
Componentwise Determination of the Interval

Hull Solution for Linear Interval Parameter

Systems∗

L. V. Kolev
Dept. of Theoretical Electrotechnics, Faculty of Auto-
matics, Technical University of Sofia, 1000 Sofia, Bul-
garia

lkolev@tu-sofia.bg

Abstract

In this paper, the problem of determining the interval hull (IH) solution
x∗ to a linear interval parameter system A(p)x = b(p), p ∈ p is revisited.
A new iterative method for computing x∗ is suggested, which is based on
individually finding each interval component x∗k of x∗. Each component
x∗k = [x∗k, x

∗
k] is in turn found by separately determining the lower end-

point x∗k and upper end-point x∗k of x∗k, respectively. The lower end-point
x∗k is located by an iterative method which, at each iteration, makes use
of a respective outer solution x and an upper bound xuk on x∗k. The
upper end-point x∗k is located in a similar manner using relevant outer
solutions x∗ and lower bounds x lk on x∗k. In both cases, appropriate
modified monotonicity conditions are checked and used. Such an approach
results in better performance compared to similar methods employing
standard monotonicity conditions. The method is capable of determining
the solution x∗ if the modified monotonicity conditions are satisfied for all
components of p; otherwise, it only provides a two-sided enclosure [xk, x

u
k ]

([xlk, xk]) of x∗k(x∗k). The method is extended to a more general setting
where the problem is to determine the IH y∗ of an output variable vector
y which depends on x and p, p ∈ p. A numerical example illustrating the
new method is also given.

Keywords: linear interval parameter systems, interval hull solution, modified mono-
tonicity conditions
AMS subject classifications: 65L15,65G40

1 Introduction

Let p = (p1, ..., pm) be a real m-dimensional vector belonging to a given interval vector
p = (p1, ...,pm). Also, let A(p) and b(p) be, respectively, a real rectangular (n1 × n2)

∗Submitted: January 22, 2013; Final revision: February 26, 2014; Accepted: March 4,
2014

1

lkolev@tu-sofia.bg


2 L. V. Kolev, Componentwise Determination of the Interval Hull

matrix and an n1-dimensional vector whose elements depend on p. As is well known, a
(real) linear interval parameter (LIP) system is defined as the family of linear algebraic
systems

A(p)x = b(p) (1.1a)

aij(p) = aij(p1, ..., pm), bi(p) = bi(p1, ..., pm) (1.1b)

where aij(p) = aij(p1, ..., pm) and bi(p) = bi(p+1, ..., pm) are given functions from Rm

to R and
pµ ∈ pµ, µ = 1, ...,m. (1.1c)

Systems of this type are encountered in many practical applications (e.g., [3, 5, 11, 13,
16, 18].

The united solution set of (1.1) is the collection of all point solutions of (1.1a),
(1.1b) over p, i.e. the set

∑
(a(p), b(p),p) = {x : A(p)x = b(p), p ∈ p}.

This set has a rather complex form [1] even in the simplest case of affine (linear)
functions

aij(p) = αij +

m∑
µ=1

aij µpµ, (1.2a)

bi(p) = βi +

m∑
µ=1

βiµpµ, (1.2b)

(systems characterised by the linear parametric dependence (1.2) will be referred to as
LPD systems) and n1 = n2. Therefore (under the assumption that

∑
(A(p), b(p),p)

is a bounded set), the following “interval solutions” to (1.1) will be considered in this
paper:

(i) interval hull (IH) solution x∗: the smallest interval vector containing∑
(A(p), b(p),p);

(ii) outer interval (OI) solution x : any interval vector enclosing x∗, i.e. x∗ ⊆ x ;

(iii) inner estimation of the hull (IEH) solution ζ: an interval vector such that ζ ⊆ x∗.

Most of the known results are obtained for the case of determining OI solutions
of square LIP systems (n1 = n2). Various iterative [2, 8, 10, 12, 14] ([2] being a
special case of [14]) and direct [4, 24] methods for determining OI solutions associated
with LPD systems have been suggested. Two different methods for treating nonlinear
parametric dependency problems have been proposed in [7] and [14], respectively. The
general case of n1 6= n2 has also been considered for the case of interval and parametric
matrices (e.g., [15]). Methods for obtaining IEH solutions have been proposed in
[5, 10, 25]. The latter solutions are also computed as a byproduct by the method of
[14].

Determining the IH solution x∗ of an LIP system is an NP-hard problem even in the
case of LPD systems. Thus, the solution x∗ can be obtained with reasonable amount
of computations only if certain restrictive requirements are additionally imposed. Such
an approach for determining x∗ has been adopted by many authors (e.g., [5, 7, 17,
18, 21, 26]) where certain monotonicity conditions are to be fulfilled. In the earlier
publications on the topic, the monotonicity conditions are defined over the whole
initial domain p of the interval parameters. The idea to check monotonicity conditions
valid for certain nested subdomains of p has been suggested, seemingly for the first
time, in [5] (see also [6] and [7]). Independently of [5], the same idea was proposed
slightly later in [17] but was implemented in a better way (accounting to a fuller
extent for the interdependencies between all uncertain parameters involved, verified



Reliable Computing 20, 2014 3

evaluation of the partial derivatives used). The methods in [5, 7, 17] are iterative
which permits to reduce the monotonicity requirements successively at each iteration.
A global optimization method has been used in [27, 28] for approximating or computing
x∗, respectively.

In the present paper, a new iterative method for determining x∗ is suggested,
which is an improvement over the methods of [5] and [17]. The idea behind the new
method is to determine x∗ in a componentwise manner, computing separately the
lower end-point x∗k and upper end-point x∗k of each component x∗k. In computing x∗k,
use is made of both the outer interval approximation and the kth component ζk of the
approximation ζ with respect to x∗k at each iteration of the iterative process. Thus,
appropriate modified monotonicity conditions are introduced which are less restrictive
compared to the standard monotonicity conditions previously used. Therefore, the
fulfillment of the modified monotonicity conditions speeds up the location of x∗k. The
same approach is used for computing x∗k. The method is capable of determining the
solution x∗ if the modified monotonicity conditions are satisfied for all components of
p; otherwise, it only provides a two-sided enclosure of x∗k (x∗k). It is also shown that
the new method can be extended to the more general problem of determining the IH
y∗ of an outcome variable vector y depending on both x and p, p ∈ p. In a less
general form (treating a specific problem arising in mechanical engineering), a method
for computing y∗, based on the standard monotonicity approach, has already been
considered in [13]; in the framework of an interval finite element formulation, methods
for bounding y∗ can be found in [19] and [20].

The paper is organized as follows. The formulation of the problems considered and
the basic approach to solving them are given in Section 2. The main results obtained
are reported in the next section. In Section 4, several algorithms implementing the
results from the previous section are presented. The new method is illustrated by
way of a numerical example in Section 5. The paper ends up with several concluding
remarks.

2 Problem Formulation and Basic Approach

We shall distinguish between two forms of the IH solution problem: standard form and
generalized form. The standard IH solution (SIHS) problem is formulated as follows:
given the pair {A(p), b(p)} and the interval vector p, find the IH solution x∗ to (1.1).

The LIP system (1.1a) to (1.1c) defines implicitly a non-linear mapping N : p ∈
Rm → Rn1 . Thus, the united solution set

∑
(A(p), b(p),p) can be viewed as the image

N(p) of p under the mapping N. Let �(Σ) denote the interval hull of
∑

(A(p), b(p),p).
Thus, the IH solution x∗ can be defined as follows

x∗ = �(N(p)). (2.1)

To introduce the generalized IH solution (GIHS) problem, we need to define an addi-
tional mapping

y = f(x, p) (2.2)

where f : N(p) × p ∈ Rn2+m → Rn
′
, 1 ≤ n′ ≤ n2. It specifies the transformation

of the “state” variable vector x and the “input” parameter vector p into an “output”
variable vector y. Let

∑
(A(p), b(p), f,p) denote the united solution set of (1.1) and

(2.2). Thus

y∗ = �(Σ(A(p), b(p), f,p). (2.3)



4 L. V. Kolev, Componentwise Determination of the Interval Hull

The generalized IH solution (GIHS) problem is formulated as follows: given the triple
{A(p), b(p), f} and the interval vector p, find the corresponding IH solution y∗.

