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Abstract

An existence theorem for solutions of systems of nonlinear equations
proved by J. Rohn is extended in two directions, one with the aim to cover
a generalized version of the well-known Theorem of Miranda, stated but
not proved by R.E. Moore and J.B. Kioustelidis, the other with the aim
to eliminate the dependence of Rohn’s Theorem on the standard basis of
Rn. The resulting theorem also extends a generalized version of Miranda’s
Theorem proved by M.N. Vrahatis.
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1 The Considered Theorem of Rohn

We will be concerned with an existence theorem for solutions of systems of nonlinear
equations presented by J. Rohn [11].
Given a nonempty convex compact set C ⊂ Rn, Rohn introduced the subsets

C−j := {x ∈ C : x− tej /∈ C ∀ t > 0},
C+

j := {x ∈ C : x+ tej /∈ C ∀ t > 0},
j = 1, . . . , n,

where e1, . . . , en denote the standard unit vectors in Rn, and proved

Theorem 1.1 Let F : C → Rn be a continuous mapping satisfying the condition

(R)


F (x)j ≤ 0 ∀ x ∈ C−j ,
F (y)j ≥ 0 ∀ y ∈ C+

j ,

j = 1, . . . , n.

Then there is a z ∈ C such that F (z) = 0.
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Rohn’s Theorem extends the well-known Theorem of Miranda [9] which is identical
with Theorem 1.1 (for −F ) when C is an n-dimensional cube

{x = (x1, . . . , xn)T ∈ Rn : |xj | ≤ L, j = 1, . . . , n}.

2 Relaxing (R)

An obvious extension of Theorem 1.1 is obtained by observing that (R) can be replaced
by

(R+−)


F (x)j ≤ 0 ∀ x ∈ C−j and F (y)j ≥ 0 ∀ y ∈ C+

j ( j +)

or

F (x)j ≥ 0 ∀ x ∈ C−j and F (y)j ≤ 0 ∀ y ∈ C+
j ( j - ) ,

j = 1, . . . , n.

Proof: Assuming that (R+−) holds, we set sj = ej if (j+) holds , sj = −ej if (j−)
holds, j = 1, . . . , n. Then (R+−) corresponds to (R) for the scaled mapping F̂ = S ∗F
, where S denotes the nonsingular matrix (s1, . . . , sn)T . Since F has the same zeros
as F̂ , the proof is complete.

If C is an n-dimensional (possibly degenerated) interval vector

[a, b] := {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}, a, b ∈ Rn : aj ≤ bj , j = 1, . . . , n,

then (R+−) often is wrongly interpreted as

(R′)

{
F (x)jF (y)j ≤ 0 ∀ x ∈ C−j , y ∈ C

+
j ,

j = 1, . . . , n.

See e.g. the comments afterTheorem 1 in [10] and afterTheorem 1.3 in [8]. The authors
of these papers claim that (R′) means that the j th component of F has opposite signs
on C−j and C+

j , j = 1, . . . , n. This however must not be the case. If e.g. F (x)j is

identically zero on C−j , then F (y)j can change between ”< 0 ”, ”= 0 ” and ”> 0 ”

on C+
j . Obviously (R+−) implies (R′), however (R+−) usually is not a consequence of

(R′) as the following example shows:

Example 2.1

C = [a, b] ⊂ R2with a = (−1,−1)T , b = (1, 1)T , F (x)1 = x1 + ε,−1 ≤ ε ≤ 1,

F (x)2 = x1(x2 + 1).

((R′) holds since F (x)2 = 0 if x ∈ [a, b]−2 , F (x)1 = −1 + ε ≤ 0 if x ∈ [a, b]−1 , and
F (y)1 = 1 + ε ≥ 0 if y ∈ [a, b]+1 . However (R+−) does not hold since (−1, 1)T and
(1, 1)T are both in [a, b]+2 but F ((−1, 1)T )2 = −2 and F ((1, 1)T )2 = 2.)

