
JInterval Library: Principles, Development,

and Perspectives∗

Dmitry Yu. Nadezhin
Oracle Development SPb, Zelenograd, Russia

dmitry.nadezhin@oracle.com

Sergei I. Zhilin
Altai State University, Barnaul, Russia

sergei@asu.ru

Abstract

This paper presents a Java library for interval computations. The
design of the bottom layers of the library follows the structure prescribed
in the IEEE P1788 Interval Standard draft. The library provides a user
with the possibility to choose interval flavor (classic, set-based, Kaucher),
interval bounds representation (extended rational, IEEE 754-2008 floating
point) and associated rounding policy. The top functional layer of the
library implements high-level interval methods such as solvers of systems
of interval linear equations and interval regressions. Two applications of
JInterval are described: P1788 test suite and interval nodes for KNIME
data mining platform.

Keywords: interval analysis, interval arithmetic, Java library, P1788 interval
standard, data mining

AMS subject classifications: 65-04, 65G30, 65G40

1 Introduction

The Java language is a general-purpose, concurrent, class-based, object-oriented lan-
guage specifically designed to have as few implementation dependencies as possible.
There is a huge number of applied Java-libraries and standard APIs that make devel-
opment in Java easy, rapid and cost-effective, not only in business but also in science.
Java popularity among developers (and especially among developers of applied sys-
tems) results from a combination of Java platform features and properties such as
binary portability, safe memory management, network-aware environment, parallel

∗Submitted: February 17, 2013; Revised: September 18, 2013; Accepted: January 21,
2014.

229

dmitry.nadezhin@oracle.com
sergei@asu.ru

230 Nadezhin et al, JInterval Library: . . .

and distributed computing tools, strict model of security, standard graphics and user
interface, etc.

There are various areas of Java applications. Besides numerous corporate informa-
tion systems, embedded software and applications for mobile devices, Java has proven
its usefulness and importance in scientific areas as well. Some of counterarguments
for Java use in scientific computing are still valid (such as language restrictions), but
many of them are less so at the moment (such as low performance) [28].

Analysis of large data sets (so-called Big Data) is one of the spheres where Java is
playing a key role now. Such highly effective and efficient tools for large-scale fault-
tolerant data analysis as Hadoop [2] and its ecosystem, implementing the MapReduce
concept [9], have been a major area of Java development over the past few years.

In high-performance computing (HPC), Java is not in the mainstream, but the
active research efforts in this area are expected to bring new developments in the near
future that will continue stimulating the interest of both industry and academia and
increasing the benefits of Java adoption for HPC [28].

Java’s significant role in applied and scientific software development and a plethora
of applied libraries highlights the absence of advanced interval tools in Java, although
interval techniques meet the requirements of a wide variety of applications.

The history of intervals in Java evidently originates from efforts of G. W. Walster
and the interval community to add native support of intervals to the Java language
shortly after Java’s appearance at Sun Microsystems [6]. Unfortunately, the goal had
not been achieved.

Other noticeable interval projects in Java are libraries IA math by Timothy Hickey
[13] and Java-XSC developed by Jose Dutra in his master’s thesis under the supervision
of Prof. Benjamin Bedregal [10, 7]. In both libraries, interval bounds are represented
by the double precision floating-point type. The first one provides only classic interval
arithmetic (IA) and elementary functions. The functionality of the second library is
wider; besides classic IA, it implements complex rectangular IA, classic and complex
interval vectors and matrices. At the same time neither Java-XSC nor IA math con-
tains high-level interval routines required in applications such as solving systems of
equations, optimization and so on.

All the above considerations motivated the appearance of our JInterval library for
interval computations. The library is intended mainly for developers creating applied
Java-based software, so it is aimed not only at low-level interval arithmetic, but at
providing high-level interval methods and solvers as well.

This paper is organized in the following way. In Section 2, some basic principles,
which JInterval library design relies upon, are discussed. Section 3 gives an overview
of the library architecture. Functionality provided by JInterval and several simple
examples of its use are described in Section 4. Section 5 presents a couple of JInterval
applications. Finally, Section 6 ends the paper with some concluding remarks and
perspectives of JInterval development.

2 Principles

The design of our JInterval library is guided by the following basic requirements, or-
dered by descending priority.

0. The library must be compliant with the IEEE P1788 standard for interval
arithmetic [22, 3]. Strict P1788 compatibility of the library is of absolute value, but
the standard draft is not finished yet and it is being actively modified, so JInterval may

Reliable Computing 19, 2014 231

lag the draft on its way to the final IEEE standard. The P1788 standard covers only
the low-level part of the foreseen functionality of the library, but these bottom layers
shape top level architecture as well.

1. The library must be clear and easy to use. No matter how wonderful a software
tool is, it will be hardly accepted by developers if it is not transparent and easy to
use.

2. The library should provide flexibility in the choice of interval arithmetic for
computations. The user must be able to choose interval arithmetic (classical, Kaucher,
complex rectangular, complex circular, etc.) and to switch from one arithmetic to
another if they are compatible. Syntactic differences between using one or another
arithmetic should be minimized.

3. The library should provide flexibility to extend its functionality. The library
must be layered functionally. Three layers should be defined: interval arithmetic
operations (according to P1788), interval vector and matrix operations, and, finally,
high-level interval methods, such as solvers of equations, optimization procedures, etc.
The architecture of the library must allow for extensions at every layer, including the
bottom one.

4. The library should provide flexibility in choosing the precision of interval end-
points and associated rounding policies. The choice of the interval boundaries repre-
sentation and the rounding mode could allow the user to tune accuracy and speed of
calculations, depending on the problem solved.

5. The library must be portable. Cross-platform portability of the library is one
of its major strengths, and is a key distinction over its closest competitors. To a large
extent, this requirement is ensured by the choice of the Java technology built on the
principle “write once, run anywhere”. However, the design must adhere to certain
restrictions for practical implementation of this requirement.

6. The library should provide high performance. In an era of multicore and
multiprocessor systems, a prerequisite for high performance is the ability to use the
library safely in a multithreaded environment.

Attempts to simultaneously satisfy all the requirements often run into conflicts.
In these situations, the developers followed the declared priority of the requirements.