On account of (1.1) and (2.2), the GIHS problem can be viewed as that of deter-
mining the interval hull of the image of p under the composition fN.

A specific GIHS problem related to a given pair {A(p), b(p)} is actually defined by
specifying the function f(x, p) in (2.2). In its most general form, the GIHS setting en-
compasses a large class of various problems depending on the type of f used. If f(x, p)
is a nonlinear function, determining each end-point y∗

k
or y∗k of the kth component

y∗k = [y∗
k
, y∗k] of y∗ is a perturbed global optimization problem with linear equality

constraints. If f(x, p) is linear in x, then the corresponding problem is a parametric
linear programming problem. In many practical applications (e.g., [3, problems 3.9,
3.10], f is a scalar nonlinear function f(x) (n′ = 1) independent of p. An illustrative
example is the case of determining the magnitude v of a single complex variable Vk
involved in a (n× n) complex-valued LIP system [3]

GV = J. (2.4)

The latter system can be rewritten equivalently as a (2n× 2n) real-valued LIP system
by introducing a 2n-dimensional real state vector x. In x, the first n components
correspond to the respective real parts of Vj while the next n components correspond
to the respective imaginary parts of Vj . Thus, for this example

y = x2k + x2k+n. (2.5)

If f is independent of p and

f = E (2.6)

(E is the identity matrix), then the GIHS problem reduces to the SIHS problem. If we
are interested in finding the range of a single component xk of x, then (2.2) becomes

yk = eTk x (2.7)

(eTk is the transposed kth column of E).

In this section, the basis of a method for determining the IH solution x∗ in the
simpler case of the SIHS problem defined by (1.1), (2.6) will be presented. It is based
on a componentwise approach: compute x∗k n2 times for k = 1, ..., n2. Also, for a fixed
k:

(i) first, the lower end-point x∗k of the kth component x∗k = [x∗k, x
∗
k] of x∗ is located;

(ii) next, the upper end-point x∗k of the kth component x∗k of x∗ is found.

Determination of x∗
k

On account of (2.7), the value of x∗k will be determined as the solution of the following
global optimization problem

x∗k = min eTk x (2.8a)

subject to the constraint

A(p)x = b(p), p ∈ p. (2.8b)

An iterative method for solving (2.8) will be suggested in the next section. It is based

on the use of an interval enclosure d
(k)
l for the derivative ∂xk/∂pl of xk with respect



Reliable Computing 20, 2014 5

to pl, l = 1, ...,m for a given p (related to a current iteration). To obtain d
(l)
k , we first

differentiate (2.8b) in pl to get

n∑
j=1

aij(p)
∂xj
∂pl

=
∂bi(p)

∂pl
−

n∑
j=1

aij(p)
∂aij(p)

∂pl
xj , i = 1, ...n2, (2.9a)

p ∈ p. (2.9b)

System (2.9) is rewritten as

A(p)dl = γl(p)− ηl(p)x(p), p ∈ p (2.10)

where γl(p) is a column vector and ηl(p) is a matrix. Let d l denote an outer solution

to (2.10). Obviously, the enclosure d
(k)
l sought is the k-th component of d l. If

0 /∈ d
(k)
l , (2.11)

we can reduce the interval pl to a point pl. Indeed, on account of (2.9) and (2.10)

∂xk
∂pl

(p) ∈ d
(k)
l , p ∈ p. (2.12)

Hence, (2.11) guarantees that xk is monotone in p with respect to pl. Therefore,

pl =

{
p
l
, if d

(k)
l ≥ 0

p
l
, if d

(k)
l ≤ 0.

(2.13)

Such an approach has already been used in [5], [17] and [26] for square matrices.

The interval d
(k)
l could be computed by applying the approach of [5] and [17]. It

consists of ignoring the dependence of x on p in (2.10) and treating x as an independent
variable q beloning to x . Thus, (2.10) becomes

A(p)dl = γ(p)− η(p)q, p ∈ p, q ∈ x (2.14)

where x is an OI solution to (2.8b). It should be stressed that this approach is based
uniquely on p and the outer solution x to (2.8b).

A better approach to assessing d l applicable both in the context of the SIHS and
GIHS problem will be suggested in the next section. It resorts to also employing the
k-th component ζk of the inner estimation ζ related to (2.8b).

Remark 2.1 Seemingly the best approach (not considered so far) to exploiting the
dependence of both dl and x on p in (2.10) is to find an outer solution to the following
LIP system of size (2n1 × 2n2):

A(p)x = b(p), (2.15a)

A(p)dl = γl(p)− ηl(p)x, (2.15b)

p ∈ p. (2.15c)

This opportunity will not be considered in this paper.
In the sequel, we shall compare various interval vectors with respect to their widths.

The width w(p) of an interval vector p is a real vector whose components wi(p) are
defined as the width of the ith component pi of p, i.e. wi(p) = pi − pi. An interval

vector p will be called narrower than another interval vector p ′ if wk(p) < wk(p ′) for
at least one index k. The vector p will be referred to as strictly narrower than the
vector p ′ if all components wi(p) are narrower than the respective components wi(p

′).



6 L. V. Kolev, Componentwise Determination of the Interval Hull

3 Main Results

3.1 The SIHS Problem: Lower End-point of the Range

The new approach is based on the simultaneous use of both the outer solution x to
(2.8b) and an upper bound xuk on the lower end-point x∗k. The bound xuk is given by
the lower end-point ζ

k
of the k-th component ζk = [ζ

k
, ζk] of the IEH solution ζ to

(2.8b) or by a specialized method (e.g., [5]). Since x′′k is an upper bound on x∗k and
xk is a lower bound on x∗k

xk ≤ x
∗
k ≤ x

u
k . (3.1)

Thus,

x∗k ∈ x̃k (3.2a)

where

x̃k = [xk, x
u
k ]. (3.2b)

Now we introduce a modified outer solution vector x̃ with components

x̃ i =

{
x i, if i 6= k
x̃ i, if i = k.

(3.2c)

The new approach consists of replacing (2.14) with the following system:

A(p)dl = γl(p)− ηl(p)q, p ∈ p, (3.3a)

q ∈ x̃ . (3.3b)

Since

x̃k ⊂ xk, (3.4a)

x̃ ⊆ x . (3.4b)

Thus, the use of x̃ instead of x in (3.3b) imposes a constraint on (3.3a). Exploiting
this restriction via some constraint satisfaction technique (e.g., the second stage of
the forward and backward sweep method) will lead to a narrower x ′ and, hence, to a
narrower parameter interval vector p ′. Accordingly, we have to consider the following
modified LIP system

A(p)dl = γl(p)− ηl(p)q, (3.5a)

p ∈ p ′, q ∈ x ′, (3.5b)

Now we can formulate the following result.

Lemma 3.1 If

p′ ⊂ p, x′ ⊂ x, (3.6a)

then

d̃l(p
′, x′) ⊂ dl(p, x). (3.6b)

Otherwise, if

p′ ⊆ p, x′ ⊆ x, (3.7a)

then

d̃l(p
′, x′) ⊆ dl(p, x). (3.7b)



Reliable Computing 20, 2014 7

Proof. The assertions of the lemma follow directly from the premises (3.6a), (3.7a)
and the inclusion isotonicity property of the interval operations needed to compute
d̃ l(p

′, x ′) and d l(p, x ), respectively.

It is seen from Lemma 2.1 that the outer interval solution d̃ l(p
′,x′) of (3.5) is

never wider and may be narrower than the outer interval solution d l(p, x ) of (2.14).

Moreover, the former vector d̃ l(p
′, x ′) is proved to be strictly narrower than the latter

one d l(p, x ) if (3.6a) holds.
As is well known, condition (2.11) guarantees that the function xk(p) is monotone

within p with respect to the l-th component pl of p. It has been used in [5] and
[17] at each iteration ν of the respective iterative method for different interval vectors

p = p(ν) associated with the ν-th current iteration. To express the dependence of d
(k)
l

on p(ν), (2.11) will be written in the form

0 /∈ d
(k)
l (p(ν), x (pν). (3.8)

In [17], the requirements (3.8) have been called a global monotonicity condition for
ν = 1 (first iteration) and local monotonicity condition for ν > 1 (since p(1) is the
whole initial parameter domain while each subsequent p(2), p(3), etc. is a smaller and
smaller subdomain of p(1)). In a similar way, the satisfaction of the requirement

0 /∈ d̃
(k)

l (p ′ (ν), x(p ′ (ν))) (3.9)

is a sufficient condition for xk to be monotone within p′ with respect to pl. On account
of (3.6a) and (3.7a), the latter type of monotonocity condition (3.9) will be referred
to as a modified monotonocity condition (compared to (3.8)).

