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Abstract

The paper examines the problem of computing the potential and the
attraction force of an ellipsoid, which requires taking a triple integral
with an analytically integrable kernel. We consider the kernel as a weight
function, while the inner integral is approximated by a quadrature for the
product of functions, one of which has an integrable singularity. Such
an approach makes it possible to obtain an integrand with only a weak
logarithmic singularity before carrying out the next integration. This
singularity can be overcome easily by changing a variable in the next outer
integrals. Thus, to compute all the integrals, quadrature formulas without
singularities are obtained. In addition, the functions to be computed do
not have large values at the integration points. To carry out numerical
experiments, complicated test functions are constructed. These functions
are the exact potential and the exact force of attraction of an ellipsoid of
rotation with an elliptic density distribution.
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1 Introduction

The problem of finding the volume potential and the attraction force is a classical
problem of modern mathematical physics, and its first solutions for bodies with simple
forms were obtained by Sir Isaac Newton. By the present time, precise solutions for
bodies of various forms with layered non-uniform distribution of densities are known.
A sufficiently complete account of such solutions can be found in [6]. For bodies
having ellipsoidal forms with an arbitrary distribution of density, precise solutions are
expressed through the Maclaurin series [8], which are hardly acceptable in numerical
computation of the volume potential.
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The most common approach to the numerical computation of the potential is
to approximate the density by a family of basic functions in such a way that the
calculation of the linear integral operators obtained becomes possible in the sense that
it does not require coping with singularities in integrands. Such basic functions may be
spherical harmonics [9], piecewise-polynomial approximations [2] or exponential type
functions depending on the distance between the nodes as well as the points where the
potential is to be computed [7]. However, such approaches require a certain smoothness
of the density in the whole space. In the case when the density is nonzero only inside
the volume of a body, the above approaches to computation of the potential lead to
essential errors near the boundary of the body. For the solution of the above problem,
a bounded layer is introduced in [5], where an extra approximation is done. The
cubature formulas for computation of a volume potential are presented, but they are
not confirmed by any numerical experiments. Another approach presents the potential
as an inverse Fourier transform from the product of the Fourier images of the singular
kernel and density [4]. We have to note that, along with the problem of computation of
the Fourier image from the singular kernel, one should take into account the fact that
a discrete analog of the convolution theorem requires the periodicity of integrands.

In this paper, we present a simple, both in its concept and in its numerical im-
plementation, semi-analytical method for the computation of the potential and the
attraction force of a bodies having elliptical forms with density defined on a non-
uniform grid. The main idea of the method is in representing required functions by
the triple integrals by such a way that we can compute analytically the inner in-
tegrals from the kernels. In this approach, the kernel is considered to be a weight
function. To approximate the inner integral, the quadrature formula for the product
of functions, one of which has an integrable singularity, is proposed. This approach
allows us to obtain an integrand with a weak logarithmic singularity when computing
the second integral. This singularity can be overcome easily by changing variables in
subsequent outer integrals. In computing one component of the attraction force, the
inner integrand has a stronger singularity. In this case the quadrature for the product
of functions with singularities is applied not only for the inner integral, but also for
computing the integral with respect to the second variable.

To find all the integrals, we obtain quadrature formulas without singularities, and
the functions to be calculated do not have large values at the quadrature nodes.

The method is illustrated by numerical experiments applied to sufficiently compli-
cated test functions. These functions are the exact potential and the exact attraction
force of an ellipsoid of rotation with an elliptic density distribution.

2 Approximately Computing the Integral
for the Product of Functions

We consider the following quadrature for the computation of integrals:

b∫
a

f (x) g (x) dx , (1)

where g(x) ∈ L1[a, b] and g(x) ≥ 0 when x ∈ [a, b] and f(x) ∈ C[a, b], provided that

the integrals G(α, β) =
β∫
α

g(x) dx when α and β ∈ [a, b] can be computed analytically.
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To obtain the quadrature for the integral (1), we consider the function g(x) as a weight
function [1]. We define a grid with the nodes xi, i = 1, . . . , n, on the interval [a, b],
where the first and last nodes can coincide with the endpoints of the interval. We
denote xi+1/2 =

xi+xi+1

2
, hi = xi+1 − xi, i = 1, . . . , n− 1.