3 Library Architecture

This section describes core ideas that shape the design of JInterval and its implemen-
tation in Java. The section starts with a brief overview of some specific features of
the Java language important for understanding further considerations. Subsection 3.2
presents the implementation of a “smart” number type. Interval types based on the
number type are discussed in subsection 3.3. Descriptions of number and interval types
design in JInterval are preceded by considerations on a mathematical level. Finally,
subsection 3.4 presents the modular structure of the library.

3.1 OOP Concepts in Java

This subsection highlights some peculiarities of the implementation of object-oriented
programming concepts in the Java language. Knowledge of these issues helps one to
understand Jinterval design. A comprehensive description of the Java language can be
found, for example, in [4].

232 Nadezhin et al, JInterval Library: . . .

One of the specific features of the Java language is the explicit syntactic construc-
tion which expresses the notion of class interface. An interface in Java is similar to
a class, but it contains no data and exposes behaviors defined as methods. More for-
mally, an interface is an abstract type used to specify an interface (in the generic sense
of the term) that classes must implement. A class having all the methods defined in
the interface is said to implement that interface. Usually a method in an interface
cannot be used directly, but there must be a class which implements it. Different
classes can implement the same interface in their own manners. Thus, interfaces in
Java are mainly a way to achieve polymorphism. Besides, multiple class inheritance
is not allowed in Java, but it can be simulated using interfaces, because a class can
implement multiple interfaces.

Another important feature of the Java language’s is parameterized types or gener-
ics. Generics allow “a type or a method to operate on objects of various types while
providing compile-time type safety” [4]. A common use of generics is building con-
tainer classes which can hold objects of any type. The core idea of generics is to
abstract over a type (class or interface) by introducing a so called type parameter (or
type variable) in the declaration of the type. A type variable is delimited by angle
brackets and follows the class (or the interface) name in the declaration, as in the
following example of generic interface.
Container<T>:

interface Container<T> {
void add(T item);

Iterator<T> iterator();

}
The type variable T is used inside the declaration body as a placeholder for some spe-
cific type. This specific type is bound to the type variable when an object of generic
type is declared. The correctness of type substitution is checked at compile time. In
our example, if the class List<T> implements interface Container<T> then the list of
integers can be declared as

Container<Integer> myIntList = new List<Integer>();

i.e., type parameter is bound to Integer type.

Interfaces and generic interfaces are widely used in JInterval to express the hierarchy
of number and interval types described below.

3.2 Basic Number Type

3.2.1 Mathematical Level

Intervals are represented by their endpoints. Achieving flexibility in choosing precision
of interval endpoints, associated rounding policies and computational performance (see
principle 4) requires a well-designed number data type.

We assume the value set for the basic number data type is equal to the set of
rational numbers extended with {−∞,+∞}. This set is denoted by Q, and corresponds
to the class ExtendedRational in the library. Such a supposition is motivated by the
urge to build an algebraic system closed under arithmetic operations. This property
allows us to obtain precise solutions of many linear algebra problems. It is important
to note that the set Q contains value sets of floating-point types both for radix 2 and
10.

Elementary functions are also defined for the basic number type, but their precise
results can lie out of Q, in contrast to arithmetic operations over Q. This issue,

Reliable Computing 19, 2014 233

together with practical limitations, are reasons why approximate versions of arithmetic
operations and elementary functions are necessary.

Results of an approximate version of arithmetic operations and elementary func-
tions belong to some finite subset of Q specified for this version of operations or func-
tions. In the P1788 standard, this subset is named “number format” and is denoted
by F. According to P1788, a number format must contain zero, −∞, +∞ and must
be symmetric. In our library, the parameters that represent this subset are called a
ValueSet.

An approximate version of an arithmetic operation op(x, y) (or op(x) for unary
operation) is defined through the exact operation using a rounding function rnd :
R → F as rnd(op(x, y)) (or rnd(op(x)) for unary operation). In a similar way, an
approximate version of an elementary function fun(x) is defined as rnd(fun(x)).

A binding of a certain version (implementation) to every arithmetic operation and
elementary function for the number type signature is called a context in JInterval.
The library provides the user with a number of contexts. An exact context consists of
exact operations and functions. A function of the exact context generates the exception
IrrationalException if a result of the function is irrational. This enables the user
to decide how to organize further computations. When the use of an exact context is
computationally too expensive, approximate contexts can be employed. The library
provides approximate contexts for different number formats F and rounding functions
rnd().

3.2.2 Implementation Level

It is natural to expect that the user will employ intervals with bounds represented by
numbers of a binary floating-point type (especially of type double) more often than
ones with rational bounds of general kind. That is why we paid special attention to
the representation of the ExtendedRational type in these particular cases of rational
numbers.

The underlying representation of rational numbers in ExtendedRational assumes a
reduced form, i.e., there are no common prime divisors for numerator and denominator.
Besides, powers of two are factored out of the numerator and denominator. Thus the
representation of a rational number has the form n/d×2exp, and, for d = 1, the values
of ExtendedRational are binary floating-point numbers.

Class ExtendedRational encapsulates three different implementations specified as
subclasses:

• subcalss RationalImpl implements the exact representation of rational numbers
in a general form using two BigInteger fields for numerator and denominator
and an int variable for the binary exponent;

• subcalss BinaryImpl implements the approximate representation as a binary
floatin- point number, and consists of one BigInteger field for the mantissa and
an int variable for the binary exponent;

• subcalss BinaryDoubleImpl describes a rational number which can be repre-
sented by a value of type double.

Implementations of the arithmetic operations and elementary functions over the
extended rational numbers are not integrated immediately into ExtendedRational as
methods. Instead, they are implemented in the separate class ExtendedRationalOps

for exact versions of operations and functions and in context classes with the interface
ExtendedRationalContext for approximate versions. So, if x and y are variables of

234 Nadezhin et al, JInterval Library: . . .

ExtendedRational type and ctx is a context, then, for example, addition can be
performed as ctx.add(x,y).

Since the underlying representations of rational numbers in ExtendedRational

differ, implementations of binary arithmetic operations and elementary functions are
based on distinct algorithms for pairs of rational numbers (a) in the general form, (b)
in the form of floating-point numbers, and (c) in the form of double-values.

To start computations, the user must create an exact context or an approximate
context with the necessary number format and rounding mode (see Listing 1).

Contexts are extendable and permit user implementations. For example, the li-
brary’s contexts permit use of functions from the MPFR library for multiple-precision
floating-point computations with correct rounding [11].