As is well known, the united solution set Σ(A(p), b(p),p) has a very complex form
so, in the general case, it can touch its interval hull x∗ at arbitrary points located on
the 2n2 faces of x∗. Therefore, each x∗k (and, in a similar manner, each x∗k) is the image
of a corresponding point p(s) lying on a certain face of p. In a special case, however,
p(s) may be a vertex p(ν) of p (a vertex of p is a specific combination of end-points of
pj , j = 1, ...,m). This property will be referred to as the vertex property with respect
to x∗k (or x∗k). If x∗k does not possess the vertex property, the corresponding vector

p(s) (providing x∗k) will have at least one component p
(s)
i such that

p
(s)
i ∈ int(pi) (3.10)

(int stands for interior). One of the advantages of the present approach is that it
is capable of establishing that the solution x∗k sought does not possess the vertex
property.

Lemma 3.2 Let p′ (ν) be the interval vector resulting from the application of a con-
straint technique at the ν-th iteration. If for at least one iteration ν and one index
i

p′ (ν) ∈ int(pi), (3.11)

then the solution x∗k is not reached on a vertex.

Proof. It follows from the fact that (3.11) entails (3.10).

Remark 3.1 In the present paper, it is assumed that condition (3.11) does not occur
for all indices i and all iterations ν. Thus, the present approach will be developed
only for that case where the vertex property is valid. The general case of non-vertex
solutions will be considered in a separate publication.



8 L. V. Kolev, Componentwise Determination of the Interval Hull

At this point, we need the following procedure designed to detect (if possible) a
component pl such that xk is monotone along that component within p ′ (in the case
of locating the lower end-point x∗k). To simplify the presentation, the arguments in

d
(k)
l and d̃

(k)

l will henceforth be omitted.

Procedure Pl. Given k, the functions aij(p), bi(p) and the initial parameter vector
p(0), set l = 1, p = p(0) and carry out the following sequence of steps.

Step 1. Compute an outer solution x to (2.8b) using an appropriate method (account-
ing for the specific structure of the functions aij(p) and bi(p)).

Step 2. Compute an upper bound xuk , using an appropriate method (accounting for
the specific structure of the functions aij(p) and bi(p).

Step 3. Form by (3.2) the reduced-width interval x̃ .

Step 3′. Apply a constraint satisfaction technique (e.g., the second stage of the forward
and backward sweep method) to (3.5a) to get the modified interval vectors x ′

and p ′.

Step 4. Form the LIP system (3.5) and find an outer solution d̃ l whose k-th component

is d̃
(k)

l .

Step 5. Check the monotonicity condition (3.9). If (3.9) is fulfilled, go to Outcome
O2. Otherwise, go back to Step 4 with l = l + 1 if l ≤ m; else proceed to the
next line.

Outcome O1: the procedure has not detected the modified monotonicity property for
xk along any pl.

Outcome O2: a variable pl has been detected along which xk is guaranteed to be
locally monotone.

Remark 3.2 To facilitate the readability of Procedure Pl it has been tacitly assumed
that the method used in Step 1 and Step 4 is capable of determining the outer solution
x or d̃l, respectively. If this is not the case, the procedure will terminate with outcome
O1.

We now present the basic algorithm for locating the lower end-point x∗k. It is
iterative and consists of repeatedly calling Procedure Pl at most m times.

Algorithm Al. Let ν denote the number of the current iteration of the algorithm;
let m0 be the length of the initial vector p(0). Set ν = 0, p = p(0) and m = m0.

Step 1. Let ν = ν + 1. Call procedure Pl. If the outcome is O1, go to Termination

T1. If the outcome is O2, a derivative interval d̃
(k)

l that does not contain zero
has been found. Thus, the corresponding parameter pl can be reduced to a real
number p∗l using the formula

p∗l =

{
p
l
, if d̃

(k)

l ≥ 0

pl, if d̃
(k)

l ≤ 0.
(3.12)

Step 2. Form a new interval vector p ′ with components

p ′i =

{
pi, if i 6= l
p∗l , if i = l.

(3.13a)



Reliable Computing 20, 2014 9

Rewrite p ′ in the partitioned form

p ′ = (p∗l ,p) (3.13b)

where p of length m′ = m − 1 regroups the non-degenerate components of p ′.
If m′ = 0, go to Termination T2; otherwise let m = m′ and proceed to the next
step.

Step 3. Substitute (3.13) into (1.1b), (1.1c) to get the modified functions a′ij(p) and
b′i(p). Rename a′ij(p) and b′i(p) as aij(p) and bi(p) and go back to Step 1.

Termination T1: only a two-sided bound [xk, x
u
k ] on the lower end-point x∗k has been

found.

Termination T2: the algorithm has succeeded in determining a real vector p∗ whose
components are given by (3.12) such that its image provides the lower end-point
x∗k.

Remark 3.3 As is easily seen, ν ≤ m if the algorithm terminates in T1 or ν = m if
it terminates in T2.

On account of Algorithm Al, we have the following result.

Theorem 3.1 For given {A(p), b(p)} , p(0) and k, assume that algorithm Al ter-
minates in T2 with p∗ whose components are defined by (3.12). Then the following
assertions are valid:

(i) the global solution x∗k of problem (2.8) is reached at a vertex pν for m iterations
of Al;

(ii) the vertex pν sought is defined by p∗ in (3.12) and is unique;

(iii) the numerical complexity of Algorithm Al is polynomial in n1, n2, and m.

Proof. (i). As Procedure Pl terminates in outcome O2 for each iteration ν of Algo-
rithm Al, the assertions are proved by induction. Thus, we first set ν = 1. Let x∗

denote the real vector associated with the parameter solution vector ps to the min-
imization problem (2.8). On account of (3.1), (3.2) and the fact that x is an outer
solution of (2.8b), it follows that x∗k ∈ x̃k, x∗i ∈ x̃ i so x∗ ∈ x̃ ; also ps ∈ p. Since any
constraint satisfaction technique deletes only such parts of the initial x and p that do
not contain x∗ and ps, we have x∗ ∈ x ′, ps ∈ p ′. Hence, (3.9) is a sufficient condition
for xk to be monotone within p ′ with respect to pl. Therefore, the l-th component psl
of the solution ps is given by (3.12).

The same argument is valid for all ν > 1. Thus, it has been shown that psl is
given by (3.12) for each l. Hence, the global solution of (2.8) is actually attained at
a particular combination of end-points p

i
and pi, i.e. at the vertex p(ν), which proves

the validity of assertion (i).
(ii). The validity of assertion (ii) is a corollary of assertion (i) since each psl is

determined in a unique manner by (3.12).
(iii). Since Algorithm Al terminates in exit T2 , procedure Pl is called m times.

For each ν, the outer solution x , the upper solution xuk , the reduced-width vectors
x ′, p ′ and the outer solution d̃ l can be computed by a polynomial time algorithm.
The respective number of computations is estimated by P1(n1, n2,m), P2(n1, n2,m),
P3(n1, n2,m), and P4(n1, n2,m), where each Pi(n1, n2,m), is a polynomial expression
in n1, n2 and m (whose actual form depends on the specific method used). Thus, the
numerical complexity of the present algorithm is P (n1, n2,m) = m

∑4
i=1 Pi(n1, n2,m),

which completes the proof of the theorem.



10 L. V. Kolev, Componentwise Determination of the Interval Hull

3.2 The SIHS Problem: Upper End-point of the Range

The upper end-point x∗k is determined in, essentially, the same manner as the lower
end-point x∗k. We list here the main distinctions. The global minimization problem
(2.8a) is now replaced with the global maximization problem

x∗k = max eTk x (3.14a)

subject to the constraint
A(p)x = b(p), p ∈ p. (3.14b)

The solution x∗k is found using an iterative algorithm referred to as Algorithm Au.
Its structure is similar to that of Al. At each iteration, however, use is now made of
an outer solution x and a lower bound xlk ≤ x∗k. The lower bound xlk is given by a
local optimization technique or the upper end ζk of the k-th component ζk = [ζ

k
, ζk]

of the IEH solution ζ to (3.14b). Thus, the interval

x̃k = [xlk, xk] (3.15)

is used to obtain the modified interval vector x̃ with components given in (3.4). Algo-
rithm Au employs the procedure Pu where the main difference is that formula (3.12)
now becomes

p∗l =

{
pl, if d

′ (k)
l ≥ 0

p
l
, if d

′ (k)
l ≤ 0.

