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Abstract

The main contribution of this paper is to provide a method (probably
the first), based on separator algebra, which makes it possible to compute
an inner and an outer approximations of the set X (t) of all states that
are consistent with an initial set X (0) containing the initial state vector
x (0) and a state equation of the form ẋ (t) = f (x (t)) , t ∈ R. As an
application, we consider the state estimation problem where feasible state
vectors have to be consistent with some data intervals.
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1 Introduction

Consider the following state estimation problem [1]

(i) ẋ (t) = f (x (t)) , t ∈ R
(ii) g (x (tk)) ∈ Y (k) , k ∈ N (1)

where x(t) ∈ Rn and g(x(t)) ∈ Rm. Equation (i) represents the evolution of the
system and (ii) corresponds to the observation equation. The uncertainty on the
measurements are represented by the subsets Y (k) of Rm. Computing the the set of
all state vectors x(t) consistent with the Y (k), for all k is known as a set-membership
estimation problem. For this type of problem, interval analysis is often used, especialy
in a nonlinear context (see, e.g., [2], [3] or [4]). Our objective is to find an inner and
an outer approximation of the set X (t) of all state vectors that are consistent with (1)
at time t. Define by flow map ϕt1,t2 as follows:(

x (t1) = x1 and ẋ (t) = f (x (t))⇒ x2 = ϕt1,t2
(x1)

)
. (2)

The set of all causal feasible states at time t is defined by [5]

X (t) =
⋂
tk≤t

ϕtk,t
◦ g−1 (Y (k)) . (3)

Remark. To understand this formula, it suffices to see that g−1 (Y (k)) corresponds
to the set of all state vectors x at time tk that are consistent with the measurement
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set Y (k). As a consequence, the set of all x at time t that are consistent with the mea-
surement set Y (k) is ϕtk,t

◦g−1 (Y (k)). To be consistent with all past measurements,
we thus have to take the intersection of all sets associated with all measurements taken
at time tk ≤ t.

In this paper, we show how it is possible to find both an inner and an outer ap-
proximations for X (t). Some existing methods are able to find an outer approximation
[6], but, to my knowledge, none of them is able to get an inner approximation. The
main idea is to copy a classical contractor approach [7] for state estimation, but to use
separators [8] instead of contractors.

2 Separators

In this section, we present separators, recently introduced in [8], and show how they
can be used by a paver in order to bracket the solution sets. An interval of R is a
closed connected set of R. A box [x] of Rn is the Cartesian product of n intervals. The
set of all boxes of Rn is denoted by IRn. A contractor C is an operator IRn 7→ IRn

such that C([x]) ⊂ [x] and [x] ⊂ [y] ⇒ C([x]) ⊂ C([y]). A set S is consistent with
the contractor C (we will write S ∼ C) if for all [x], we have C([x]) ∩ S = [x] ∩ S. A
separator S is a pair of contractors

{
S in,Sout

}
such that, for all [x] ∈ IRn, we have

S in([x])∪Sout([x]) = [x]. A set S is consistent with the separator S (we write S ∼ S),
if S ∼ Sout and S ∼ S in. where S = {x | x /∈ S}. By using a separator inside a paver,
we can easily classify parts of the search space that are inside or outside a solution set
S associated with the separator S.

The algebra for separators is a direct extension of contractor algebra [7]. If Si ={
S in
i ,Sout

i

}
, i ∈ {1, 2} are separators, we define

S1 ∩ S2 =
{
S in
1 ∪ S in

2 ,Sout
1 ∩ Sout

2

}
(intersection)

S1 ∪ S2 =
{
S in
1 ∩ S in

2 ,Sout
1 ∪ Sout

2

}
(union)

f−1 (S1) =
{
f−1(S in

1 ), f−1(Sout
1 )

}
(inverse)

(4)

If Si are sets of Rn, we have [9] [8]

(i) S1 ∩ S2 ∼ S1 ∩ S2
(ii) S1 ∪ S2 ∼ S1 ∪ S2
(iii) f−1 (S1) ∼ f−1 (S1) .

(5)

Interval analysis [10] [11] combined with contractors [7] has been shown to be able

to give an outer approximation for a large class of set defined by inequalities. The
principle is to build a contractor for primitive sets and to build a contractor for more
complex sets by intersections and unions.