3.3 Interval Types

3.3.1 Mathematical Level

One of motives which determine the design of the library is to construct a universal
domain of interval operations and elementary functions. The universal domain must
be common for intervals of different flavors and must contain sets of classic intervals,
set-intervals, and Kaucher intervals.

The universal domain is assumed to consist of

• degenerate intervals [a, a];

• classic intervals [a, b], a < b;

• the empty interval;

• the entire interval (−∞,+∞);

• semi-infinite intervals (−∞, b] and [a,+∞);

• improper intervals [a, b], a > b;

where a and b are rational numbers.
The signatures of interval operations and functions are common to intervals of

different flavors. However, interval operations and functions of some flavors can give
different results for the same arguments. In particular, interval functions of some
flavors can be partial. For example,

• for classic intervals,
√

[−1, 4] is not defined;

• for set-valued intervals, square root is a partial function and
√

[−1, 4] = [0, 2];

• for Kaucher intervals,
√

[−1, 4] is not defined.

Thus, we cannot unify interval operations and functions and, naturally, we have to
logically separate a description of the universal domain and descriptions of interval
operations of various flavors.

In the Java language, signatures of interval operations and functions can be ex-
pressed using interfaces, and can have different implementations (versions of operations
or functions).

Exact versions of interval operations and functions are defined

• for the set-interval flavor, as natural interval extensions of real functions;

• for the Kaucher flavor, as KR-extensions of real functions [12];

• for classic intervals, similar to the case of set-interval flavor excluding intervals
with an infinite bound (or bounds) and empty set.

Reliable Computing 19, 2014 235

The universal domain is closed on interval arithmetic operations, but some interval
functions can give results that lie outside the universal domain (for example,

√
[1, 2]

gives an interval with irrational upper bound). Along with practical limitations, this
circumstance explains the need for approximate versions of interval operations and
functions in addition to mathematically exact ones. In P1788, exact operations and
functions correspond to Level 1 while approximate versions match Level 2.

Results of approximate versions of interval operations or elementary functions
belong to a finite subset of the universal domain. In terms of P1788, such a subset
is called an “interval data type” and is denoted by T. More precisely, the notion
“interval data type” means that, at Level 2 of the standard, intervals are represented
by a pair <Level 1 interval, type name> which explicitly specifies the value set and
the associated version of operations and functions. This differs from the JInterval
approach, but the library still provides classes emulating concepts of the standard.

According to P1788, an interval data type is often represented as the inf-sup type
derived from a given number format F. The inf-sup type is the bare interval type T
comprising all intervals whose endpoints are in F, together with the empty interval.

There are different ways of approximating an interval [a, b], a, b ∈ R corresponding
to Level 1 of P1788 by a Level 2 interval [c, d] ∈ T, c, d ∈ F:

• containment approximation, which assumes [c, d] ⊇ [a, b], i. e., c ≤ a ≤ b ≤ d;

• Hausdorff approximation: [c, d] is an interval closest to [a, b] in the Hausdorff
metric, i.e., c = rndnear(a), d = rndnear(b).

The quality of approximation achieved by an operation/function is indicated by
accuracy mode. The P1788 standard distinguishes three accuracy modes for con-
tainment approximation: tightest, accurate and valid. ‘Tightest’ is the strongest of
these three modes, and requires the best possible T-interval enclosure as the result-
ing approximate interval of an operation or a function result. The approximation in
‘accurate’ accuracy mode also satisfies certain requirements on the width of the enclo-
sure, but these requirements are weaker than in the ‘tightest’ mode. ‘Valid’ accuracy
mode allows approximation of a mathematically correct result by any interval from T
containing the mathematically exact interval of Level 1.

JInterval defines two additional accuracy modes: exact and so-called “fast” based
on Hausdorff approximation. Exact accuracy mode gives a mathematically correct
result if the produced interval belongs to the universal domain, i. e., has rational
bounds. Fast accuracy mode assumes that the resulting interval from T has bounds
nearest to the endpoints of the exact interval result. In Java, this accuracy mode
can be easily implemented because nearest is the only rounding direction natively
supported in Java.

Each accuracy mode is assumed to be implemented by a separate set of versions of
operations and functions. In JInterval, such a set is called an interval context. It binds a
certain version to every interval-valued operation and function required by the P1788
standard (hull, constructors, arithmetic operations, intersection, union, elementary
functions).

3.3.2 Implementation Level

Following the basic principles, the library is designed to be extensible. Developers can
supplement the library with their own interval flavors, underlying interval representa-
tions and implementations of interval operations and functions. At the same time, all
implementations of different developers must be interoperable.

236 Nadezhin et al, JInterval Library: . . .

Interoperability is ensured by the fact that all individual classes representing in-
terval types implement the common interface Interval (see Figure 1).

Figure 1: Class diagram for packages net.java.jinterval.interval.*

This interface consists of methods i.inf() and i.sup() returning bounds of an in-
terval i as ExtendedRational-values and methods i.doubleInf() and i.doubleSup()

which give approximate interval bounds of i as values of primitive type double inde-
pendently of the underlying representation of i. Furthermore, Interval declares all
the methods with non-interval result. Methods of one group, such as i.wid(), i.mid(),
etc., return numeric characteristics of an interval i as values of ExtendedRational

or double type. Methods of another group in Interval are boolean functions like
i.isEmpty(), i.containedIn(Interval), etc. The method i.getDecoration() which
gives a decoration for an interval i is also declared in the interface Interval.

At the moment, the implementation of decorations in JInterval meets P1788 v. 6.1.
This version of the standard does not yet explicitly separate interval flavors, and
defines common decorations for all flavors. An interval decoration possesses one of
the following values: ILL (ill-formed), TRV (trivial), DEF (defined), DAC (defined and
continuous), and COM (common).

The interface Interval does not include interval-valued methods such as

• Interval i.add(Interval),

• Interval i.sin(),

• etc.

Instead, these methods are declared in the interface IntervalContext of an interval
context ictx as

• Interval ictx.add(Interval, Interval),

Reliable Computing 19, 2014 237

• Interval ictx.sin(Interval),

• etc.,

along with other interval-valued functions (constructors, arithmetic operations, ele-
mentary functions).