(3.16)

Obviously, Theorem 1 remains valid for the case of problem (3.14) if it is reformulated
substituting algorithm Au for algorithm Al.

3.3 The GIHS Problem

The extension of the present approach to the GIHS problem (1.1), (2.2) is straightfor-
ward. This will be shown for the case of the lower end-point y∗

k
of the k-th range yk.

Indeed, the value of y∗
k

is found as the global solution of the following minimization
problem

y∗
k

= min eTk y (3.17a)

subject to the constraint
A(p)x = b(p), p ∈ p, (3.17b)

y = f(x, p). (3.17c)

The only difference is that now we need the derivatives of yk with respect to pl. From
(3.17c)

∂yk
∂pl

(p) =
∂fk
∂pl

(x, p) +

n∑
j=1

∂fk
∂xj

(x, p)
∂xj
∂pl

(x, p). (3.18)

Let

D
(k)
l = γkl +

n∑
j=1

ηkj d̃
(j)

l (3.19)

where d̃
(j)

i are computed as in Step 4 of Procedure Pl of the SIHS problem while γkl
and ηkl are the interval extension of the corresponding terms in (3.18). For instance,

γkj =
∂fk
∂xj

(x ,p) (3.20)



Reliable Computing 20, 2014 11

where x is an outer solution to (3.17b). A better but more expensive way to compute
γkl is to determine the hull solution x∗ to (3.17b) and use it in (3.20) instead of x .
We shall illustrate this by way of example (2.5). In that case

∂y

∂pl
(p) =

∂fk
∂pl

(x, p) +

n∑
j=1

∂fk
∂xj

(x, p)
∂xj
∂pl

(x, p) (3.21a)

so
D l = 2xkd̃

(k)

l + 2xk+nd̃
(k+n)

l (3.21b)

or
D l = 2x∗kd̃

(k)

l + 2x∗k+nd̃
(k+n)

l . (3.21c)

Obviously
∂yk
∂pl

(p) ∈ D
(k)
l , p ∈ p (3.22)

so the global or local monotonicity condition for yk to be monotone with respect to pl
is the requirement

0 /∈ D
(k)
l = [d

(k)
l , d

(k)
l ]. (3.23)

As in the SIHS case, it is expedient to introduce and use the corresponding modified

monotonicity condition. Therefore, we need an upper bound dukl on ∂yk

∂pl
(p), p ∈ p

which can be found applying some local minimization method (e.g., the simple al-
gorithm in [5]) to the right-hand side of (3.21a). Thus, the modified monotonicity
condition for yk with respect to pl is

0 /∈ D̃
(k)

l = [D
(k)
l , dukl]. (3.24)

For simplicity (as in the case of SIHS problem), the short notations Dk
l and D̃

k

l (where
the respective arguments p(ν), x (pν) or p ′ (ν), x (p ′ ν) have been omitted) are used. If
(3.24) is satisfied for some l, the respective interval parameter pl can be reduced to a
point p∗l using the formula

p∗l =

{
p
l
, if D̃

(k)

l ≥ 0

p
l
, if D̃

(k)

l ≤ 0.
(3.25)

The solution y∗k sought can be found using the same computational scheme as in the
SIHS case. Thus, as soon as an index l is detected such that the interval component
pl has been reduced to a point p∗l , a new iteration is initiated with a reduced-width
vector p ′ = (p∗l ,p).

There are, however, several minor modifications to be introduced in Procedure Pl
and Algorithm Al. For instance, the constraint satisfaction technique is now applied
to the equality

D̃
(k)

l = γkj +

n∑
j=1

ηkld̃
(j)

l . (3.26)

Let these modified versions be denoted by Procedure Pl.g and Algorithm Al.g. We
have the following result.

Theorem 3.2 For given {A(p), b(p), f}, p(0) and k, assume that Algorithm Al.g ter-
minates in T2 with p∗ whose components are defined by (3.25). Then the following
assertions are valid:



12 L. V. Kolev, Componentwise Determination of the Interval Hull

(i) the global solution y∗
k

of problem (3.17) is attained at a vertex p(ν) for m itera-
tions of Al.g;

(ii) the vertex p(ν) sought is defined by p∗ and is unique;

(iii) the numerical complexity of Algorithm Al.g is polynomial in n1, n2 and m.

The proof of this theorem is similar to that of Theorem 3.1.

4 Numerical Aspects

4.1 Efficiency of an Interval Method

Let P (p) denote an interval analysis problem defined for a given interval vector p.
Also, let M(P (p)) denote an interval method capable of solving P (p). Such a method
will be referred to as a method applicable to problem P for p. To assess the degree
of applicability of M(P (p)) for intervals p of various widths, we first introduce a
one-parameter family of intervals p(ρ), (ρ ∈ R) as follows: any two ρ1, ρ2 and the
corresponding p(ρ1), p(ρ2) satisfy the relationship

ρ1 < ρ2 ⇐⇒ p(ρ1) ⊂ p(ρ2) (4.1)

where the inclusion is proper. The simplest (but not unique) way to construct p(ρ) is
to use a centre p0 enclosed by a symmetric box of variable width, i.e.

p(ρ) = p0 + ρ[−r0, r0], (4.2a)

p(1) = p0 + [−r0, r0] = ps, (4.2b)

where ps is a given (start) interval vector. (An alternative for constructing p(ρ) is
given in [9, formula (5.4)].) Now the following measure for applicability of a given
method M to a certain problem P (p(ρ)), the so-called applicability radius ra(M), is
defined as follows:

ra(M) = sup
{
ρ : M is applicable to P (p(ρ)) for p(ρ) = p0 + ρ[−r0, r0]

}
. (4.3)

The concept of applicability radius has been suggested earlier in [9] in the context of
a method for determining the regularity radius of an interval matrix.

The radius ra(M) is a measure for the capacity of a given method to solve a class of
problems. It also permits us to compare the relative efficiency of two methods M1 and
M2 to solve the same problem P . Indeed, if ra(M1) < ra(M2), then M2 is numerically
more efficient since M1 fails to solve the problem at hand earlier (for an interval vector
p(r(M1)) of smaller width) compared to M2.

If the width p(0) of a given problem P (p(0)) is such that both methods M1 and M2

are applicable to P (p(0)), then it is natural to assess their numerical efficiency by the
total number of arithmetic operations Nt(M1) and Nt(M2) needed by the respective
method. Obviously, there exists a relationship between Nt(M) and ra(M) for a given
method. As a general rule, a method M2 that is more expensive than method M1 (that
is, Nt(M2) > Nt(M1)) is expected to have a larger radius of applicability ra(M2) than
ra(M1). These observations will be confirmed by the theoretical considerations given
below in §4.3, §4.4 and the numerical evidence related to the example considered in
Section 5.



Reliable Computing 20, 2014 13

4.2 Modifications of the Basic Algorithms

The basic algorithms Al and Au developed in the previous section will be here referred
to as Algorithm Al.V1 and Au.V1, respectively. In this subsection, two simplifications
of the basic algorithms (denoted by Al.V2 and Al.V3 or Au.V2 and Au.V3) will be
presented. The first modification of Algorithm Al.V1 (Au.V1) consists of simplifying
Procedure Pl (Procedure Pu). Since Algorithms Al.V2 and Au.V2 are similar, only
the versions of Algorithm Al.V2 and Procedure Pl.V2 will be considered below.
Procedure Pl.V2. The modification of Pl.V1 into Procedure Pl.V2 consists of omit-
ting Step 3′ (where a constraint propagation is used in order to modify the initial
interval vectors x̃ and p to vectors x ′ and p ′ of reduced widths).

