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Abstract

A method for enclosing matrix polynomials is proposed. This method
is applicable when the matrix is diagonalizable and supplies an interval
matrix including the matrix polynomial. The computational cost of this
method does not depend on the degree of the polynomial. Hence the
proposed method is faster than previous approaches when the degree is
large. Numerical results show the properties of this method.
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1 Introduction

In this paper, we are concerned with the accuracy of a numerically computed matrix
polynomial

F (X) = cpX
p + · · ·+ c1X + c0I, c0, . . . , cp ∈ C, X ∈ Cn×n, (1)

where c0, . . . , cp and X are given, and I is the n×n identity matrix. The evaluation of
the matrix polynomial (1) is required in many methods for computing matrix functions
(see [4]).

We consider in this paper the methods for enclosing F (X). The obvious approach
is to invoke Horner’s method (e.g. [4]) with interval arithmetic. The approach by
Paterson and Stockmeyer [8] can also be applied for this purpose by incorporating
interval arithmetic. These approaches require computational costs depending on p.

The purpose of this paper is to propose a method for enclosing F (X). This method
is applicable when X is diagonalizable and supplies an interval matrix including F (X).
In this method, eigen-decomposition ofX, one matrix inversion, andO(1) dense matrix
multiplications are executed. Thus the computational cost of this method does not
depend on p, so that the method is faster than the above approaches when p is large.
The case of large p occurs for example when the matrix exponential is computed via
Taylor series without scaling and squaring (see [7]).
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In this paper, we always assume that the eigenvectors of X are well conditioned.
The situation that this is not the case would be a natural extension of our work. We
leave this as an open challenge.

This paper is organized as follows: In Section 2, theory for enclosing F (X) uti-
lizing the eigen-decomposition is established, and the method based on the theory is
proposed. In Section 3, numerical results are reported to show the property of the pro-
posed method. Finally Section 4 summarizes the results in this paper and highlights
possible extensions and future work.

2 Enclosure Theory

In this section, we present theory for enclosing (1) utilizing the eigen-decomposition of
X and propose the method based on the theory which does not require computational
cost depending on p. Throughout this paper, let I be the n × n identity matrix.
For M ∈ Cn×n, Mij and M:j denote the (i, j) element and the j-th column of M ,
respectively, |M | := (|Mij |) and MT := (Mji). For M,N ∈ Cn×n, M ≤ N means
that Mij ≤ Nij follows for all i and j. For d1, . . . , dn ∈ C, diag(d1, . . . , dn) denotes
the diagonal matrix whose diagonal elements are d1, . . . , dn. Let e := (1, . . . , 1)T ∈ Rn

and E := (e, . . . , e) ∈ Rn×n. For Fc ∈ Cn×n and Fr ∈ Rn×n, where all elements in Fr

are nonnegative, the notation <Fc, Fr> denotes the interval matrix whose center and
radius are Fc and Fr, respectively.

We cite Lemmas 1 and 2, and present Lemma 3 which are utilized in the proof of
Lemma 4.

Lemma 1 (E.g. Meyer [5]) For S ∈ Cn×n and 1 ≤ p ≤ ∞, if ‖S‖p < 1, I − S is
nonsingular.

Lemma 2 (Miyajima [6]) Let S, F ∈ Cn×n be given and
DF := diag(‖F:1‖∞, . . . , ‖F:n‖∞). If ‖S‖∞ < 1, it follows that

|(I − S)−1F | ≤ |F |+ 1

1− ‖S‖∞
|S|EDF .

Lemma 3 is a modification of Lemma 2 suited for enclosing (I − S)−1F .

Lemma 3 Let S, F and DF be as in Lemma 2. If ‖S‖∞ < 1, it holds that

(I − S)−1F ∈
〈
F,

1

1− ‖S‖∞
|S|EDF

〉
.

Proof. The Neumann series (e.g. [5, Chapter 7]) gives

(I − S)−1F = (I + S + S2 + · · · )F = F + (S + S2 + · · · )F
∈ <F, |(S + S2 + · · · )F |>
⊆ <F, (|S|+ |S|2 + · · · )(|F |:1, . . . , |F |:n)>. (2)

For i = 1, . . . , n, it holds from ‖S‖∞ < 1 that

(|S|+ |S|2 + · · · )|F |:i = |S||F |:i + |S|(|S||F |:i) + · · ·
≤ ‖|F |:i‖∞|S|e+ ‖|S||F |:i‖∞|S|e+ · · ·
≤ ‖F:i‖∞|S|e+ ‖S‖∞‖F:i‖∞|S|e+ · · ·
= ‖F:i‖∞(1 + ‖S‖∞ + ‖S‖2∞ + · · · )|S|e

=
‖F:i‖∞

1− ‖S‖∞
|S|e.