Consequently the cited theorems in [10] and [8] are not obvious extensions of Miranda’s
Theorem [9]. Nevertheless they are valid. This will be shown by proving
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Proposition 2.1 Let [a, b] be a (possibly degenerated) n-dimensional interval vector,
and F : [a, b]→ Rn a continuous mapping satisfying the condition

(M ′)

{
F (x)jF (y)j ≤ 0 ∀ x ∈ [a, b]−j , y ∈ [a, b]+j ,

j = 1, . . . , n.

Then there is a z ∈ [a, b] such that F (z) = 0.

Proof: The proof will be given by induction on the number of indices j such that
aj < bj , i.e on the dimension dim[a, b] of [a, b] as a convex subset of Rn. Let us first
note that [a, b]−j = {x ∈ [a, b] : xj = aj} and [a, b]+j = {x ∈ [a, b] : xj = bj} are interval

vectors too. If dim[a, b] = 0 then [a, b]−j = [a, b]+j = {a}, j = 1, . . . , n. Hence, by (M ′)

F (a)2j ≤ 0, j = 1, . . . , n, hence F (a) = 0.
Now assume dim[a, b] = k ∈ {1, . . . , n}, and that Proposition 1 holds whenever [a, b]
is replaced by an interval [c, d] with dim[c, d] < k.
Let J denote the nonempty set of indices j ∈ {1, . . . , n} such that aj < bj .
i ∈ {1, . . . , n}\J holds iff [a, b]−i = [a, b]+i = [a, b].
Hence (M ′) implies F (x)i = 0 ∀ x ∈ [a, b] if i /∈ J .
Case 1: There is an index i ∈ J such that F (x)i = 0 ∀ x ∈ [a, b]−i .
Then for [c, d] := [a, b]−i we have [c, d]−i = [c, d]+i = [c, d] and
∀j ∈ {1, . . . , n}\{i} :
[c, d]−j = [a, b]−i ∩ [a, b]−j ⊆ [a, b]−j , [c, d]+j = [a, b]−i ∩ [a, b]+j ⊆ [a, b]+j . Hence (M ′) holds

also if [a, b] is replaced by [a, b]−i . Since dim[a, b]−i = k− 1 we can conclude that there
is a zero of F in [a, b]−i .
Case 2: There is an index i ∈ J such that F (x)i = 0 ∀ x ∈ [a, b]+i .
Then we can conclude in the same way as in Case 1 that there is a zero of F in [a, b]+i .
Case 3: For every j ∈ J there is an xj ∈ [a, b]−j such that F (xj)j 6= 0, and a yj ∈ [a, b]+j
such that F (yj)j 6= 0. Together with (M ′) this implies

F (xj)jF (yj)j < 0, i.e. sign(F (yj)j) = −sign(F (xj)j) 6= 0 ∀ j ∈ J.

If for j ∈ J F (xj)j < 0 and F (yj)j > 0 then (M ′) implies

F (x)j ≤ 0 ∀ x ∈ [a, b]−j and F (y)j ≥ 0 ∀ y ∈ [a, b]+j .

If for j ∈ J F (xj)j > 0 and F (yj)j < 0 then (M ′) implies

F (x)j ≥ 0 ∀ x ∈ [a, b]−j and F (y)j ≤ 0 ∀ y ∈ [a, b]+j .

For all j ∈ {1, . . . , n}\J we have F (x)j = 0 ∀ x ∈ [a, b].
Hence F satisfies (R+−) for C = [a, b], showing that F has a zero in [a, b].

Proposition 2.1 will be extended from [a, b] to an arbitrary convex compact set C ⊆ Rn

by making use of a special retraction of Rn onto C, which will be introduced now.
Let ‖.‖ denote the euclidean norm on Rn. Then for every x ∈ Rn there is a unique
x̄ ∈ C such that

‖x− x̄‖ = min{‖x− y‖ : y ∈ C}.
The mapping pC : Rn 3 x 7→ x̄ ∈ C is the orthogonal projection of Rn onto C. It is
Lipschitz continuous with Lipschitz constant 1. (See e.g. [7] Proposition (2.2.4)).
In addition for any nonzero e ∈ Rn we consider the (nonempty) subset

Ce := {x ∈ C : x+ te /∈ C ∀ t > 0}
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of C which is compact in case n ≤ 2 but not necessarily if n ≥ 3. If (b1, . . . , bn) is a
basis of Rn then for every x ∈ ∂C there is a j ∈ {1, . . . , n} such that x ∈ Cbj ∪ C−bj .