Algorithm Al.V2 is the same as Algorithm Al.V1. The second modification denoted
by Algorithm Al.V3 is obtained by simplifying Algorithm Al.V2. In this case, both
Algorithm Al.V2 and Procedure Pl.V2 are changed to get the modified versions Al.V3
and Pl.V3.
Procedure Pl.V3. In the previous version Pl.V2, the iterations are terminated as
soon as a modified monotonicity condition has been detected along a parameter pl.
In the present version, we continue the iterations until l = m, hoping to reach new
parameters satisfying the respective modified monotonicity condition, modifying only
the right-hand side of LIP (3.3a). More specifically, Procedure Pl.V3 includes the
following steps

Step 1. For l = 1 to l = m, do:

a) form the LIP (3.3a), upgrading its right-hand side alone, and find the k-th

component d
(k)
l of its outer solution;

b) if the modified monotonicity condition (3.9) is fulfilled, reduce the l-th
interval component to a point p∗l using (3.12).

Step 2. Let nm denote the number of times the monotonicity condition (3.9) has been
satisfied. If nm = 0, go to Outcome O1; otherwise if nm = m, go to Outcome
O2; else go to Outcome O3.

Outcome O1: no interval component pl has been reduced to a point.

Outcome O2: all components pl, l = 1, ...,m have been reduced to points

Outcome O3: nm components pl, 0 < nm < m have been reduced to points so a
reduced-width interval vector p ′ = (p′,p) has been obtained where the length
of p is m− nm.

This procedure is used in the version Al.V3.
Algorithm Al.V3. Let ν, p(0) and m0 have the same meaning as in Algorithm Al.V1.
The new version comprises the following steps.

Step 1. Compute an outer solution x to (2.8b) using an appropriate method.

Step 2. Compute an upper bound xuk using an appropriate method.

Step 3. Form by (3.2) the reduced-length interval x̃ .

Step 4. Call Procedure Pl.V3.

Step 5. If its outcome is O1, go to Termination T1. In case the outcome is O2, go to
Termination T2. If the outcome is O3, then let m = m − nm, p = p ′ and go
back to Step 1.

Termination T1: The simplified Algorithm Al.V3 is not capable of solving the IH
problem considered: only a two-sided enclosure [xk, x

u
k ] on x∗k has been obtained.



14 L. V. Kolev, Componentwise Determination of the Interval Hull

Termination T2: The simplified Algorithm Al.V3 has succeeded in solving the IH prob-
lem considered.

Remark 4.1 A fourth modification V4 is possible when Step 3′ from version V1 is
restored in Algorithm Al.V3. This version V4 will not be considered here.

Remark 4.2 If Algorithm Al.V2 or Algorithm Al.V3 ends in termination T2, it can
be proved that the respective algorithm has the properties enumerated in Theorem 3.1
with the exception that for Algorithm Al.V3 the number of iterations m in assertion
(i) should be replaced by m′ and m′ < m.

The version Al.V3 was motivated by the following considerations. It differs, essen-
tially, from version Al.V1 in that the same vectors x and p are used within a current
ν-th iteration, i.e. for ν fixed and l variable. This is an attempt to reach several new
local monotonicity conditions for the fixed ν, skipping the more costly operations of
finding a new outer interval solution x and a new upper bound xuk .

4.3 Numerical Characteristics of the Present Method

We first consider the numerical costs related to the various algorithms of the present
method. It is easily seen that Algorithm Al.V1 is more expensive than Algorithm
Al.V2; in a similar manner, Algorithm Al.V2 is more expensive than Algorithm Al.V3.
Indeed, the total number of arithmetic operations Nt (Al.V1) needed by Al.V1 is given
by the expression

Nt(Al.V1) =

m∑
ν=1

(
4∑
i=1

P
(ν)
i (n1, n2,m+ 1− ν)

)
(4.4)

where P
(ν)
i (n1, n2,m + 1 − ν) is the number of operations required to determine the

respective term P
(ν)
i at the ν-th iteration (as mentioned in the proof of part (iii) of

Theorem 3.1, the value of the index i corresponds to the operations associated with
computing an outer solution x , an upper bound xuk , the reduced width vectors x ′ and
p ′ in Step 3′ and an outer solution d l). Obviously,

P
(ν)
i (n1, n2,m+ 1− ν) > P

(ν+1)
i (n1, n2,m− ν) (4.5)

since P
(ν)
i (n1, n2,m + 1 − ν) refers to computations involving m + 1 − ν interval pa-

rameters while P
(ν+1)
i (n1, n2,m−ν) is associated with the same kind of computations

involving, however, m− ν interval parameters. If P
(ν)
i , ν > 1 in (4.4) is replaced with

P 1
i , we obtain the upper bound for Nt(Al.V 1) given in Theorem 3.1.

On account of (4.4) and (4.5):

Nt(Al.V1) > Nt(Al.V2) (4.6)

since the term P
(ν)
3 associated with Step 3′ in Procedure Pl.V2 (constraint propaga-

tion) is missing in Algorithm Al.V2. Also

Nt(Al.V2) ≥ Nt(Al.V3) (4.7)

since now

Nt(Al.V3) =

m′∑
ν=1

(
3∑
i=1

P
(ν)
i (n1, n2,m

′ + 1− ν)

)
(4.8)



Reliable Computing 20, 2014 15

where typically m′ < m.
We now compare the various algorithms with regard to their radii of applicability.

In view of (4.6) and (4.7) it is expected that

ra(Al.V1) ≥ ra(Al.V2) ≥ ra(Al.V3). (4.9)

We shall show only the validity of the first relation (the argument for the second is
similar). Suppose that the width of the interval vector p(ρ) is such that ρ is slightly
larger than ra(Al.V2) so Algorithm AlV2 is not applicable. In that case, we can
try the more expensive Algorithm Al.V1 to solve the problem considered. While
Algorithm Al.V2 relies only on the modified monotonicity conditions related to the
current parameter domain p and the associated initial domain x̃ of the phase variables,
Algorithm Al.V1 uses additionally the constraint propagation capable of contracting
x and p to narrower vectors x ′ and p ′. Hence, the updated modified monotonicity
conditions associated now with x ′ and p ′ will be easier to satisfy, leading to a larger
radius of applicability for Algorithm Al.V1.

4.4 Comparison with Other Methods

We now compare the new method (referred to as method MK) with two other methods
of polynomial complexity, namely [17] (referred to as method MP) and [5] (referred to
as method M0) in a qualitative manner.

First, we consider the methods MK and MP. As mentioned in Section 2, the
method MP is also an iterative method capable of determining the lower and upper
end of the IH solution component x∗k. To be able to carry out such a comparison,
we assume that both methods compute the necessary outer interval solutions in the
same manner. To be specific, only the case of computing x∗k will be considered here;
so we consider a corresponding algorithm of method MP which will be referred to as
Algorithm Al.P. We start by comparing Algorithm Al.P with the simplest version of
method MK, namely Algorithm Al.V3. The two algorithms differ in that the upper
bound xuk is not computed and used in Algorithm Al.P. Hence, the cruder monotonocity
condition (3.8) is exploited in the latter algorithm to reduce the width of the initial
parameter vector p(0). In contrast, the present Algorithm Al.V3 is based on the
use of the more effective modified monotonicity criterion (3.9). Therefore, in view
of Lemma 3.1 the new version Al.V3 is never worse and is expected to be actually
more efficient than the known version Al.P with regard to the radius of applicability
of the two algorithms. Indeed, it is natural to suppose that, at each iteration, the
standard monotonicity condition (3.8) is more difficult to satisfy than the respective
modified monotonicity condition (3.9). This is due to the fact that the outer solution

x is involved in computing while the modified vector x̃ is used to evaluate d̃
(k)

l . Since

x̃ ⊆ x by (3.4b) and d̃
(k)

l ⊆ d
(k)
l by (3.7b), the overestimation of d

(k)
l (with regard to

the true range of the respective derivative ∂xk/∂pl over the current p) will, in general,

be larger than the overestimation of d̃
(k)

l . This, in turn, results in easier violation of
conditions (3.8) than conditions (3.9). Hence, it is expected that most often

ra(Al.P) < ra(Al.V3). (4.10)

It should also be stressed that if the general-purpose method of [14] is used to find
x and ζ, the upper bound xuk = ζ

k
needed in version Al.V3 is obtained with no

additional computational cost. In that case, the total number of arithmetic operations



16 L. V. Kolev, Componentwise Determination of the Interval Hull

Nt(MK) and Nt(MP ) needed by the respective method will be the same. If, a local
optimization technique is used to locate xuk , then obviously Nt(MK) > Nt(MP ). On
the other hand, that bigger cost may be compensated by a relatively larger radius
of applicability ra(Al.MK) since always ζ

k
> x∗k while often (especially for relatively

narrow p) xuk = x∗k.
In cases where the problem at hand has a specific structure, a specialized method

such as [10] or [24] should be employed in either method MP or method MK. The
specialized methods, however, do not provide any inner estimation vector ζ so a local
optimization technique is to be used to locate xuk . Obviously, Nt(MK) > Nt(MP ) in
that case. Again, it might pay, in the long run, to accept that bigger computational cost
since on the average method MK will provide a relatively larger radius of applicability.