Reliable Computing 18, 2013 11

This and (2) yield

(I − S)−1F ∈
〈
F,

1

1− ‖S‖∞
(‖F:1‖∞|S|e, . . . , ‖F:n‖∞|S|e)

〉
=

〈
F,

1

1− ‖S‖∞
(|S|e, . . . , |S|e)DF

〉
=

〈
F,

1

1− ‖S‖∞
|S|EDF

〉
. 2

Assume, as a result of numerical computation, we have an n×n complex diagonal
matrix D and an n × n complex matrix V such that XV ≈ V D. Let W be an
approximate inverse of V . From Lemmas 1, 2 and 3, we obtain the following lemma:

Lemma 4 Let D, V , W ∈ Cn×n be given, F (X) be as in (1), R := W (XV − V D),
S := I −WV , DR := diag(‖R:1‖∞, . . . , ‖R:n‖∞), Q := |R| + |S|EDR/(1 − ‖S‖∞),
DW := diag(‖W:1‖∞, . . . , ‖W:n‖∞) and Y := |S|EDW /(1 − ‖S‖∞). If ‖S‖∞ < 1,
then V and W are nonsingular, and F (X) ∈ Û follows, where Û is the result of the
interval arithmetic evaluation

V ((· · · (cp<D,Q>+ cp−1I)<D,Q>+ · · ·+ c1I)<D,Q>+ c0I)<W,Y >.

Proof. The inequality ‖S‖∞ < 1 and Lemma 1 give that V and W are nonsingular.
It holds from Lemmas 2 and 3 that

|V −1(XV − V D)| = |(I − S)−1R| ≤ Q, (3)

V −1 = (I − S)−1W ∈ <W,Y >. (4)

From (3), we have

V −1XV = D + V −1XV −D = D + V −1(XV − V D)

∈ <D, |V −1(XV − V D)|>
⊆ <D,Q>. (5)

We finally obtain

F (X) = V (cpV
−1XpV + · · ·+ c1V

−1XV + c0I)V −1

= V (cp(V −1XV )p + · · ·+ c1V
−1XV + c0I)V −1

= V ((· · · (cpV −1XV + cp−1I)V −1XV + · · ·+ c1I)V −1XV + c0I)V −1.

This, (4) and (5) prove F (X) ∈ Û . 2

We formulate and prove Theorem 1 for developing the proposed method.

Theorem 1 Let F (X) be as in (1), D, V , W , S, Q and Y be as in Lemma 4 and
t := (maxj Q1j , . . . ,maxj Qnj)

T . Assume ‖S‖∞ < 1 and define

U
(p−1)
mid := cpD + cp−1I, U

(p−1)
rad := |cp|Q,

U
(k)
mid := U

(k+1)
mid D + ckI,

U
(k)
rad := |U (k+1)

mid |Q+ U
(k+1)
rad |D|+ (U

(k+1)
rad t, . . . , U

(k+1)
rad t), k = p− 2, . . . , 0.

Let U be the result of the interval arithmetic evaluation V <U
(0)
mid, U

(0)
rad><W,Y >. Then

F (X) ∈ U holds.
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Proof. Let Û be as in Lemma 4, Û
(p−1)
rad := U

(p−1)
rad and Û

(k)
rad := |U (k+1)

mid |Q +

Û
(k+1)
rad |D| + Û

(k+1)
rad Q. Observe that Û

(k)
rad ≤ U

(k)
rad hold for all k, since Q ≤ (t, . . . , t).

From the definition of the center-radius interval arithmetic (e.g. [1]), Û coincides with

the result of the interval arithmetic evaluation V <U
(0)
mid, Û

(0)
rad><W,Y >. This coinci-

dence and Û
(k)
rad ≤ U

(k)
rad for all k yield Û ⊆ U . This inclusion and Lemma 4 completes

the proof. 2

The proposed method computes U using directed roundings. Since D is diagonal,
U

(k)
mid is also diagonal. Thus the computations of U

(k)
mid and U

(k)
rad require O(n2) oper-

ations for each k, so that the computation of U
(0)
rad involves O(pn2) operations. The

parts in the method where O(n3) operations are required are as follows 1:

• the approximate eigen-decomposition of X to obtain D and V

• the approximate inversion of V to obtain W

• dense matrix multiplications within R, S and V <U
(0)
mid, U

(0)
rad><W,Y >

From the above, the computational cost of the proposed method does not depend on
p. Hence we can expect that this method is faster than the approaches discussed in
Section 1 when p is large.