We approximate the function f(x) on every elementary sub-interval by the piece-
wise-constant function L0(x) as follows:

L0(x) = f(xi) when x ∈
[
xi−1/2, xi+1/2

]
, i = 2, . . . , n− 1,

L0(x) = f(x1) when x ∈
[
a, x3/2

)
,

L0(x) = f(xn) when x ∈
(
xn−1/2, b

]
.

Then the approximation error on every elementary interval has the second order [1],

and the total error ε =
b∫
a

[f (x)− L0 (x)] g (x) dx of a combined rectangle formula with

a weight function g(x) satisfies the inequality

|ε| ≤ h0M0Mg ,

where h0 = max
{
x1 − a, b − xn, 1

2
max
i
hi
}

, M0 = max
x∈[a,b]

|f ′(x)|, Mg = G(a, b), and

the constants M0 and Mg do not depend on h0.
When this approximating function for f(x) is selected, the quadrature for com-

puting the integral (1) has the form

b∫
a

f (x) g (x) dx ≈
b∫
a

L0 (x) g (x) dx

= f (x1) G
(
a, x3/2

)
+ f (xn)G

(
xn−1/2, b

)
+
n−1∑
i=2

f (xi)G
(
xi−1/2, xi+1/2

) (2)

3 Computing the Potential of an Ellipsoid

We consider a body T bounded by the elliptic surface, with the density ρ. We choose
a system of coordinates with the origin in the center of the ellipsoid with axes that
are oriented along the main axes of the ellipsoid. The potential of the body T at the
point M0 = M0(x0, y0, z0) is defined by

U (M0) =

∫
T

ρ (M)

|M −M0|
dτ , (3)

where M is a current point of integration, and dτ is an element of the body volume.
Let us pass to the spherical coordinates ϕ, θ, r. Then formula (3) takes the form

U (M0) =

2π∫
0

dϕ

π∫
0

sin θ dθ

R(ϕ,θ)∫
0

r2ρ (ϕ, θ, r)√
r20 − 2rr0 cosψ + r2

dr , (4)

where ψ is the angle between
−−→
OM and

−−−→
OM0,

cosψ = cos θ cos θ0 + sin θ sin θ0 cos (ϕ− ϕ0) .

Let the density ρ be a continuous function with respect to every variable. Then we
can apply the quadrature that is described in the previous section for the numerical
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computation of the inner integral in (4). For fixed values of the variables ϕ, ϕ0, θ, θ0,

we denote f (r) = ρ (ϕ, θ, r), g (r) = r2√
r20−2rr0 cosψ+r2

. Calculating the integrals from

the function g(r), we obtain

G (ri, ri+1) =

ri+1∫
ri

g (r) dr = G0 (ri+1)−G0 (ri) , (5)

where

G0 (x) =
1

2

[
(x+ 3r0 cosψ) sq (x) + r20

(
3 cos2 ψ − 1

)
log (w (x))

]
, (6)

sq (x) =
√
r20 − 2r0x cosψ + x2 , w (x) = sq(x) + x− r0 cosψ. (7)

To compute the complete inner integral in (4), we use the combined rectangle for-
mula (2), where the integrals on elementary sub-intervals are calculated by the for-
mula (5). Before proceeding to the numerical integration of the second integral in (4),
we note that summands with singularities appear in the functions G0 (ri) after the
first integration. However, it is just a weak logarithmic singularity that can be taken
into account in the numerical integration by inserting a new variable. Indeed, let us
consider a summand with singularity at the points ri = r0,

µ (ϕ) = log (w (r0)) = log
(
r0
√

1− cosψ
[√

2 +
√

1− cosψ
])
.

The argument of the logarithm vanishes when ψ = 0, i.e., when θ = θ0 and ϕ = ϕ0. If
θ = θ0,

µ (ϕ) = log
(
r0 | sin θ0|

√
1− cos (ϕ− ϕ0)

[√
2 + | sin θ0|

√
1− cos (ϕ− ϕ0)

])
.