Next we compare the new approach with the method M0 of polynomial complexity
[5]. As mentioned in Section 2, the method M0 is also a componentwise method,
separately determining (for a fixed k) the lower and upper end of the IH solution
component x∗k. The corresponding algorithm for computing x∗k will here be referred
to as Algorithm Al.V0.
Algorithm Al.V0. In fact, this algorithm is a simplified version of Algorithm Al.V3.
From this point of view, it consists of skipping Steps 2 and 3 in Procedure Pl.V3,
that is, we do not compute and use the inner bound xuk . Thus, only the outer interval
solution x from Step 1 of Procedure Pl.V3 is employed in the subsequent computations.
Hence, the cruder global monotonocity condition (3.8) is exploited to reduce the width
of the initial parameter vector p(0).

It is obvious that, for reasons similar to those considered in the comparison of MK
and MP, algorithm Al.V3 should outperform Al.V0. In particular, it is expected that

ra(Al.V0) < ra(Al.V3). (4.11)

The latter inequality is confirmed numerically in Section 5. Furthermore, better results
should be obtained if the more expensive Algorithm Al.V2 or Al.V1 is used rather than
Algorithms Al.K or Al.V0.

It should also be stressed that, unlike all known methods, the best version Al.V1
of the present method is capable of detecting those coordinates of the initial domain
p along which the vertex property of the solution x∗k sought is violated (Lemma 3.2).

5 Numerical Example

We illustrate the method suggested by way of an example. All LIP systems considered
below are square and defined by the affine functions (1.2). They are given equivalently
in the form

A(p) = A(0) +

m∑
µ=1

A(µ)pµ, (5.1a)

b(p) = b(0) +Bp, (5.1b)

where A(0), A(µ), µ = 0, 1, ...,m are n×n real matrices while B is a n×m real matrix.

The outer interval solutions x and d̃
(k)

l were determined using the direct method
of [4]. The upper bound xuk or lower bound xlk were computed using the simple
iterative method of [5]. Algorithms Al.V3 and Au.V3 were employed to determine
the lower or upper end-point of the k-th component x∗k of x . The algorithms were
programmed in the MATLAB environment using the INTLAB toolbox [23] to carry



Reliable Computing 20, 2014 17

out the interval calculations. The programs were run on a 1.7 GHz PC computer. The
linear parametric system is given by the matrix [25]

A(p) =

 p1 p2 + 1 −p3
p2 + 1 −3 p1
2− p3 4p2 + 1 1

 (5.2a)

and the vector

b(p) =

 2p1
p3 − 1
−1

 . (5.2b)

Thus, n = 3 and m = 3. It is seen that

A(0) =

0 1 0
1 −3 0
2 1 1

 , A(1) =

1 0 0
0 0 1
0 0 0

 , A(2) =

0 1 0
1 0 0
0 4 0

 , A(3) =

 0 0 −1
0 0 0
−1 0 0


(5.2c)

and

b(0) =

 0
−1
−1

 , B =

2 0 0
0 0 1
0 0 0

 . (5.2d)

The initial interval vector ps = (p1, ...,p3) is given by (4.2) with

p0 = (0.5 0.5 0.5)T, r0 = (0.5 0.5 0.5)T. (5.3a)

In the following three subsections, we use the data (5.2), (5.3) to illustrate the appli-
cation of the present method to solving the SIHS problem. The solution of a GIHS
problem is treated in the fourth subsection.

5.1 Fixing an Index

In this instance, the parameter vector p = (p1, ..., p3) belongs to p = (p1, ...,p3)
defined by (4.2a) and (5.3a) for ρ = 0.1, i.e.

p = p0 + 0.1[−r0, r0]. (5.3b)

The problem considered here is to determine the range x∗3 so the fixed index is k = 3.
We first determine the lower end-point x∗3. Application of Algorithm Al.V3 yields

x∗3 = −1.7786. (5.4)

The algorithm takes two iterations to reach x∗3. At the first iteration, Procedure Pl.V3
succeeds in reducing two interval variables p1 and p3 to points p∗1 and p∗

3
, respectively.

The interval parameter p2, however, remains unchanged. Thus, we form the reduced-
width vector

p ′ = (p1,p2, p3)T. (5.5)

Now p ′ is substituted into (5.2) to get a modified system of the form

A′(p2) = A(0) +A(1)p1 +A(3)p
3

+A(2)p2 = A′ +A(2)p2 (5.6a)

b′(p2) = b(0) +B(1)p1 +B(3)p
3

+B(2)p2 = b′ +B(2)p2 (5.6b)



18 L. V. Kolev, Componentwise Determination of the Interval Hull

Table 1: Data on Algorithm Al.V3 for k = 3 and ρ = 0.1

ν x3 xu3 nin p ′ x∗3
1 -1.7982 -1.7785 2 (0.55 p2 0.45)T

2 -1.7800 -1.7785 2 (0.55 0.55 0.45)T -1.7786

(B(j) denotes the corresponding jth column of matrix B). At this point, the second
iteration of Algorithm Al.V3 is initiated. This time, Procedure Pl.V3 is applied to (5.6)
after p2 has been renamed p. Now the last interval parameter p = p2 is successfully
reduced to the end-point p2. Thus, it is seen that for the problem considered Algorithm
Al.V3 terminates in outcome T2 with

p∗ = (0.55 0.55 0.45)T . (5.7)

Finally, the global solution (5.4) of (5.2) is obtained after solving

A(p∗)x = b(p∗) (5.8)

for x̌ and letting x∗3 = x̆3. In Table 1, data concerning the algorithm used and the
results obtained are given.

The current iteration number of Algorithm Al.V3 is denoted by ν; nin denotes the
number of iterations needed by the local optimization (LO) method used to compute
the upper (inner) bound xuk . The lower end xk of the outer enclosure [xk, xk] at the
corresponding iteration ν is given in the second column of the table. In the next
two columns, the values of xuk and nin are listed for each ν. The parameter vectors
of reduced width are presented in the fifth column. The last column includes the
approximate value of x∗3 (for ν = 2). The optimal parameter vector p∗ is given in the
second entry of the fifth column.

Remark 5.1 The complexity of the Algorithm Al.V3 can be assessed by the number
Nls of (n×n) linear systems solved. We shall distinguish between Nip and Npp: num-
ber of interval parameter (IP) systems and number of point (noninterval) parameter
systems, respectively, since the former systems are harder to solve than the latter ones.
To simplify the analysis, we assume that solving (2.8b) once and (3.3a) mν times (mν

being the number of interval parameters at each ν-th iteration) can be equated to solving
one single IP system since A(p) is the same for all mν+1 systems. This is a reasonable
assumption if m ≤ n, which is often the case in practice [5]. Then, as is easily seen, Nip
varies between N ip = 1 (in the best case) and N ip = m (in the worst case). The num-

ber Npp is given by the sum of n
(ν)
in over ν where n

(ν)
in is the number of iterations needed

by the LO method chosen to find the bound xνk on x∗k at the ν-th iteration. For the

LO method of [5] used in the present example, n
(ν)
in varies between n

(ν)
in = 2 (minimum

value) and n
(ν)
in = mν+1 (maximum admissible value). Thus Npp = 2 in the best case;

in the worst case, Npp = (m+1)+(m−1)+ ...+2+1 = (m+1)(m+2)/2. Therefore,
Nls = Nip+Npp varies between N ip+Npp = 3 and N ip+Npp = m+(m+1)(m+2)/2.

It is interesting to note that the number Nip related to versions V2 and V1 of
Algorithm Al is the same and equal to N ip associated with version V3.

Similar results are obtained in determining the upper end-point x∗3 using Algorithm
Au.V3. These are reported in Table 2 (nin denoting the number of iterations needed
by the LO method used to compute the upper (inner) bound xlk).