C−ej = C−j , Cej = C+
j .

Proposition 2.2 Let x ∈ Rn\C and e ∈ Rn\{0} satisfy eT (x̄− x) < 0.
Then x̄ ∈ Ce.

Proof: It is well-known that

(y − x̄)T (x̄− x) ≥ 0 ∀ y ∈ C.

(See e.g. the proof of Theorem 3 in Appendix 1 of [6] ). Hence x̄ + te ∈ C implies
teT (x̄− x) ≥ 0, and eT (x̄− x) < 0 implies t ≤ 0.

Now we can prove

Theorem 2.1 Let C be a nonempty convex compact subset of Rn and F : C → Rn a
continuous mapping satisfying condition (R′).
Then there is a z ∈ C such that F (z) = 0.

Proof: Since C is bounded, there is an L > 0 such that |xi| < L,
i = 1, . . . , n, for all x ∈ C. Let a, b ∈ Rn be defined by ai := −L, bi := L,
i = 1, . . . , n. Then
[a, b]−j = {x ∈ [a, b] : xj = −L}, [a, b]+j = {x ∈ [a, b] : xj = L}, j = 1, . . . , n.

If x ∈ [a, b]−j then x ∈ Rn\C and −eTj (x̄− x) = −x̄j + xj = −x̄j − L < 0.

Hence x̄ ∈ C−ej by Proposition 2.2. Consequently range(pC , [a, b]
−
j ) ⊆ C−ej and

similarly range(pC , [a, b]
+
j ) ⊆ Cej . Now we show that the existence of a zero of F can

be concluded even from the weaker condition

(R′r) F (u)jF (v)j ≤ 0 ∀ u ∈ range(pC , [a, b]−j ), v ∈ range(pC , ([a, b]+j ), j = 1, . . . , n.

In fact (R′r) means that the continuous mapping G := F ◦ pC satisfies (M ′) with F
replaced by G.
Consequently there is an x ∈ [a, b] such that G(x) = 0. Since G(x) = F (x̄), and
z := x̄ ∈ C, Theorem 2.1 is proved.

Remarks 2.1 1. (R′r) is sometimes a much weaker condition than (R′). If e.g. n = 2,
C = {x ∈ R2 : ‖x‖ ≤ 1} and r = 2, then C−1 = {x ∈ R2 : ‖x‖ = 1 and x1 ≤ 0},
whereas pC([a, b]−1 ) = {x ∈ C−1 : x1 ≤ −1/

√
2}. Equivalent relations hold for the other

faces of [a, b].
2. The proof of Theorem 2.1 shows up also an alternative way to prove Rohn’s original
Theorem 1.1
3. The mapping g : I 3 x 7→ pC(Lx) ∈ C, where I denotes the
unit-cube {x = (x1, . . . , xn)T : |xj | ≤ 1, j = 1, . . . , n}, is a Miranda mapping for C in
the sense of J. Mayer ([8] Definition 2.1), i.e. g is continuous, range(g, I) = C and
range(g, ∂I) = ∂C. (For showing range(g, ∂I) = ∂C , note that for all x ∈ ∂C
there is an e ∈ Rn\{0} such that x ∈ Ce and x = pC(x + te) for all t > 0.
(See e.g. the proof of Theorem 4 in Appendix 1 of [6])). Since range(g, I−j ) =

range(pC , [a, b]
−
j ), range(g, I+j ) = range(pC , [a, b]

+
j ), j = 1, . . . , n, the proof of The-

orem 2.1 can be considered also as a special application of Theorem 2.7 in [8] (now
verified by Proposition 2.1) which states that there is a zero of F in C if