For the integration of the second integral in (4), we change the variable ϕ− ϕ0 = t3.
It is easy to show that lim

t→0
t2 log

(√
1− cos t3

)
= 0, and the function t2G0 (t, θ, x) is

continuous with respect to the new variable t. Then the numerical integration with
respect to the variable t has no singularities.

Note that ψ = 0 for any values of ϕ if θ = θ0 and θ0 = 0 or θ0 = π. Al-
though the value of the first integral is multiplied by the factor sin θ when we inte-
grate over the second variable (see formula (4)), this singularity is removable. Because
lim
θ→0

sin θ log (α sin θ) = 0, this singularity does not create any problems in the course

of numerical integration.

4 Computing the Attraction Force of an Ellip-
soid

The attraction force of a body in the spherical coordinate system is the vector

~F =

(
∂U

∂ϕ0
,
∂U

∂θ0
,
∂U

∂r0

)T
.

In this section, we separately consider the computation of every component of the
attraction force of the ellipsoid.
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4.1 A Component of the Attraction Force along the Co-
ordinate r0

For fixed values of the variables ϕ, ϕ0, θ, θ0, we denote

f (r) = ρ (ϕ, θ, r) , g (r) =
∂

∂ r0

r2√
r20 − 2rr0 cosψ + r2

.

Then the function G0 (x) in formula (5) has the form:

G0 (x) = µr (x) + r0
(
3 cos2 ψ − 1

)
log (w (x)) , (8)

where

µr (x) =
x2 cosψ + xr0

(
1− 6 cos2 ψ

)
+ 3r20 cosψ

sq (x)
,

and sq (x) and w (x) are defined in (7). The new singularity has appeared in for-
mula (8), because the function µr (x) tends to infinity when ψ = 0 and x = r0.

However, if a uniform grid is defined for the variable r, the first and the last nodes
coincide with the boundary of the body, and the points where the component of the
attraction force is computed are situated in the middle of the grid nodes. Then, for
ψ = 0,

µr (r0 + ∆r/2)− µr (r0 −∆r/2) = −6r0,

and the functions G (ri, ri+1) in (5) have no singularities in addition to the logarithmic
ones.

4.2 A Component of the Attraction Force along the Co-
ordinate θ0

For fixed values of the variables ϕ, ϕ0, θ, θ0, we denote

f (r) = ρ (ϕ, θ, r) , g (r) =
∂

∂ θ0

r2√
r20 − 2rr0 cosψ + r2

.

Then the function G0 (x) in formula (5) has the form:

G0 (x) = r0cos
′ψ [µθ (x) + 3r0 cosψ log (w (x))] , (9)

where cos′ψ = ∂ cosψ
∂θ0

, and

µθ (x) =
x2 − 6r0x cosψ + 3r20

sq (x)
+
r0x cosψ − r20 + r0sq (x)

sq (x) sin2 ψ
.

Comparing formula (9) with formulas (6) and (8), a new singularity has appeared
in the second summand of the function µθ (x). This singularity cannot be overcome
during the next integration by changing variables or by choosing an appropriate grid.
Therefore, to compute the second integral numerically, we apply the quadrature (2)
again. In this case, when calculating the first integral, we multiply the function G0 (x)

by the factor sin2 ψ
cos′ψ and denote an approximate value of the first integral calculated

with such a factor for the fixed values ϕ, ϕ0, as I1 (θ, θ0). Then, introducing the
notation

f (θ) = I1 (θ, θ0) , g (θ) =
sin θcos′ψ

sin2 ψ
,
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we can apply the quadrature (2) once again for computing the second integral. Having
integrated the function g (θ) on every elementary interval [θj , θj+1], we obtain

θj+1∫
θj

sin θcos′ψ
sin2 ψ

dθ

= 1

(1−sin2 θ0 sin2 ϕ1)

[
µ
(1)
θ (θj , θj+1) + µ

(2)
θ (θj , θj+1) + µ

(3)
θ (θj , θj+1)

