicking: one is based on
image matching and is an evolution of current techniques [18][23]; the other is an
innovative method based only on the analysis of proprioceptive data. The naviga-
tion uncertainty is taken into account and can be reduced by a trajectory refinement
method based on interval algebra.

The main contribution of this paper is the use of interval algebra to handle the
inherent uncertainties of navigation data. The reliability of mosaic building is then
improved by applying the proposed method of trajectory refinement, which is only
possible with interval methods; to our knowledge, there are no probabilistic methods
to reliably detect loops or overlapping images with inertial data. We can also say that,
for the first time, proprioceptive (or inertial) data are used to reliably detect loops,
to avoid matching errors. As demonstrated in the end of Section 8, this increased the
internal consistency of the mosaic by 17%, with a relative placement error of objects
in a loop smaller than 78cm.

A secondary improvement for image matching is also proposed, where a deviation
test was presented as a new outlier rejector, in addition to the widely known RANSAC.
This new test is important for improvement of the reliability of mosacking, since the
motion estimation is strongly tied to the quality of correspondences and RANSAC has
proved to be flawed in some cases. Another improvement is the association of images
with their corner coordinates. This makes it possible to correct distortions and orient
all images towards the north. Since all images have the same orientation and visual
perspective, we can directly compute the displacement of key points between images
(Figure 10) and blend them more easily. Computational performances were presented
in Section 8.

In the future we plan to combine the two presented mosaicking methods, to simul-
taneously have reliable, clear and sharp mosaics.

11 Supplementary Materials

This paper has supplementary multimedia files. The material is 125.6Mb in size and
includes:

Online Resource 1 : A piece of mosaic without lighting correction

Online Resource 2 : A piece of mosaic with lighting correction

Online Resource 3 : Mosaic of a wreck using only INU data

Online Resource 4 : Mosaic of a wreck using also feature extraction

Online Resource 5 : Example of mosaic creation using image matching

Online Resource 6 : Example of mosaic creation using only navigation data

Online Resource 7 : Improvements brought with trajectory refinement

Online Resource 8 : Example of trajectory correction

These are available at:
https://sites.google.com/site/matheuslaranjeira1/projects/seabed-mosaics/

https://sites.google.com/site/matheuslaranjeira1/projects/seabed-mosaics/
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