The library provides means to instantiate some predefined interval contexts, but
the user may build his own contexts as well. Instances of a predefined interval context
can be constructed using a special factory class. For example, to instantiate a context
for a set-interval flavor, factory class SetIntervalContexts can be used. There exist
a number of static methods in a factory class to construct interval contexts supporting
different accuracy modes.

• The factory method getExact() returns a context with the exact accuracy mode.
Functions in this context throw an exception if their exact result does not belong
to the universal domain (i.e., at least one bound of the interval is an irrational
number, such as sqrt([1,2])). Catching the exception allows the user to make
a decision on a further computation process.

• The factory method getInfSup(BinaryValueSet numberFormat) constructs a
context with the tightest accuracy mode for interval type T = InfSup F, where
numberFormat specifies F (binary16, binary32, binary64, binary128, etc).

• The factory method getFast() constructs a context with the fast accuracy mode
for interval type InfSup binary64.

A simple program which illustrates how to create an interval context and perform
simple interval calculations is shown in Listing 2 (see Section 4).

The above considerations and Listing 2 concern the use of set-intervals. How-
ever, the overall logic of computations using intervals of different flavors is completely
analogous.

Interfaces for basic interval types describing different flavors (interface
SetInterval, interface KauherInterval, interface ClassicInterval, etc.) are formed
as extensions of the common base interface Interval (see Figure 1). From Interval,
they inherit methods common to all flavors.

The signature of interval-valued operations and functions of different flavors is ex-
pressed by interfaces named FlavorIntervalContext, where Flavor is the name of
an interval flavor (interface SetIntervalContext, interface KaucherIntervalContext,
interface ClassicIntervalContext, etc.). Flavor interfaces are implemented in corre-
sponding interval flavor contexts.

Interval interfaces FlavorIntervalContext of the different flavors have common
features, so they all extend the same generic super-interface
IntervalContext<I extends Interval> with type parameter I by binding I to the
interval type with corresponding flavor. For example, interface SetIntervalContext

binds I to SetInterval and extends interface IntervalContext<SetInterval>.
The standard representation of intervals belonging to the universal domain in JIn-

terval internally uses hidden classes that describe both flavor and memory represen-
tation of interval bounds. Some of the classes specify classic intervals and, at the
same time, implement interfaces of all three flavors: SetInterval, KauherInterval,
ClassicInterval. Other classes designate those set-theoretic intervals that are not
classic (infinite, semi-infinite and empty) and implement interface SetInterval only.
The third kind of classes specifies improper intervals and implements only the interface
KauherInterval. When an operation or a function computes resulting interval bounds,
it creates an instance of those hidden classes which represents the result appropriately.

238 Nadezhin et al, JInterval Library: . . .

As mentioned above, the P1788 standard adopts another approach, where a Level 2
interval is defined as a pair <Level 1 interval, type name> explicitly specifying its set
of values and associated version of operations and functions. JInterval emulates this
concept using subclasses of the abstract class AbstractLevel2SetInterval. Each
subclass designates a specific type of Level 2 intervals. An instance of a certain
subclass contains Level 1 interval while type name is specified by the subclass it-
self because, in Java, every object is equipped with a label of its class. Classes
Level2SetIntervalInfSupBinary64 and Level2SetIntervalInfSupBinary128 are ex-
amples of such subclasses corresponding to interval inf-sup types. Binary arithmetic
operations are available only for intervals of the same class. That is why such an
operation need no a context, and it is incorporated as a method in this class. For
example, class Level2SetIntervalInfSupBinary64 has the method

Level2SetIntervalInfSupBinary64 add(Level2SetIntervalInfSupBinary64),
while class Level2SetIntervalInfSupBinary128 contains the method

Level2SetIntervalInfSupBinary128 add(Level2SetIntervalInfSupBinary128).
Number and interval types are employed by classes implementing vectors, matrices

and high-level solvers for systems of interval linear equations, interval regressions,
etc. The implementation of vectors and matrices in JInterval is at the very beginning
and needs further development. At the moment, the library consists of only dense
matrices with elements of ExtendedRational and SetInterval types. Vector and
matrix operations have a syntax similar to that of Matlab, but need one more argument
to specify a context (see Listing 4).

3.4 Module Structure

Physically, JInterval is a collection of Maven [1] subprojects (modules) with an aggre-
gator project above them. A graph of module dependencies is shown in Figure 2.

jinterval-ir

jinterval-ils

jinterval-interval-java

jinterval-rational-java

fortress-rounding

boehm-creals

mpfr-adapter

commons-math3

lpsolve

jna

large-test-java commons-compress

External dependencies JInterval packages

Figure 2: JInterval modules dependency graph.

Modules jinterval-rational-java and jinterval-interval-java form the core

Reliable Computing 19, 2014 239

of the library and contain the definition of scalar and interval types. They depend
on the rounding class from Fortress (fortress-rounding) [14] and constructive re-
als of H. Boehm (boehm-creals) used to construct the tightest interval enclosures
of elementary functions. High-level solvers use, besides the core modules, external
libraries for some standard methods like linear algebra and linear programming. Mod-
ule mpfr-adapter is a JNA-interface for the native code of the MPFR library [11].
Tests for JInterval functionalities are placed in the subproject large-test.

4 Functionality and Examples

JInterval is an ongoing project. Thus, functionality provided by the library constantly
grows. At the moment the library provides the user with the following possibilities.

The bottom functional layer is formed by basic numeric types: extended rational
and floating-point arithmetic with flexible underlying representation.

Two types of arithmetic for intervals with bounds represented by an appropriate
numeric type can be used: real set-based interval arithmetic and Kaucher (“modal in-
terval”) arithmetic. JInterval supports bare and decorated intervals, but, as mentioned
above, the same decoration class is used for all interval flavors so far.

A list of interval elementary functions available in JInterval meets the P1788 stan-
dard, but for the Kaucher interval flavor not all of them have been implemented yet.

Dense vectors and matrices can be used both for extended rational numbers and
intervals.

The layer of high-level interval methods is represented by solvers of interval linear
equations systems and an interval regressions solver.