]
,

(10)

where ϕ1 = ϕ− ϕ0,

µ
(1)
θ (θj , θj+1) = − sin (2θ0) |sinϕ1| cosϕ1 v1 (θj , θj+1) ,

µ
(2)
θ (θj , θj+1) = 0.5 sin θ0

[
1− sin2 ϕ1

(
1 + cos2 θ0

)]
v2 (θj , θj+1) ,

µ
(3)
θ (θj , θj+1) = cos θ0 cosϕ1

(
1 + sin2 θ0 sin2 ϕ1

)
(θj+1 − θj) ,

v1 (θj , θj+1) =

[
arctan

(
1− sin2 θ0 cos2 ϕ1

)
θ − 0.5 sin (2θ0) cosϕ1

sin θ0 |sinϕ1|

]tgθj+1

tgθj

,

v2 (θj , θj+1) =

[
log

θ2
(
1− sin2 θ0 cos2 ϕ1

)
− θ sin (2θ0) cosϕ1 + sin2 θ0

1 + θ2

]tgθj+1

tgθj

.

Integral (10) and the function v2 (θj , θj+1) have the only singularity at the point
(ϕ = ϕ0, θj = θ0), but it is just a logarithmic singularity that can be overcome by
changing a variable in the next integration (see Section 3).

4.3 A Component of the Attraction Force along the Co-
ordinate ϕ0

For fixed values of the variables ϕ, ϕ0, θ, θ0, we denote

f (r) = ρ (ϕ, θ, r) , g (r) =
∂

∂ϕ0

r2√
r20 − 2rr0 cosψ + r2

.

Then the function G0 (x) in formula (5) has the form

G0 (x) = r0 sin θ sin θ0 sin (ϕ− ϕ0) [µϕ (x) + 3r0 cosψ log (w (x))] ,

where

µϕ (x) =
x2 − 6r0x cosψ + 3r20

sq (x)
+
r0x cosψ − r20 + r0sq (x)

sq (x) sin2 ψ
. (11)

As in the previous subsection, there is a singularity in the second summand of the
function µϕ (x). As before, we apply quadrature (2) to compute the second integral.
When calculating the first integral, we multiply the function G0(x) by the factor

sin2 ψ
sin θ sin(ϕ−ϕ0)

and denote an approximate value for the first integral that was calculated

with such a factor for the fixed values ϕ and ϕ0 by I2(θ, θ0). Introducing the notation

f (θ) = I2 (θ, θ0) , and g (θ) =
sin2 θ sin (ϕ− ϕ0)

sin2 ψ
,



324 A. Savchenko, Computation of Potential and Force of Attraction . . .

we can apply the quadrature (2) once again for computing the second integral. Having
integrated the function g (θ) on every elementary interval [θj , θj+1], we obtain

sin (ϕ− ϕ0)
θj+1∫
θj

sin2 θ
sin2 ψ

dθ

= 1

(1−sin2 θ0 sin2 ϕ1)

[
µ
(1)
ϕ (θj , θj+1) + µ

(2)
ϕ (θj , θj+1) + µ

(3)
ϕ (θj , θj+1)

]
,

(12)

where ϕ1 = ϕ− ϕ0 and

µ(1)
ϕ (θj , θj+1) = sin θ0

(
cos2 ϕ1 − sin2 ϕ1 cos2 θ0

)
sign (sin (ϕ− ϕ0)) v1 (θj , θj+1)

µ(2)
ϕ (θj , θj+1) = sinϕ1 sin θ0 cos θ0 cosϕ1 v2 (θj , θj+1) ,

µ(3)
ϕ (θj , θj+1) = sinϕ1

(
cos2 θ0 − sin2 θ0 cos2 ϕ1

)
(θj+1 − θj) ,

and the functions v1 (θj , θj+1), v2 (θj , θj+1) were defined in the previous subsection.
The integral (12) and the function v2(θj , θj+1) have only the logarithmic singularity
that is taken into account by changing variables in the next integration.