3 Numerical Results

In this section, we report numerical results to show the properties of the proposed
method and performances of our implementation. Let F (X) be as in (1), and V
and Y be as in Lemma 4. We used a computer with Intel Xeon 2.66GHz Dual CPU,
4.00GB RAM and MATLAB 7.5 with Intel Math Kernel Library and IEEE 754 double
precision. The compared methods are as follows:

H: Horner’s method with interval arithmetic

M: The method based on Theorem 1

PS: The function polyvalm ps in the matrix function toolbox [2] (Paterson and Stock-
meyer’s method) with interval arithmetic

In the method M, the eigen-decomposition and inversion are executed via MATLAB
function eig and inv, respectively.

Let an interval matrix F includes F (X), and mid(F ij) and rad(F ij) be the center
and radius of F ij , respectively. In order to assess the quality of the enclosures, we
define the relative radii

ξij :=
rad(F ij)

|mid(F ij)|+ rad(F ij)
, i, j = 1, . . . , n.

We can regard − log10 ξij as the number of correct significant decimal digits, since it
roughly corresponds to the number of digits to which the upper and the lower bounds
coincide, i.e., the number of significant digits we know to be correct for every entry.
We define maximum relative radius MRR and average relative radius ARR as

MRR := max
i,j

ξij and ARR :=

(∏
i,j

ξij

) 1
n2

,

1If p = O(n), the computation of U
(0)
rad will be listed in the items above.
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respectively. Hence − log10MRR and − log10ARR represent the minimum and arith-
metic mean of the correct digits, respectively. For nonsingular M ∈ Cn×n, define the
condition number κ(M) := ‖M‖2‖M−1‖2.

3.1 Example 1

In this example, we observe computing times of the methods for various n and p.
Consider (1) where the vector corresponding to c0, . . . , cp and X are generated by the
following MATLAB code:

c = (randn(p+1,1)+i*randn(p+1,1)) ./ factorial(0:p)’;

X = randn(n) + i*randn(n); X = X/norm(X);

We set c0, . . . , cp such that (c0, . . . , cp)T = c. The function randn generates a ma-
trix whose elements are normally distributed pseudo random numbers. The code
factorial(0:p) gives the vector (0!, . . . , p!). Table 1 displays the computing times of
the methods for various n and p.

Table 1: Computing times (sec) in Section 3.1
n p H M PS
500 10 5.296 6.248 4.739
500 50 28.07 7.188 16.25
500 100 56.56 8.412 28.72
1000 10 33.96 39.66 28.15
1000 50 182.1 43.86 88.37
1000 100 369.2 49.05 150.0
1500 10 104.0 119.9 82.10
1500 50 561.2 129.6 243.2
1500 100 1133 141.2 401.4

It can be seen from Table 1 that the computing times of M scarcely increased even
when p increased, and M was faster than the other methods when p was large. This
result coincides with the discussion in Section 2.

3.2 Example 2

In this example, we observe how the magnitudes of the radii change when κ(V ) in-
creases. Consider (1) where p = 50, c0, . . . , cp are obtained similarly to Section 3.1,
and X is generated by

V = gallery(’randsvd’,100,cnd);

X = V*diag(randn(n,1)+i*randn(n,1))*inv(V); X = X/norm(X);

We used the Higham’s test matrix randsvd [3]. Then κ(V ) ≈ cnd holds approximately
when cnd is not large. Table 2 displays MRR and ARR given by the methods for
various cnd.

We can confirm from Table 2 that MRR and ARR by M increased as cnd increased.
One of the reason is that the each entry of Y increased as cnd increased.
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Table 2: Obtained radii in Section 3.2

cnd H M PS
MRR ARR MRR ARR MRR ARR

1e+0 7.2e–12 5.9e–14 1.7e–9 1.7e–11 1.1e–12 1.7e–14
1e+2 1.2e–11 1.3e–14 6.9e–7 9.3e–10 6.7e–13 2.5e–15
1e+4 1.9e–11 9.8e–15 1.6e–2 2.0e–6 3.9e–12 2.2e–15
1e+6 1.2e–9 1.1e–14 1.0e+0 1.3e–2 1.9e–10 2.1e–15

4 Conclusion

In this paper, we proposed a method for enclosing matrix polynomial (1), and reported
numerical results to show the properties of this method. The method was faster
than the approaches discussed in Section 1 when p was large, and not ineffective
when eigenvectors of X were not ill-conditioned. By modifying this algorithm slightly,
enclosing F (X) where c0, . . . , cp and/or X are intervals is also possible. Our future
work will be to develop a method which is effective even when the eigenvectors are
ill-conditioned.
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