Listing 1: Simple rational calculations
package Examples;

import net.java.jinterval.rational.ExtendedRational;
import net.java.jinterval.rational.ExtendedRationalContext;
import net.java.jinterval.rational.ExtendedRationalContexts;

public class EulerNumber {

 public static void evaluateTaylorExpansion(int N){
 ExtendedRationalContext rc;
 rc = ExtendedRationalContexts.exact();
 //rc = ExtendedRationalContexts.mkNearest(BinaryValueSet.BINARY32);

 ExtendedRational one = ExtendedRational.one(), fact = one, e = one;
 for(int n=1; n<=N; n++) {
 System.out.println("e = " + e + " (" + e.doubleValue() + ")");
 fact = rc.multiply(fact, ExtendedRational.valueOf(n));
 e = rc.add(e,rc.divide(one,fact));
 }
 System.out.println("e = " + e + " (" + e.doubleValue() + ")");
 }

 public static void main(String[] args) {
 // Approximate Euler number e using 10th degree Taylor polynomial for exp(1):
 // e = 1 + 1/2! + 1/3! + ... + 1/10!
 evaluateTaylorExpansion(10); }
}

Interval linear system solvers implement the Gauss–Seidel method with the pre-
liminary Hansen-Bliek-Rohn-Ning-Kearfott enclosure [18] and subdifferential Newton

240 Nadezhin et al, JInterval Library: . . .

method [26] for finding formal solutions of interval linear systems in Kaucher arith-
metic. Two and three dimensional AE-solution sets of interval linear systems can
be visualized using a beta-version of a class that implements the boundary interval
method by Irene A. Sharaya [25].

The interval regression solver assumes the simplest linear model with an interval
uncertainty in response variable only, and allows checking data and model consistency,
detecting outliers, computing interval parameters estimates and interval estimate of
the response prediction [29, 30].

Hereafter we illustrate a style of JInterval use with several examples.

The first fragment of code (Listing 1) gives an example for the extended rational
number type. The program computes a rational approximation to the Euler number
using a Taylor series expansion. Initially, a rational context must be created using
the factory class ExtendedRationalContexts. The precision of the result depends on
the used context. In the code, the exact context is employed, but the commented
line shows the call of constructor of the approximate context based on the floating-
point type. The length of the type is specified by a constant in the argument of the
constructor mkNearest().

Listing 2: Evaluation of simple interval expressions
package Examples;

import net.java.jinterval.interval.SetInterval;
import net.java.jinterval.interval.SetIntervalContext;
import net.java.jinterval.interval.SetIntervalContexts;

public class SimpleExpressions {

 private static void evaluateSimpleExpressions() {
 SetIntervalContext ic = SetIntervalContexts.getExact();
 // SetIntervalContext ic = SetIntervalContexts.getInfSup(BinaryValueSet.BINARY16);
 // SetIntervalContext ic = SetIntervalContexts.getInfSup(BinaryValueSet.BINARY32);
 // SetIntervalContext ic = SetIntervalContexts.getInfSup(BinaryValueSet.BINARY128);

 SetInterval x = ic.nums2interval(1,2); // create x = [1,2] from numbers
 SetInterval y = ic.nums2interval(3,5); // create y = [2,3] from numbers
 SetInterval z = ic.text2interval("[1/3, 4.5]"); // create interval z from string

 SetInterval s = ic.add(x,y); // s = x + y
 SetInterval d = ic.divide(s,y); // d = s / y

 System.out.println("x+y = " + s);
 System.out.println("(x+y)/y = " + d);

 if(d.containedIn(z)) { // if d in z
 ExtendedRational a = z.inf(); // get z inf as a rational number
 ExtendedRational b = z.sup(); // get z sup as a rational number
 System.out.println("[" + a + "," + b + "] contains " + d);
 } else { // else
 double r = z.doubleRad(); // get double approximation of z radius
 System.out.println("rad z = " + r);
 }
 }

 public static void main(String[] args) {
 evaluateSimpleExpressions();
 }
}

Listing 2 shows how to start interval calculations. The user must create an in-
terval context of the chosen flavor (set-interval context ic in the example) with the

Reliable Computing 19, 2014 241

appropriate interval representation and rounding mode (compare the first line of the
method evaluateSimpleExpressions() and possible alternatives in the commented
lines below). If the exact context is turned on (using method getExact()), then in-
terval bounds are represented by the extended rational type and the precision of all
subsequent operations is absolute.

After instantiation of a context, the user can construct intervals and compute
interval operations or functions calling the context’s methods. Number- and boolean-
valued characteristics of an interval can be obtained using methods of the interval
itself (see the conditional operator in the code).

Listing 3: Interval version of Rump’s example
package Examples;

import net.java.jinterval.interval.SetInterval;
import net.java.jinterval.interval.SetIntervalContext;
import net.java.jinterval.interval.SetIntervalContexts;

public class IntervalRumpExample {

 private static void evaluateIntervalRumpExpression(String message,
 BinaryValueSet valueSet) {
 System.out.println("=== " + message + " ===");

 SetIntervalContext ic;
 if (valueSet != null) ic = SetIntervalContexts.getInfSup(valueSet);
 else ic = SetIntervalContexts.getExact();

 SetInterval x = ic.nums2interval(77617, 77617),
 y = ic.nums2interval(33096, 33096),
 ic11 = ic.nums2interval(11, 11),
 ic121 = ic.nums2interval(121, 121),
 ic2 = ic.nums2interval(2, 2),
 ic5_5 = ic.nums2interval(5.5, 5.5),
 ic333_75 = ic.nums2interval(333.75, 333.75);

 SetInterval i1 = ic.multiply(ic.subtract(ic333_75, pow(ic, x, 2)), pow(ic, y, 6)),
 i2 = ic.multiply(pow(ic, x, 2),ic.subtract(ic.subtract(ic.multiply(
 ic.multiply(ic11, pow(ic, x, 2)), pow(ic, y, 2)),
 ic.multiply(ic121, pow(ic, y, 4))), ic2)),
 i3 = ic.multiply(ic5_5, pow(ic, y, 8)),
 i4 = ic.divide(x, ic.multiply(ic2, y));

 SetInterval i = ic.add(ic.add(ic.add(i1, i2), i3), i4);
 System.out.println("i = " + i);
 }

 public static void testIntervalRumpExpression() {
 evaluateIntervalRumpExpression("BINARY16", BinaryValueSet.BINARY16);
 evaluateIntervalRumpExpression("BINARY32", BinaryValueSet.BINARY32);
 evaluateIntervalRumpExpression("BINARY64", BinaryValueSet.BINARY64);
 evaluateIntervalRumpExpression("BINARY128", BinaryValueSet.BINARY128);
 evaluateIntervalRumpExpression("BINARY256", BinaryValueSet.BINARY256);
 evaluateIntervalRumpExpression("Exact", null);
 }

 public static void main(String[] args) {
 testIntervalRumpExpression();
 }
}

The program shown in Listing 3 computes f(77617, 33096) for the expression

f(x, y) = (333.75− x2)y6 + x2(11x2y2 − 121y4 − 2) + 5.5y8 + x/(2y)

242 Nadezhin et al, JInterval Library: . . .

which is known as S. Rump’s example [23, 16]. Numerical evaluation of this expression
gives a misleading result, despite the use of increasing arithmetic precision. Evaluation
in interval arithmetic produces wide intervals that contain the correct answer, and
thereby exposes the instability. Increasing the precision narrows the width of the
resulting intervals.