Example. Consider the set

S = S1 ∩ (S2 ∪ S3) (6)

where

Si = {x | fi(x) ≤ 0} (7)

If Ci are contractors for the sets Si, then a contractor for S is C = C1 ∩ (C2 ∪ C3) .
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For the inner approximation, we need to find a contractor C for the set S, the
complementary set S. For this, we need to use the De Morgan rules:

X1 ∩ X2 = X1 ∪ X2

X1 ∪ X2 = X1 ∩ X2.
(8)

Then, basic contractor techniques can be used to get an inner characterizations.
Example. Consider the previous example and let is now show how to buid a

contractor for the complementary set of S = S1 ∩ (S2 ∪ S3). From the De Morgan
rules, we have

S = S1 ∪
(
S2 ∩ S3

)
(9)

with
Si = {x | fi(x) > 0} (10)

If Ci are contractors for the sets Si, then a contractor for S is C = C1 ∪
(
C2 ∩ C3

)
.

Now, the complementation task is tredious and the role of separators is to make
it automatic.

Paver. Once, we have built the separator for a set S, we can compute an approxi-
mation of S using a paver. A paver takes as an input an initial box which is sufficiently
large to enclose S and then the paver partitions this box into smaller boxes. For each of
these subboxes, the separator is called. Parts of the boxes that or proved to be inside
or outside S are stored in a list in order to build an inner and an outer approximations
of S. Remaining boxes that are not too small are bisected and te operation is repeated
until all remaining subboxes have a width smaller than a given value.

3 Transformation of Separators

A transformation is an invertible function f such as an analytical expression is known
for both f and f−1. The set of transformation from Rn to Rn is a group with respect
to the composition ◦. Symmetries, translations, homotheties, rotations, . . . are linear
transformations.

Theorem (Separator transformation). Consider a set X and a transformation f .
Denote by [f ] and

[
f−1
]

two inclusion functions for f and f−1. If SX is a separator for
X then a separator SY for Y = f (X) is

[y]→
{(

[f ] ◦ S in
X ◦

[
f−1]) ([y]) ∩ [y] ,

(
[f ] ◦ Sout

X ◦
[
f−1]) ([y]) ∩ [y]

}
(11)

or equivalently

f (X) ∼
{

[f ] ◦ S in
X ◦

[
f−1] ∩ Id, [f ] ◦ Sout

X ◦
[
f−1] ∩ Id

}
(12)

where Id is the identity contractor.
Figure 1 illustrates this theorem. Figure 1.1 represents the box [y] to be separated.

In Figure 1.2 we compute the box
[
f−1
]

([y]). In Figure 1.3, this box is separated into
two overlapping boxes using SX. In Figure 1.4, the two contracted boxes are mapped
into the y-space via [f ]. In Figure 1.5 these boxes are intersected with [y].

Remark. The separator defined by (11) corresponds to what we call the trans-
formation of a separator by f and we write SY = f (SX). As a consequence, thanks to
the theorem, we can add to (5) the property

(iv) f (X) ∼ f (SX) .
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Figure 1: Illustration of the separator transformation Theorem
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which will be used later for our state estimation problem.
Proof. The separator SY is equivalent to Y = f (X) if{

Sout
Y ([y]) ∩ Y = [y] ∩ Y
S in
Y ([y]) ∩ Y = [y] ∩ Y.

(13)

Since S in
Y ([y]) ⊂ [y] and Sout

Y ([y]) ⊂ [y], it suffices to prove that{
(i) Sout

Y ([y]) ⊃ [y] ∩ Y
(ii) S in

Y ([y]) ⊃ [y] ∩ Y.
(14)

Let us first prove (i). We have

[y] ∩ Y = f
(
f−1 ([y]) ∩ f−1 (Y)

)
f is bijective

= f
(
f−1 ([y]) ∩ X

)
X = f−1 (Y)

⊂ f
([

f−1
]

([y]) ∩ X
) [

f−1
]

is an inclusion function for f−1

⊂ f(Sout
X
([

f−1
]

([y])
)

) Sout
X is a contractor for X

⊂ [f ] ◦ Sout
X ◦

[
f−1
]

([y]) [f ] is an inclusion function for f
(15)

Thus [y] ∩ Y ⊂
(
[f ] ◦ Sout

X ◦
[
f−1
]

([y]) ∩ [y]
)

= Sout
Y ([y]). Let us now prove (ii). We

have

[y] ∩ Y = f
(
f−1 ([y]) ∩ f−1

(
Y
))

f is bijective

= f
(
f−1 ([y]) ∩ X

)
X = f−1

(
Y
)

⊂ f
([

f−1
]

([y]) ∩ X
) [

f−1
]

is an inclusion function for f−1

⊂ f(S in
X
([

f−1
]