F (u)jF (v)j ≤ 0 ∀ u ∈ range(g, I−j ) , v ∈ range(g, I+j ).
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3 The Final Generalization

The aim of the final generalization of Theorem 1.1 is to eliminate the dependence of
Theorem 2.1 on the standard basis of Rn. In fact it can be shown that Theorem 2.1
remains valid if the sets C−j , C

+
j and the components of F are defined with respect to

arbitrary, even different, bases of Rn. As a consequence, the resulting theorem extends
also a generalization of Miranda’s Theorem due to M. Vrahatis ([13], Theorem 2).
The main part of this theorem can be described as follows:

Let (b1, . . . , bn) be a basis of Rn, L > 0,
C := {x ∈ Rn : |bTj x| ≤ L, j = 1, . . . , n}, and F : C → Rn a continuous mapping such
that F (x) 6= 0 for x ∈ ∂C and

(V )


bTj F (x) ≥ 0 if x ∈ C and bTj x = −L,
bTj F (y) ≤ 0 if y ∈ C and bTj y = L,

j = 1, . . . , n.

Then F (x) = 0 has a solution in C0.

As a preparatory step we need

Proposition 3.1 Let B be a real nonsingular (n, n) - matrix, d ∈ Rn,
h : Rn 3 x 7→ Bx + d ∈ Rn, and C̃ a nonempty convex compact subset of Rn. Then
C := range(h, C̃) is also a nonempty convex compact set and range(h, C̃e) = CBe

holds for all e ∈ Rn\{0}.

Proof: It is easily shown that the assumptions range(h, C̃e) 6⊆ CBe

and CBe 6⊆ range(h, C̃e) lead to contradictions.

Now we consider two nonempty subsets C,D of Rn, C convex and compact, and
two bases (b1, . . . , bn), (s1, . . . , sn) of Rn.Then we can prove

Theorem 3.1 Let g : C → D and F : D → Rn be continuous mappings satisfying the
condition

(R′′) (sTj F (u))(sTj F (v)) ≤ 0 ∀ u ∈ range(g, C−bj ), v ∈ range(g, Cbj ), j = 1, . . . , n.

Then there is a z ∈ C such that F (z) = 0.

Proof: We introduce the nonsingular matrix B with columns b1, . . . , bn, the corre-
sponding linear mapping h : Rn 3 x 7→ Bx ∈ Rn and C̃ := B−1C.
Then C̃ is a convex compact subset of Rn such that range(h, C̃) = C and (by Propo-
sition 3.1)

range(h, C̃ej ) = CBej = Cbj , range(h, C̃−ej ) = CB(−ej) = C−bj , j = 1, . . . , n.

Now let F̃ be the continuous mapping C̃ 3 x 7→ S ∗F (g(h(x))) ∈ Rn, where S denotes
the nonsingular scaling matrix (s1, . . . , sn)T . Then F̃ satisfies the conditions

F̃ (x)jF̃ (y)j ≤ 0 ∀ x ∈ C̃−ej , y ∈ C̃ej , j = 1, . . . , n.

Hence by Theorem 2.1 there is a z̃ ∈ C̃ : F̃ (z̃) = 0. Since S is nonsingular, z := g(h(z̃))
is a zero of F .

The announced generalization of Theorem 2 in [13] is given by the
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Corollary 3.1 Let (b1, . . . , bn), (s1, . . . , sn) be bases of Rn, x0 ∈ Rn,
Li ≥ 0, i = 1 . . . , n , C := {x ∈ Rn : |bTi (x− x0)| ≤ Li, i = 1, . . . , n},
F : C → Rn a continuous mapping with the property
(sTj F (x))(sTj F (y)) ≤ 0 if x ∈ C satisfies bTj (x − x0) = −Lj and y ∈ C satisfies
bTj (y − x0) = Lj , j = 1, . . . , n.
Then there is a z ∈ C such that F (z) = 0.