This example also demonstrates that even not so complex expressions lead to a
wordy Java code. This inborn Java problem can be partly solved by defining appro-
priate wrappers. We have started developing a Scala interface for JInterval to provide
the so called syntactic sugar to developers.

Listing 4: Hansen-Bliek-Rohn-Ning-Kearfott enclosure using MatlabOps
SetIntervalContext ctx = SetIntervalContexts.getInfSup(BinaryValueSet.BINARY64);
ExtendedRationalContext rcInv = ExtendedRationalContexts.mkNearest(BinaryValueSet.BINARY64);
ExtendedRationalContext rcDown = ExtendedRationalContexts.mkFloor(BinaryValueSet.BINARY64);
ExtendedRationalContext rcUp = ExtendedRationalContexts.mkCeiling(BinaryValueSet.BINARY64);
IntervalVector x, dA;
RationalMatrix C, B, v, Cv, R, w;
RationalVector dC, u, d, alpha, beta, dlow, vw;
Rational negunit = Rational.valueOf(-1); // INTLAB code of HBRNK enclosure

int n = dim(A); // n = dim(A);
dA = diag(A); // dA = diag(A);
C = compmat(A); // C = compmat(A);
B = inv(rcInv, C); // B = inv(C);
v = abs(mul(rcInv, B, ones(n, 1))); // v = abs(B*ones(n,1));
 // SetRoundDown;
Cv = mul(rcDown, C, v); // Cv = C*v;
if (!(Cv.getMinValue().signum() > 0)) { // if (~all(min(Cv))>0)
 x = new IntervalVector(n,ctx.entire()); // x = midrad(0,inf+zeros(n,1))
} else { // else
 dC = diag(C); // dC = diag(C);
 R = sub(rcDown, mul(rcDown, C, B), eye(n)); // R = C*B - eye(n,n);
 // SetRoundUp;
 w = zeros(1, n); // w = zeros(1,n);
 for (int i = 0; i < n; i++) { // for i = 1:n
 w = max(w, div_(rcUp, // w = max(w,
 neg(R.getSubMatrix(i, i, 0, n - 1)), // (-R(i,:))/
 Cv.getEntry(i, 0))); // Cv(i));
 } // end;
 vw = mul_(rcUp, //
 v.getColumnVector(0), w.getRowVector(0)); //
 dlow = sub(rcUp, vw, B.diag()); // dlow = v.*w-diag(B);
 dlow = neg(dlow); // dlow=-dlow;
 B = add(rcUp, B, mul(rcUp, v, w)); // B = B + v*w;
 u = mul(rcUp, B, b.mag()); // u = B*abs(b);
 d = B.diag(); // d = diag(B);
 alpha = add(rcUp, dC, div_(rcUp, negunit, d)); // alpha = dC + (-1)./d;
 beta = sub(rcUp, div_(rcUp, u, dlow), b.mag()); // beta = u./d-abs(b);
 x = div_(ctx, // x =
 add(ctx, b, midrad(Rational.zero(), beta)), // (b + midrad(0,beta))./
 add(ctx, dA, midrad(Rational.zero(), alpha))); // (dA + midrad(0, alpha);
} // end

Scala is a modern general purpose programming language which mixes features of
object-oriented and functional languages [19]. Scala programs run on the Java VM,
are byte code compatible with Java and allow calls to Scala from Java and vice versa.
Scala is equipped with expressive syntactic features (operator overloading, implicit
arguments, etc.) which allow one to cut away unneeded syntactic overhead and make
domain-specific language extensions. It enables us to express the relatively complex
semantics of interval computations with flexible representation and different interval
flavors in the common and natural syntax of an interval formula. Scala code sizes are

Reliable Computing 19, 2014 243

typically reduced by a factor of 3 when compared to an equivalent Java application.
Another useful wrapper implemented in JInterval is the MatlabOps class, which

introduces Matlab-like named functions such as zeros(), diag(), inv(), compmat(),
etc. MatlabOps, being inherited in user classes, can essentially shorten a code and sim-
plify the use of JInterval for Matlab/Intlab [24] aware programmers. Listing 4 shows
the procedure of Hansen-Bliek-Rohn-Ning-Kearfott coded line-by-line both using JIn-
terval+MatlabOps and Matlab+Intlab.

We have restricted ourselves only to several short examples. In the module
jinterval-demo of the library [5], an interested reader can find more comprehensive
examples: the use of interval decorations, iterations with the logistic equation, Hilbert
matrix inversion, use of interval linear systems solvers, and so on.

5 Applications

Several applications in different areas were built using JInterval. Two of them are
briefly described in this section.

5.1 P1788 Test Framework

On top of JInterval’s tightest implementation of interval operations and functions, a
simple framework for testing P1788 compliance of third-party libraries is developed.

The main component here is the Launcher, which is able to load dynamic libraries
(.so/.dll) with third party implementation of P1788 and to check the results obtained
from a library with the tightest results computed internally using JInterval.

The launcher reads tests from plain text files. An example of a simple input test
set is presented in Listing 5. The output of the Launcher for filib, boost and MPFI is
shown in Listing 6. The lines of the Launcher report have the following format:
<test> = <expected result> : <computed result> <comment>.
The expected result of an operation is calculated using JInterval while the computed
result is provided by a tested library.