5 Analytical Computation of the Potential and
the Attraction Force of an Ellipsoid for a Spe-
cial Density Function

Let us consider an ellipsoid in the Cartesian coordinates with the largest semi-axis

that is directed along the axis
−→
OZ and whose surface satisfies the equation

x2

a2
+
y2

b2
+
z2

c2
= 1.

Let this ellipsoid have elliptic distribution of density that has a constant value on the
surfaces of similar ellipsoids satisfying the equation

x2

a2
+
y2

b2
+
z2

c2
= k2, k ∈ [0, 1],

where k = 0 corresponds to the center of the ellipsoid, and k = 1 corresponds to the
surface of the original ellipsoid. Then the density is a function of only one parameter
k

ρ (M) = ρ (k) = ρ

(
x2

a2
+
y2

b2
+
z2

c2

)
.

5.1 The Potential of an Ellipsoid

The potential of an ellipsoid having such a density distribution (see [3]) is equal to

U (M0) = π a b c

∞∫
λ

χ
(
k2
)

R (s)
ds , (13)

χ
(
k2
)

=

1∫
k2

ρ (α) dα , (14)
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R (s) =
√

(a2 + s) (b2 + s) (c2 + s) , (15)

k2 =
x20

a2 + s
+

y20
b2 + s

+
z20

c2 + s
, (16)

λ =

{
0, M0 ∈ T
λ0, M0 /∈ T ,

(17)

and λ0 satisfies the equation

x20
a2 + λ0

+
y20

b2 + λ0
+

z20
c2 + λ0

= 1 .

To illustrate the proposed numerical method for the computation of the potential, we

consider an elongated ellipsoid of rotation around the axis
−→
OZ with the largest semi-

axis of unit length and the other semi-axes that are equal to γ. The density function
is chosen so that the integral (13) is computed analytically. Let

ρ (α) =
1

(1 + α)2
. (18)

Let us turn to the spherical coordinates (ϕ, θ, r). Then from (18) it follows that the

density of the ellipsoid at the point satisfying the equation r2
(

sin2 θ
γ2

+ cos2 θ
)

= α, is
1

(1+α)2
. Then

χ
(
k2
)

=

(
1− k2

)
2 (1 + k2)

, (19)

and from formulas (13), (15), (16), and (19), it follows, with allowance for the fact
that for this case a = b = γ and c = 1,

U (M0) =
πγ2

2

∞∫
λ

υ (s) ds , (20)

where

υ(s) =(
(γ2 + s) (1 + s)− (1 + s) r20 sin2 θ0 − (γ2 + s)r20 cos2 θ0

)(
(γ2 + s)(1 + s) + (1 + s)r20 sin2 θ0 + (γ2 + s) r20 cos2 θ0

) 1

(γ2 + s)
√

1 + s

.

The integral (20) can be computed analytically as

1

πγ2
U (θ0, r0) =

q+ (s2)

(s1 − s2)

[
1− r20 sin2 θ0

γS

(
s1 + γ2)− r20 cos2 θ0

(1 + s2)

]
+

q− (s1)

(s1 − s2)

[
−1 +

r20 sin2 θ0
γS

(
s2 + γ2)+

r20 cos2 θ0
(1 + s1)

]
+ q+

(
−γ2) r20 sin2 θ0

γS
,

(21)
where s1 and s2 are the smallest and the largest roots of the parabola p1 (s) = s2 +
s
(
1 + γ2 + r20

)
+ γ2 + r20

(
sin2 θ0 + γ2 cos2 θ0

)
, s1 ∈ (−∞,−1], s2 ∈ [−1, 0), γS =

s1s2 + γ2 (s1 + s2) + γ4,

q− (s) =
√
−1− s

(
π

2
− arctan

(√
1 + ξ0√
−1− s

))
,

q+ (s) =
√

1 + s log

(√
1 + ξ0 −

√
1 + s√

ξ0 − s

)
,
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and ξ0 is the largest root of the parabola

p2 (s) = s2 + s
(
1 + γ2 − r20

)
+ γ2 − r20

(
sin2 θ0 + γ2 cos2 θ0

)
.