Reliable Computing 20, 2014 19

Table 2: Data on Algorithm Au.V3 for k = 3 and ρ = 0.1

ν x3 xl3 nin p ′ x∗3
1 -1.3447 -1.3824 2 (0.45 p2 0.55)T

2 -1.3823 -1.3824 2 (0.45 0.45 0.55)T -1.3823

Remark 5.2 The approximate four digit values for x3, xu3 and x∗3 reported in Table 5.1
and x3, xl3 and x∗3 in Table 5.2 are obtained after appropriate directed roundings. Thus,
downward rounding has been used to represent x3, x∗3 and xl3 while upward rounding
is needed for x3,x∗3 and xu3 . It should be borne in mind that the appropriate roundings
of xk, xuk and xk, xlk are mandatory when rigorously implementing the present method
in order to provide reliable monotonic properties and final results for x∗k and x∗k.

5.2 Computing all of x

The problem in this subsection is to determine the whole IH vector x∗ associated
with problem (5.2), (5.3). According to the present paper’s approach, x∗ is found in
a componentwise manner, i.e. by separately computing each end-point of each range
x∗k. The data for k = 3 have been given in Tables 1 and 2 from the previous example.
Thus, algorithm Al.V3 and Au.V3 remain to be applied for k = 1 and k = 2. Tables 3
and 4 summarize the relevant results.

Table 3: Data on Al.V3 and Au.V3 for k = 1 and ρ = 0.1

Al.V3 ν nin p∗ x∗1
1 2 (0.45 0.55 0.55)T 0.1826

Au.V3 ν nin p∗ x∗1
1 2 (0.55 0.45 0.45)T 0.4052

Table 4: Data for Al.V3 and Au.V3 for k = 2 and ρ = 0.1

Al.V3 ν nin p∗ x∗2
2 2 (0.55 0.45 0.55)T 0.0277

Au.V3 ν nin p∗ x∗2
3 2 (0.45 0.45 0.45)T 0.0654

5.3 Determining the Applicability Radius

We now consider the problem of determining the applicability radius ra of algorithm
Al.V3 of the present method for the case of k = 2. With this in mind, we introduce



20 L. V. Kolev, Componentwise Determination of the Interval Hull

Table 5: Data on the applicability radii of algorithms Al.V3 and Al.V0 for k = 2

algorithm ν ra p∗ x∗2
Al.V3 3 0.165 (0.5825, 0.4175, 0.5825)T 0.0137
Al.V0 3 0.104 (0.5520, 0.4480, 0.5520)T 0.0269

the family (4.2)

p(ρ) = p0 + ρps (5.9)

where p0 and ps are given by (5.3a). In accordance with the definition (4.3), we
estimate ra(Al) of the respective algorithm approximately by letting ρ increase with
an increment ∆ρ until inapplicability is reached. The data concerning Algorithm
Al.V3 are given in the second row of Table 5.

Around the “critical” value of ra, the increment of ρ was chosen to be ∆ρ = 0.001.
Thus, ra(Al.V3) = 0.165 means that Algorithm Al.V3 becomes inapplicable for ρ =
ra(Al.V3) + ∆ρ = 0.166.

We now compare ra(Al.V3) with the applicability radius of the method M0 from
[5] (in fact, version M3). To make the comparison invariant with respect to the way

the enclosures d
(k)
l and d̃

(k)

l are computed, d
(k)
l was evaluated in the same manner

as d̃
(k)

l . This modified version of M0 is denoted by Algorithm Al.V0. The numerical
evidence shows that approximately Al.V0 fails to be applicable for ρ = 0.105 (third
row of Table 5). It is seen that, in accordance with the theoretical consideration from
Section 4.1,

ra(Al.V3) > ra(Al.V0). (5.10)

Thus, it has been shown that Algorithm Al.V3 of the present method is capable of
solving LIP problems of larger uncertainties than Algorithm Al.V0 of the previous
method M0 [5].

5.4 Solving a GIHS Problem

In this final subsection, we illustrate the application of the present method to solving
a GIHS problem. The parametric system is again (5.2), (5.3) while the output variable
vector y is the scalar

y(p) =
3∑
k=1

x2k(p). (5.11)

If we interpret the components xk of x as the projections of the vector x onto the axes
in Euclidian space, then (5.11) has a clear geometrical meaning: y is the square of the
length of the vector x. Thus, the GIHS defined by (5.2), (5.3) and (5.11) consists of
determining the range y∗ of y over p. On account of (5.11),

∂y

∂pl
(p) = 2

[
3∑
k=1

xk(p)
∂xk
∂pl

(p)

]
. (5.12)

Now we bound ∂y
∂pl

using different enclosures xk and d
(k)
l for xk(p) and ∂xk

∂pl
(p) over

p, respectively. First, we use data related to the standard (global) monotonicity



Reliable Computing 20, 2014 21

conditions. Therefore, we use the outer bounds xk and d
(k)
l obtained at the first

iteration of algorithms Al.V0 and Au.V0. We have (after canceling the factor of 2)

D l =

3∑
k=1

xkd
(k)
l , (5.13)

so

D1 = [0.3533, 2.0732] > 0, 〉D2 = [0.1419, 0.6657] > 0, 〉 D3 = [−5.3009,−1.6776] > 0.
(5.13a)

Hence, on account of (5.11) to (5.13a)

y∗ =

3∑
k=1

x2k(p(l)) = 1.9108 (5.14a, )

where
p(l) = (p

1
, p

2
, p3)T = (0.45 0.45 0.55)T . (5.14b)

The corresponding vector x(p(l)) is the solution of A(p(l))x = b(p(l)). In a similar
manner

y∗ =

2∑
k=1

x2k(p(u)) = 3.1631 (5.15a)

where
p(u) = (p1, p2, p3)T = (0.55, 0.55, 0.45)T (5.15b)

and x(p(u)) is the solution of A(p(u))x = b(p(u)). Thus

y∗ = [1.91083.1631]. (5.16)

A narrower interval D∗l bounding ∂y
∂pl

(p), p ∈ p is obtained if the xk in (5.13) are

replaced with x∗k (since x∗k ⊂ xk):

D∗l =

3∑
k=1

x∗kd
(k)
l . (5.17)

The data for D l and D∗l are reported in the second and third row, respectively, of
Table 6.

Next, we bound ∂y
∂pl

using the modified monotonicity approach. We start with the

case of determining modified monotonicity conditions D̃
(l)

l related to determining the
lower end-point y∗ of the range y∗. In that case, xk will be replaced with x̃k = [xk, x

u
k ];

the corresponding modified derivatives d̃
(k)

l (computed at the first iteration of Al.V3)

will replace the previous d
(k)
l . The values of D̃

(l)

l for that case are given in the fourth
row of Table 6.

In a similar manner, we determine modified monotonicity conditions D̃
(u)

l related

to the upper end-point y∗ of y∗. Now xk and d̃
(k)

l will be replaced with x̃k = [xlk, xk]

and d̃
(k)

l , respectively. The values for D̃
(u)

l are given in the fifth row of Table 6.

As expected, the intervals D̃
(l)

l and D̃
(u)

l provide more effective (easer to satisfy)
monotonicity conditions as compared to D l or even D∗l . Indeed, the lower end-points

D
(l)
l , l = 1 and l = 2, of the respective intervals D̃

(l)

l are much higher then the lower



22 L. V. Kolev, Componentwise Determination of the Interval Hull

Table 6: Data for D l, D̃
∗
l , D̃

(l)

l and D
(u)
l

l 1 2 3
Dl [0.3533, 2.0732] [0.1419, 0.6657] [−5.3009,−1.6776]
D∗l [0.4232, 2.0383] [0.1560, 0.6550] [−5.2275,−1.8185]

D̃
(l)

l [0.7211, 1.6215] [0.3156, 0.6300] [−4.6656,−3.5115]

D̃
(u)

l [0.8561, 1.6565] [0.1758, 0.4961] [−3.5709,−2.5061]

end-points of D l and D∗l . Also, the upper end-point D
(l)
3 is much lower then the

upper end-points of D3 and D∗3. Similarly, the upper-end points D
(u)
l , l = 1 and

l = 2, are much lower and the lower end-point D
(u)
3 is much higher than the respective

end-points of Dl and D∗l . Thus, the applicability radius of the new method is bound
to be larger than the applicability radius of previous methods also in the context of
GIHS problems.