Proof: C is a convex compact subset of Rn with x0 ∈ C.
Let (b∗1, . . . , b

∗
n) denote the dual basis of (b1, . . . , bn),

(i.e. bTi b
∗
j = δij , i, j = 1, . . . , n). Then for all j ∈ {1, . . . , n}

C−b∗j
= {x ∈ C : bTj (x− x0) = −Lj}, Cb∗j

= {x ∈ C : bTj (x− x0) = Lj} holds. Hence

the conditions of Theorem 3.1 are satisfied with bj replaced by b∗j , j = 1, . . . , n, D = C
and g = id|C.

The following simple example illustrates that there are situations where the corol-
lary is applicable but the considered theorems of Rohn and Vrahatis are not.

Example 3.1 C := {x ∈ R2 : |bTi x| ≤ 4, i = 1, 2}, where bT1 := (−1, 2),
bT2 := (3, 1). F (x)1 := bT1 x− 3 , F (x)2 := bT2 x+ 2 ∀ x ∈ C.

( C is the convex hull of the points
p1 = (12,−8)T /7, p2 = (4, 16)T /7, p3 = −p1, p4 = −p2.
F (p1) = (−7, 6)T , F (p2) = (1, 6)T , F (p3) = (1,−2)T , F (p4) = (−7,−2)T .
C−1 is the union of the segments < p2, p3 > and < p3, p4 >.
F (p3)1 = 1, F (p4)1 = −7, hence (R) is not satisfied.
F has no zero on the boundary of C.
{x ∈ C : bT2 x = −4} is the segment < p3, p4 >.
bT2 F (p3) = 1, bT2 F (p4) = −23. Hence (V ) is not satisfied.
{x ∈ C : bT1 x = −4} =< p4, p1 >, {y ∈ C : bT1 y = 4} =< p2.p3 >.
{x ∈ C : bT2 x = −4} =< p3, p4 >, {y ∈ C : bT2 y = 4} =< p1, p2 >.
F (x)1F (y)1 = −7 if x ∈< p4, p1 >, y ∈< p2, p3 >,
F (x)2F (y)2 = −12 if x ∈< p3, p4 >, y ∈< p1, p2 >.
Hence the conditions of Corollary 3.1 hold with x0 = 0
and (s1, s2) = (e1, e2)).

Remarks 3.1 concerning the choice of C and g :
In practical examples one usually wants to test whether there is a zero of F in a given
(closed) norm ball D′ ⊆ D. Say D′ is defined with respect to the norm p, has radius
r′ and center x0. Then C should be chosen also as a norm ball, say with respect to
the norm q, with the same center as D′ and such that D′ ⊆ int(C). Further g should
be chosen such that range(g, C) = D′, range(g, ∂C) = ∂D′ and range(g, C−b) =
range(r ◦ g, Cb)) for all b ∈ Rn\{0}, where r denotes the reflection on x0 defined by
r(x) = 2x0−x ∀ x ∈ Rn. A well-known mapping with these properties is the retraction
of Rn onto D′ given by

g(x) =

{
x if x ∈ D′,
x0 + r′ x−x0

p(x−x0)
if x ∈ C\D′.

However also g = pD′ |C can be used. Note that both mappings are continuous and that
r ◦ g = g ◦ r|C holds.
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Let us consider an example which was treated by J. Mayer in [8] by a test based on
his Theorem 2.7 (which results from Theorem 3.1 if C = I, the standard unit cube in
Rn, bj = sj = ej , j = 1 . . . n, and g a Miranda mapping from I onto D′).