In the formula (20), the lower limit of integration with respect to λ is defined by
the formula (17), where λ0 satisfies the equation

r20

(
sin2 θ0
γ2 + λ0

+
cos2 θ0
1 + λ0

)
= 1 .

5.2 Components of the Attraction Force of an Ellipsoid

Components of the attraction force of an ellipsoid having the elliptic density distribu-
tion ρ

(
k2
)

in the Cartesian coordinates are defined by formulas [3]

∂U

∂x
= −2πabcx

∞∫
λ

ρ
(
k2
)
ds

(a2 + s)R (s)
,

∂U

∂ y
= −2πabcy

∞∫
λ

ρ
(
k2
)
ds

(b2 + s)R (s)
, (22)

∂U

∂ z
= −2πabcz

∞∫
λ

ρ
(
k2
)
ds

(c2 + s)R (s)
,

where the function R (s) and λ were defined in (15) and (17). For the numerical ex-
periments, as in the previous subsection, we consider an elongated ellipsoid of rotation
with the semi-axes a = b = γ and c = 1.

It should be noted that the analytic solution to the equations (22) does not exist
for all the density functions ρ(k2). In particular, such a solution cannot be obtained
for the density defined by the formula (18). For this reason, we choose such a density
function that the equations (22) can be solved analytically,

ρ (α) =
1

1 + α
. (23)

Let us turn to the spherical coordinates, where components of the attraction force
of the ellipsoid of rotation with a density function defined by the formula (23) are

∂U

∂ r0
= −2πγ2r0

[
Q1 (λ, γ) sin2 θ0 +Q2 (λ, γ) cos2 θ0

]
, (24)

∂U

∂ θ0
= −πγ2r20 sin (2θ0) [Q1 (λ, γ)−Q2 (λ, γ)] , (25)

where

Q1(λ, γ) =

∞∫
λ

√
1 + s

L (s) (γ2 + s)
ds ,

Q2(λ, γ) =

∞∫
λ

1

L (s)
√

1 + s
ds ,

L (s) =
(
γ2 + s

)
(1 + s) + r20 (1 + s) sin2 θ0 + r20

(
γ2 + s

)
cos2 θ0 .
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Since the potential of an ellipsoid of rotation does not depend on the variable ϕ0, then
∂U
∂ ϕ0

= 0.
The integrals Q1 (λ, γ) and Q2 (λ, γ) can be calculated analytically,

Q1 (λ, γ) =

2

γS (s1 − s2)

((
s1 + γ2) q+ (s2)−

(
s2 + γ2) q− (s1)− (s1 − s2) q+

(
−γ2)) ,

Q2 (λ, γ) =
2

(s1 − s2)

(
q+ (s2)

(1 + s2)
− q− (s1)

(1 + s1)

)
.

The functions q+ (s) and q− (s), and the parameters s1, s2, and γS are defined in the
previous section.

6 Numerical Experiments

In spherical coordinates, the potential of an ellipsoid of rotation is a function of only
two coordinates, θ0 and r0.

To compute the integral (4) and its derivatives with respect to r0 and θ0, we choose
a uniform grid along the coordinate r for points inside the body, a non-uniform grid
for points outside the body, and uniform grids along the other coordinates. The upper
limit in the inner integral for the ellipsoid of rotation is a function that depends only
on the coordinate θ, R (θ) = γ√

sin2 θ+γ2 cos2 θ
. The density function ρ in (18) and (23)

also is a function that depends only on the coordinates θ and r. Since the potential of
an ellipsoid of rotation is a function that does not depend on the coordinate ϕ0, then
for taking into account a logarithmic singularity in the subsequent integration of the
outer integrals, it is sufficient to do the change of variable ϕ = t2.