Listing 5: File of tests
* div

[1,2] [0,1]

[1,2] [0,0]

* sqrt

[-Infinity,0]

[-Infinity,Infinity]

* pown

[0,0] 0

5.2 KNIME Interval Tools

KNIME [8] is a modular open source data analysis platform that enables the user to
visually create data workflows, selectively execute some or all analysis steps, and inves-
tigate the results through interactive views of data and models. Due to open interfaces,
KNIME allows easy integration of different data loading, processing, transformation,
analysis and visual exploration modules without the focus on any particular application

244 Nadezhin et al, JInterval Library: . . .

Listing 6: Test launcher report
== Filib 3.0.2

div [1.0,2.0] [0.0,1.0] = [1.0,Infinity] : [1.0,Infinity] Ok

div [1.0,2.0] [0.0,0.0] = [EMPTY] : [1.7976931348623157E308,Infinity] NOT TIGHT!

sqrt [-Infinity,0.0] = [0.0,0.0] : [0.0,0.0] Ok

sqrt [-Infinity,Infinity] = [0.0,Infinity] : [-4.9E-324,Infinity] NOT TIGHT!

pown [0.0,0.0] 0 = [1.0,1.0] : [1.0,1.0] Ok

==

== Boost 1.48.0

div [1.0,2.0] [0.0,1.0] = [1.0,Infinity] : [1.0,Infinity] Ok

div [1.0,2.0] [0.0,0.0] = [EMPTY] : [EMPTY] Ok

sqrt [-Infinity,0.0] = [0.0,0.0] : [0.0,0.0] Ok

sqrt [-Infinity,Infinity] = [0.0,Infinity] : [0.0,Infinity] Ok

pown [0.0,0.0] 0 = [1.0,1.0] : [EMPTY] CONTAINMENT FAILURE!!!

==

== MPFI 1.5.1

div [1.0,2.0] [0.0,1.0] = [1.0,Infinity] : [1.0,Infinity] Ok

div [1.0,2.0] [0.0,0.0] = [EMPTY] : [-Infinity,Infinity] NOT TIGHT!

sqrt [-Infinity,0.0] = [0.0,0.0] : [EMPTY] CONTAINMENT FAILURE!!!

sqrt [-Infinity,Infinity] = [0.0,Infinity] : [EMPTY] CONTAINMENT FAILURE!!!

Library has no Operation "pown" in line 7 : * pown

==

area. Such popular tools as WEKA (machine learning environment), R Project (statis-
tical programming language), Python (scripting language), ImageJ (image processing
and analysis program), Octave, Matlab can be integrated into KNIME data processing
and analysis workflows. A standard functionality of KNIME can be extended with
user-defined plug-ins. A great number of additional workflow nodes are developed by
the user community as well as by commercial vendors for chemical applications, image
and text analysis, data mining, etc.

A collection of interval plug-ins for the data mining platform KNIME has been
developed. The collection includes an interval regression builder, an outlier detector,
and an ILS solver that employs JInterval high-level solvers. KNIME-node “ILS Solver”
enables the user to construct inner and outer estimates of the united solution sets.
ILS Solver also can be used to visualize 2D and 3D united solution sets of ILS. These
views are based upon the Java-applet which has been developed by Gregor Paw in his
bachelor’s thesis [20], and implements W. Krämer’s visualization algorithm [15].

Interval tools can be easily and flexibly combined with the other functional nodes
of KNIME to construct analytical procedures. Simple a KNIME workflow that builds
an interval regression model and estimates predictions using it is shown in Figure 3.
Similarly, a workflow implementing an image recognition algorithm [21] is constructed.
This workflow inputs images with bounded noise and detects the best similar pattern
among several predefined ones. The metrics used to calculate similarity of images
and patterns is based on outer estimates of the united solution sets of interval linear
systems of a special kind solved using ILS Solver.

6 Conclusions and Perspectives

In this paper we have presented JInterval, a new library for interval computations in
Java. JInterval follows the draft of P1788 standard for interval arithmetic and pro-

Reliable Computing 19, 2014 245

Figure 3: KNIME workflow for interval regression.

vides two interval flavors: set intervals and Kaucher intervals with flexible underlying
representation of interval bounds and rounding policy controllable by the user. Dense
vectors and matrices are supported on top of the extended rational and interval arith-
metics. The most important functional layer of JInterval consists of high-level solvers
for typical interval problems: systems of interval linear equations and interval regres-
sion.

The functionality of JInterval enables the integration of interval computations and
analysis tools into a wide variety of applications and software developed in Java or/and
Java Virtual Machine. Data mining, distributed computations, software for mobile
devices, and industrial applications may be targets for JInterval employment.

JInterval is a continuing project, and in the nearest future most efforts will be
aimed at the maintenance of the compliance of JInterval with the P1788 standard.
The standard is close to completion, and JInterval could be the basis for a reference
implementation of P1788 in Java.

Yet another goal is to increase the performance of JInterval by providing optional
native coded plug-ins optimized for certain platforms.

Considering JInterval as a kind of run-time library for JVM, we plan to develop
an API for other languages. Development of a Scala version of JInterval has already
started.

The rich content of the high-level functionality of JInterval is one of the most
valuable issues for applied software developers. Therefore, an enhancement of JInterval
with implementations of interval analysis methods and solvers remains the foreground
task. We plan to incorporate the following components in JInterval: ILS tolerable
solution set estimators, a global optimization solver [27] and a verified ODE solver
[17].

JInterval is an open source project, and new contributors are welcome. The project
resources (source code, wiki, mailing list, etc.) are hosted at the java.net community
web site [5].

246 Nadezhin et al, JInterval Library: . . .

Acknowledgements

We would like to acknowledge all the people who contributed to or influenced the
JInterval project: Maksim V. Danilov, Kirill S. Dronov, Walter Krämer, Nikita V.
Panov, Gregor Paw, Anton E. Sartakov, Andrey S. Samoilov, Irene A. Sharaya, Egor
N. Tepikin. We would like to address special thanks to Prof. Sergey P. Shary, who
has been strongly supporting JInterval from the very beginning, and to IEEE Interval
Standard Working Group [3] for their valuable job.

References

[1] Apache Maven Project. http://maven.apache.org.

[2] Hadoop. Documentation and open source release. http://hadoop.apache.org.

[3] IEEE Interval Standard Working Group - P1788.
http://http://grouper.ieee.org/groups/1788.