([y])
)

) S in
X is a contractor for X

⊂ [f ] ◦ S in
X ◦

[
f−1
]

([y]) [f ] is an inclusion function for f
(16)

Thus [y] ∩ Y ⊂
(
[f ] ◦ Sout

X ◦
[
f−1
]

([y]) ∩ [y]
)
∩ Y = S in

Y ([y]) which terminates the
proof. �

Example. Consider the constraint∥∥∥∥( 2 0
0 1

)(
cosα sinα
− sinα cosα

)(
y1 − 1
y2 − 2

)∥∥∥∥ ∈ [1, 3] . (17)

If we apply an efficient forward-backward contractor in a paver, we get the contractions
illustrated by the paving of Figure 2, left. Now, if we take(

x1
x2

)
=

(
2 0
0 1

)(
cosα sinα
− sinα cosα

)(
y1 − 1
y2 − 2

)
= f−1 (y) (18)

or equivalently(
y1
y2

)
=

(
cosα − sinα
sinα cosα

)(
1
2

0
0 1

)(
x1
x2

)
+

(
1
2

)
= f (x) , (19)

we get
y = f (x) , and ‖x‖ ∈ [1, 3] . (20)

An optimal separator SX can be built for x and the separator transform provides us a
separator SY for Y. As illustrated by Figure 2, right, the resulting separator SY gets
stronger contractions than the classical one based on forward-backward contractors.

Note that in case we are not able to have an inner approximation for f−1, the
problem of finding an inner approximation of the image of a set f (X) becomes much
more difficult. See, e.g., [12] [13] [14].
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Figure 2: Left. Contractions obtained using a classical forward-backward propagation;
Right. Contractions obtained using the separator transform. The frame corresponds
to the box [−6, 6]2.

4 State Estimation

In this section, we illustrate how the separators can be used to compute an inner and
an outer approximations of the feasible set for the state vectors. For this, we will use
the separators to implement the set-membership observer (3). If SY(k) are separators
for Y (k), then a separator for the set X (t) defined by (3) is

SX(t) =
⋂
tk≤t

ϕtk,t
◦ g−1 (SY(k)) . (21)

In this formula, g−1
(
SY(k)

)
is a separator. Due to the fact that ϕtk,t

is bijective and

that we are able to find an inclusion function for ϕtk,t
and ϕ−1

tk,t
[15] [16] [17], the

separator ϕtk,t
◦ g−1

(
SY(k)

)
is clearly defined using the separator transform.

The method we propose is thus the following. For each sampling time, t = 0.1 ·
k, k ∈ N, we call a paver with the separator given by (21). As a result, we get a
guaranteed enclosure of X (t) with an inner and an outer approximations. Of course,
the method could be made more efficient by taking into account the computations
made before, in a recursive manner. Now, this method is sufficient to illustrate the
main contribution of the paper which is the inner approximation of X (t).

To illustrate the method, let us consider a robot described by ẋ (t) =

(
v (t) · cos θ (t)
v (t) · sin θ (t)

)
(evolution)

‖x (tk)‖ ∈ y (tk) + [−0.3, 0.3] , tk = 0.1 · k, k ∈ N (observation)
(22)

where v (t) and θ (t) are measured with an accuracy of ±0.03. The observation equation
is due to the fact that the robot measures every 0.1 sec its distance to the origin with
an accuracy of ±0.3. The actual (but unknown) trajectory for the robot is

x (t) =

(
2 + 3 cos t

2 sin t

)
. (23)

For t ∈ 0.2 · k, k = 0, . . . , 7, the sets X (t) obtained by our observer are represented
on Figure 3. Black boxes are inside X (t), grey boxes are outside and the white boxes
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cover the boundary. For t = 0, X (t) is a ring which becomes a small set for t = 1.4 once
the robot has moved sufficiently. The fact that the white area covering the boundary
becomes thick is mainly due to the state errors inside the evolution equation.

5 Conclusion

This paper has introduced the new concept of the transformation of a separator. Tak-
ing into account the property that the flow map is invertible for a deterministic system,
we were able to build a method computing an inner and outer approximations of the
set of all states that are consistent at time t with the initial set X (0) and a collection of
data bars. One simple test-case has been presented in order to illustrate the efficiency
of the method. In a near future, it would be interesting to compare/combine with the
approach given in [18] to compute an inner approximation of the reachability set. An
other improvement would be a recursive implementation of the state observer in order
to factorize the computation at different steps.
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