We denote by εjk = 100 ×
∣∣∣∣ 1− Ũ(θj ,rk)

U(θj ,rk)

∣∣∣∣ the computation error (in percent) at

the point θj , rk for the approximated value of the potential Ũ(θj , rk), in which the
inner integral in (4) was computed by the formula (2), with respect to the exact value
of the potential at this point U(θj , rk), computed by the formula (21). Values of the

average εav = 1
NrNθ

Nr∑
k=1

Nθ∑
j=1

εjk and the maximum εmax = max
j,k

εjk errors for various

numbers of the points Nr along the coordinate r are presented in Table 1. The number
of points Nθ along the coordinate θ was Nθ = Nr. The value γ in all the numerical
experiments was 0.5, the number of points Nϕ along the coordinate ϕ was 100, and
the values r0 varied in the interval from 0.001 up to 10. For each value θj , the number
of nodes on the intervals [0, Rθ] and [Rθ, 10] was the same.

Table 1: Values of the average and maximum computation errors of potential
in percent for various numbers of grid nodes.

Nr 50 100 200 400

εav 0.1331 0.0337 0.0090 0.0027
εmax 0.4835 0.1361 0.0379 0.0105
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To illustrate the numerical computation of components of the attraction force
of an ellipsoid, we choose another error because the components calculated by the
formulas (24) and (25) can be too small in modulus at a few points of the domain.

We denote

δ(r)av =

Nr∑
k=1

Nθ∑
j=1

(
∂Ũ

∂ r0
(θj , rk)− ∂U

∂ r0
(θj , rk)

)2
/

Nr∑
k=1

Nθ∑
j=1

(
∂U

∂ r0
(θj , rk)

)2

,

δ(θ)av =

Nr∑
k=1

Nθ∑
j=1

(
∂Ũ

∂ θ0
(θj , rk)− ∂U

∂θ0
(θj , rk)

)2
/

Nr∑
k=1

Nθ∑
j=1

(
∂U

∂ θ0
(θj , rk)

)2

,

δ(r)max = max
k,j

∣∣∣∣ ∂Ũ∂ r0 (θj , rk)− ∂U

∂ r0
(θj , rk)

∣∣∣∣ ,
δ(θ)max = max

k,j

∣∣∣∣ ∂Ũ∂ θ0 (θj , rk)− ∂U

∂ θ0
(θj , rk)

∣∣∣∣ .
Table 2 presents values of errors for the computation of force components for the same
values of numerical parameters as well as for the computation of the potential.

Table 2: Values of the average and the maximum computation errors of the
force components in percent for various numbers of grid nodes.

Nr 50 100 200 400

δ
(r)
av 0.726 E-5 0.715 E-6 0.852 E-7 0.139 E-7

δ
(r)
max 0.189 E-2 0.935 E-3 0.466 E-3 0.233 E-3

δ
(θ)
av 0.844 E-4 0.137 E-4 0.251 E-5 0.480 E-6

δ
(θ)
max 0.929 E-3 0.450 E-3 0.220 E-3 0.108 E-3

When computing the force component along the coordinate ϕ0, we consider the
potential U(ϕ0, θ0, r0) as a function of three variables for the ellipsoid of rotation. Let

δ(ϕ)av =

Nϕ∑
i=1

Nr∑
k=1

Nθ∑
j=1

∣∣∣∣ ∂Ũ∂ϕ0
(ϕi, θj , rk)

∣∣∣∣, δ(ϕ)max = max
k,j,i

∣∣∣∣ ∂Ũ∂ϕ0
(ϕi, θj , rk)

∣∣∣∣ .
Then δ

(ϕ)
av ≈ 0.2× 10−10 and δ

(ϕ)
max ≈ 0.4× 10−9 for all the numbers Nr.

Values of the errors presented in Tables 1 and 2 reveal increasing the accuracy
when doubling the number of nodes along the coordinates r and θ

− in the range from 3.33 to 4 times when the potential is computed,

− in the range from 5 to 10 for the average error of components of the force,

− approximately at a twofold rate for a maximum error of components of the force.

The results of the tests presented allow us to conclude that the numerical approba-
tion of our method proposed for computing the volume potential and attraction force
of an ellipsoid is successful. To attain a higher accuracy, it is sufficient to increase the
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number of the discretization nodes. This circumstance is not valid in the application
of many other methods because of the presence of singularity in the integrand.

Our concept for the calculation of the potential and the attraction force of an
ellipsoid can be applied to the bodies having other forms.
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