[4] The Java Tutorials. Oracle. http://docs.oracle.com/javase/tutorial/.

[5] JInterval. Java library for interval computations. http://jinterval.java.net.

[6] Let’s add intervals to Java (a proposal).
http://www.cs.utep.edu/interval-comp/java.html.

[7] Benjamin R. C. Bedragal and José E. M. Dutra. Java-XSC: Estado da arte.
In XXXII Conferencia Latinoamericana de Informatica (CLEI-2006), Santiago,
August, 2006.

[8] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias
Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd
Wiswedel. KNIME: The Konstanz Information Miner. In Studies in Classification,
Data Analysis, and Knowledge Organization (GfKL 2007). Springer, 2007.

[9] Jeffrey Dean and Sanjay Ghemawat. MapReduce: a flexible data processing tool.
Communications of the ACM, 53(1):72–77, January 2010.

[10] Jose E. M. Dutra. Java-XSC: Uma Biblioteca JAVA para Computações Inter-
valares. Master’s thesis, Universidade Federal do Rio Grande do Norte, 2000.

[11] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Transactions on Mathematical Software, 33(2):13:1–13:15,
June 2007.

[12] Alexandre Goldsztejn. Modal intervals revisited, part 1: A generalized interval
natural extension. Reliable Computing, 16:130–183, 2012.

[13] Timothy J. Hickey, Zhe Qju, and Maarten H. Van Emden. Interval constraint
plotting for interactive visual exploration of implicitly defined relations. Reliable
Computing, 6(1):81–92, 2000.

[14] Guy L. Steele Jr., Eric E. Allen, David Chase, Christine H. Flood, Victor
Luchangco, Jan-Willem Maessen, and Sukyoung Ryu. Fortress (Sun HPCS lan-
guage). In David A. Padua, editor, Encyclopedia of Parallel Computing, pages
718–735. Springer, 2011.

[15] Walter Krämer. Computing and visualizing solution sets of interval linear systems.
Serdica Journal of Computing, 1(4):455–468, 2007.

http://maven.apache.org
http://hadoop.apache.org
http://http://grouper.ieee.org/groups/1788
http://docs.oracle.com/javase/tutorial/
http://jinterval.java.net
http://www.cs.utep.edu/interval-comp/java.html

Reliable Computing 19, 2014 247

[16] Eugene Loh and G. William Walster. Rump’s example revisited. Reliable Com-
puting, 8(3):245–248, 2002.

[17] Dmitry Nadezhin. A differential inequalities method for verifed solution of IVPs
for ODEs using linear programming for the search of tight bounds. In Abstracts
of 13th GAMM-IMACS International Symposium on Scientific Computing, Com-
puter Arithmetics and Verified Numerics SCAN-2008, El Paso, Texas, September
29 - October 3, 2008. – El Paso, Texas, 2008, pages 78–79.

[18] Arnold Neumaier. A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott
enclosure for linear interval equations. Reliable Computing, 5:131–136, 1999.

[19] Martin Odersky et al. An overview of the Scala programming language. Technical
Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.
http://scala-lang.org/docu/files/ScalaOverview.pdf.

[20] Gregor Paw. Ein intuitiv bedienbares Java-Applet zur Visualisierung exakter
Lösungsmengen von mengenwertigen numerischen Problemen. Bachelor-thesis,
University of Wuppertal, 2006.

[21] Alexander V. Prolubnikov. An interval approach to pattern recognition of nu-
merical matrices. Reliable Computing, 19(1):107–119, 2013.

[22] John Pryce and Cristian Keil (Tech Eds.). P1788: IEEE Draft Standard for
Interval Arithmetic.

[23] Siegfried M. Rump. Algorithms for verified inclusions: theory and practice. In
R. E. Moore, editor, Reliability in Computing: The Role of Interval Methods in
Scientific Computing, volume 19, pages 109–126. Academic Press, Boston, 1988.

[24] S.M. Rump. INTLAB — INTerval LABoratory. In Tibor Csendes, editor, De-
velopments in Reliable Computing, pages 77–104. Kluwer Academic Publishers,
Dordrecht, 1999. http://www.ti3.tuhh.de/rump/.

[25] Irene A. Sharaya. Boundary intervals and visualization of AE-solution sets
for interval systems of linear equations. In Book of abstracts of 15th GAMM-
IMACS International Symposium on Scientific Computing, Computer Arith-
metics and Verified Numerics SCAN-2012, Novosibirsk, Russia, September 23-
29, 2012. – Novosibirsk: Institute of Computational Technologies, 2012, pages
166–168. Slides: http://conf.nsc.ru/files/conferences/scan2012/142985/

Sharaya-scan2012.pdf.

[26] Sergey P. Shary. Algebraic approach to the interval linear static identification,
tolerance, and control problems, or one more application of Kaucher arithmetic.
Reliable Computing, 2:3–33, 1996.

[27] Sergey P. Shary. Randomized algorithms in interval global optimization. Numer-
ical Analysis and Applications, 1:376–389, 2008.

[28] Guillermo L. Taboada, Sabela Ramos, Roberto R. Exposito, Juan Touriño, and
Ramón Doallo. Java in the High Performance Computing arena: Research, prac-
tice and experience. Science of Computer Programming, 2011. (In press).
http://dx.doi.org/10.1016/j.scico.2011.06.002.

[29] Sergei I. Zhilin. On fitting empirical data under interval error. Reliable Computing,
11(5):433–442, 2005.

[30] Sergei I. Zhilin. Simple method for outlier detection in fitting experimental data
under interval error. Chemometrics and Intelligent Laboratory Systems, 88(1):60–
68, 2007.

http://scala-lang.org/docu/files/ScalaOverview.pdf
http://www.ti3.tuhh.de/rump/
http://conf.nsc.ru/files/conferences/scan2012/142985/Sharaya-scan2012.pdf
http://conf.nsc.ru/files/conferences/scan2012/142985/Sharaya-scan2012.pdf
http://dx.doi.org/10.1016/j.scico.2011.06.002

	Introduction
	Principles
	Library Architecture
	OOP Concepts in Java
	Basic Number Type
	Mathematical Level
	Implementation Level

	Interval Types
	Mathematical Level
	Implementation Level

	Module Structure

	Functionality and Examples
	Applications
	P1788 Test Framework
	KNIME Interval Tools

	Conclusions and Perspectives