6 Conclusion

A unified method for determining the interval hull solutions to various problems as-
sociated with linear interval parameter systems (systems of non-linear (1.1) or linear
parametric dependencies (1.2), problems of standard (SIHS) or generalized (GIHS)
form, square or rectangular systems) has been suggested. In all the cases, it reduces
to iteratively solving global optimization problems of the type (2.8) and (3.17) to find
the lower end-point x∗k and upper end-point x∗k of the phase variable component x∗k
or the end-points y∗

k
and y∗k of the output variable component y∗k, respectively. Each

global solution is attained in an efficient manner using the respective modified mono-
tonicity conditions (3.9) or (3.24) that have been proved in Lemma 3.1 to be not worse
and, if the sufficient conditions (3.6a) are valid, to be better than the standard mono-
tonicity conditions (3.8) or (3.23). The method, basically, is capable of determining
the global solution sought if it has the vertex property by checking whether the above
modified monotonicity conditions are satisfied for each iteration: Theorems 3.1 and
3.2. Otherwise, it only provides a two-sided enclosure of x∗k (x∗k) or y∗

k
(y∗k).

Three versions of the algorithms designed for determining x∗k (x∗k) have been de-
veloped in Sections 3 and 4. It is shown that their complexity is polynomial in the
size n1 and n2 of the linear interval parameter problem studied and the length m of
the interval parameter vector p. A numerical example provided in Section 5 confirms
the characteristics of the algorithms demonstrated theoretically in Section 4 and illus-
trates the fact that the present method outperforms similar methods of polynomial
numerical complexity [5], [17] with regard to its radius of applicability (4.3) (capacity
to solve problems of larger uncertainty intervals).

Future research will concentrate on extending the present approach to problems
where the vertex property is not valid, i.e. where the global optimum x∗k of problem
(2.8) (or x∗k of problem (3.7)) is attained at a point p∗ in p that is not a vertex.



Reliable Computing 20, 2014 23

Acknowledgements

The author wishes to express his gratitude to two of the anonymous referees for their
valuable comments and suggestions.

References

[1] G. Alefeld, V. Kreinovich and G. Mayer. On the solution sets of particular classes
of linear interval systems. J. Comput. Appl. Math. 152:1–15, 2003.

[2] C. Jansson. Interval linear systems with symmetric matrices, skew-symmetric
matrices and dependencies in the right-hand side, Computing 46:265–274, 1991.

[3] L. Kolev. Interval Methods for Circuit Analysis. World Scientific, Singapore, New
Jersey, London, 1993.

[4] L. Kolev. Outer solution of linear systems whose elements are affine functions of
interval parameters, Reliable Computing, 8:493–501, 2002.

[5] L. Kolev. Worst-case tolerance analysis of linear DC and AC electric circuits,
IEEE Trans. on Circuits and Systems - I: Fundamental Theory and Appl.,
49:1693–1701, 2002.

[6] L. V. Kolev. Solving linear systems whose elements are nonlinear functions of in-
terval parameters. Proceedings of the International Symposium of Scientific Com-
puting, Computer Arithmetic, and Validated Numerics , SCAN 2002, September
24-27, Paris, France, 2002, p. 45.

[7] L.V. Kolev. Solving linear systems whose elements are nonlinear functions of
interval parameters. Numerical Algorithms, 37:199–212, 2004.

[8] L. Kolev. A method for outer interval solution of linear parametric systems. Re-
liable Computing, 10:227–239, 2004.

[9] L. V. Kolev. A method for determining the regularity radius of interval matrices.
Reliable Computing, 16:1–26, 2011.

[10] A. Neumaier and A. Pownuk. Linear systems with large uncertainties, with ap-
plications to truss structures. Reliable Computing, 13:149–172, 2007.

[11] K. Okumura. An application of interval operation to electric network analysis. In
Bullletin of the Japan Society for Industrial & Applied Mathematics 2:115–127,
1993.

[12] E. Popova. On the solution of parameterised linear systems. In Scientific Comput-
ing, Validated Numerics, Interval Methods, Kluwer Academic Publishers, Boston,
pages 127–138, Kraemer, W. and Wolff von Gudenberg, J. (Eds.), 2001.

[13] Popova, E.D., Datcheva, M., Iankov, R., Schanz, T.: Mechanical models with
interval parameters. In K. Geurlebeck, L. Hempel, C. Keonke (Eds.): Proceedings
of 16th International Conference on the Applications of Computer Science and
Mathematics in Architecture and Civil Engineering, 2003.

[14] E. Popova. Generalization of the parametric fixed-point iteration, PAAM 4:680–
681, 2004.

[15] E. Popova. Improved solution enclosures for over- and underdetermined inter-
val linear systems. In Lecture Notes in Computer Science 3743, pages 305–312,
I.Lirkov, S. Margenov, J. Wasniewski (Eds.), 2006.



24 L. V. Kolev, Componentwise Determination of the Interval Hull

[16] E. Popova, R. Yankov and Z. Bonev. Bounding the response of mechanical struc-
tures with uncertainties in all the parameters. In Proceedings of the NSF Work-
shop on Reliable Engineering Computing, Savannah, Georgia USA, 2006, pages
245–265, R.L.Muhanna, R.L.Mullen (Eds.), 2006.

[17] E. Popova. Computer-assisted proofs in solving linear parametric problems. In
Conference Post-Proceedings of SCAN 2006, IEEE Computer Society Press, 2007,
page 35, 2007.

[18] Pownuk, A., Efficient method of solution of large scale engineering problems with
interval parameters based on sensitivity analysis, Proceedings of the NSF workshop
on Reliable Engineering Computing, September 15-17, 2004, Savannah, Georgia,
USA, pp. 305–316, 2004.

[19] Rama Rao, M.V., Mullen, R.L. and Muhanna, R.L. Primary and derived variables
with the same accuracy in interval finite elements. In M. Beer, R. L. Muhanna, R.
L. Mullen (Eds.), Fourth International Workshop on Reliable Engineering Com-
puting (REC 2010), Research Publishing Services, National University of Singa-
pore, 2010.

[20] Rama Rao, M.V., Mullen, R.L. and Muhanna, R.L. (2011) A new interval finite
element formulation with the same accuracy in primary and derived variables,
Int. J. Reliability and Safety, 5(3–4):336–357, 2011.

[21] J. Rohn. Linear interval equations with dependent coefficients. In International
Conference on Interval Methods for Numerical Computation, Oberwohlfach, West
Germany, 1990.

[22] J. Rohn. A method for handling dependent data in interval linear systems. Tech-
nical Report No. 911, Institute of Computer Science, Academy of Science of the
Czech Republic, July 2004.

[23] S. Rump. INTLAB - INTerval LABoratory, in Tibor Csende, ed., Developments
in Reliable Computing , pp. 77–105. Kluwer, Dordrecht, Netherlands, 1999.

[24] I. Skalna. A method for outer interval solution of parameterized systems of linear
equations. Reliable Computing, 12:107–120, 2006.

[25] I. Scalna. Evolutionary optimization method for approximating the solution set
hull of parametric linear systems, Lecture Notes in Computer Science 4310,
pp. 361–368, 2006.

[26] I. Skalna. On checking the monotonicity of parametric interval solution of linear
structural systems. Lecture Notes in Computer Science 4967 pp. 1400–1409, 2008.

[27] I. Skalna, A. Pownuk: On using global optimization method for approximat-
ing interval hull solution of parametric linear systems. In Proceedings of Third
International Workshop on Reliable Engineering Computing (REC08), Georgia
Institute of Technology, Feb 20-22, 2008, Savannah, Georgia, USA, 2008.

[28] I. Skalna and A. Pownuk, A global optimisation method for computing interval
hull solution for parametric linear systems, International Journal of Reliability
and Safety 3 (1–3):235–245, 2009.


	Introduction
	Problem Formulation and Basic Approach
	Main Results
	The SIHS Problem: Lower End-point of the Range
	The SIHS Problem: Upper End-point of the Range
	The GIHS Problem

	Numerical Aspects
	Efficiency of an Interval Method
	Modifications of the Basic Algorithms
	Numerical Characteristics of the Present Method
	Comparison with Other Methods

	Numerical Example
	Fixing an Index
	Computing all of x
	Determining the Applicability Radius
	Solving a GIHS Problem

	Conclusion