Example 3.2 D′ = {x ∈ R2 : ||x− (1/2, 1/2)T || ≤ 1/2}
(||.|| denoting the euclidean norm on R2).
F is defined for x = (x1, x2)T ∈ R2 = D by
F (x) = ((x21 + x22)2 − 2x1, (x1 − 1)2 + (x2 − 1)2 − 1)T .
Applying Theorem 3.1 with C = {x ∈ R2 : |x1 − 1/2| + |x2 − 1/2| ≤ 1}, g = pD′ |C,
and b1 = (−1, 1)T , b2 = −(1, 1)T , s1 = (1, 0)T , s2 = (0, 1)T , we get
range(g, Cb1) = {x ∈ ∂D′ : x1 ≤ 1/2, x2 ≥ 1/2},
range(g, C−b1) = {x ∈ ∂D′ : x1 ≥ 1/2, x2 ≤ 1/2} = range(r ◦ g, Cb1),
range(gCb2) = {x ∈ ∂D′ : x1 ≤ 1/2, x2 ≤ 1/2},
range(g, C−b2) = {x ∈ ∂D′ : x1 ≥ 1/2, x2 ≥ 1/2} = range(r ◦ g, Cb2).
(These sets constitute the Miranda partition used by J. Mayer).
Since ∂D′ = {(1 + cos(ϕ), 1 + sin(ϕ))T /2 : −π < ϕ ≤ π} it is easily shown :
sT1 F (x) ≥ 1/16 if x ∈ range(g, Cb1),
sT1 F (y) ≤ −7/16 if y ∈ range(g, C−b1),
sT2 F (x) ≥ 1/4 if x ∈ range(g, Cb2),
sT2 F (y) ≤ −3/4 if y ∈ range(g, C−b2).
Hence Theorem 3.1 applies

4 Computational Aspects

In verification methods based on Miranda’s Theorem or one of its extensions, it is
necessary to test inequalities of type ” ≤ ” (or ” ≥ ”). Since however in most cases
of real computations rounding errors must be included, ” ≤ ” (” ≥ ”) can be verified
usually only if strict inequalities hold.
Let us assume therefore that (R′′) holds with ” ≤ ” replaced by ” < ” and in addition
that the conditions described in the last remark are satisfied.
Then we have especially

(R<) (sTj F (r(x)))(sTj F (x)) < 0 ∀ x ∈ range(g, Cbj ), j = 1, . . . , n.

But this implies the scaling invariant property

(B) F (x) 6= 0 and F (r(x)) 6= λF (x) ∀ x ∈ ∂D′ and λ > 0,

as can be shown as follows: For any x ∈ ∂D′ there is a j ∈ {1, . . . , n} such that
x ∈ range(g, Cbj ) or x ∈ range(g, C−bj ) = range(r ◦ g, Cbj ). In any case we have
F (x) 6= 0. Assume F (r(x)) = λF (x). Then in case x ∈ range(g, Cbj ) we have

0 > (cTj F (r(x)))(cTj F (x)) = λ(cTj F (x))2, hence λ < 0. Similarly this follows also in
case x ∈ range(r ◦ g, Cbj ) i.e. r(x) ∈ range(g, Cbj ).
By a corollary of a well-known theorem of Borsuk published in [2], see e.g. [3] Corollary
4.1, (B) is a sufficient condition for the existence of a zero of F in int(D′). In [1]
(B) was compared with the conditions of an affine invariant version of the existence
theorem of Kantorovich [4] and an extended Miranda theorem. In [5] (B) was used as
a basis for checking the equivalent condition

(B′) F (x) 6= 0 and
F (r(x))TF (x)

||F (r(x))||||F (x)|| < 1 ∀ x ∈ ∂D′
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for verifying the existence of zeros of continuous mappings from interval vectors in Rn

to Rn by interval arithmetic methods. (B′) can be checked however also very flexible
by interval arithmetic methods if D′ is not an interval vector. Let us test (B′) e.g. in
Example 3.2 : For every j = 1, . . . , 200 let Jj denote an outward rounded version of
the interval [(j − 1)π/200, jπ/200].
Then with x(ϕ) := (1 + cos(ϕ), 1 + sin(ϕ))T /2 , ϕ ∈ ]− π, π], we have
r(x(ϕ)) = (1−cos(ϕ), 1−sin(ϕ))T /2 and by a simple verifying program using INTLAB
[12] we get F (x(ϕ)) 6= 0 and

F (r(x(ϕ)))TF (x(ϕ))

||F (r(x(ϕ)))||||F (x(ϕ))|| < −0.494 ∀ ϕ ∈ Jj , j = 1, . . . , 200.
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