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Figure 1: Sergei Natanovich Bernstein (1880–1968). Photograph reproduced
from the Russian Academy of Sciences website — see http://www.ras.ru.

In 19121 Sergei Natanovich Bernstein’s (1880–1968, see Fig. 1) paper
Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités
appeared in the Communications de la Société Mathématique de Kharkov 2.
Series XIII No. 1, pp. 1–2. In this short note2 Bernstein introduced, for a given
degree l, the polynomials

Bl
i(x) =

(
l

i

)
xi(1− x)l−i, i = 0, . . . , l, x ∈ R (1)

which are now called Bernstein polynomials, in order to present a short proof of
the Weierstrass Approximation Theorem. The subsequent history is well docu-
mented, see, e.g., [29] for the period up to 1955, the monograph [18] published
in 1953, and the survey article [9] which appeared on the occasion of the hun-
dredth anniversary of the above paper by Bernstein. Since the latter publication
provides a historical perspective on the evolution of the polynomials (1) and a
synopsis of the current state of associated algorithms and applications, we will

1In this year the first issue, no.1, appeared, although the bound volume 13 of this journal
carries the year 1913, see [29].

2This paper can be found at www.math.technion.ac.il/hat/papers/P03.PDF, at the home-
page of History of Approximation Theory, which also provides useful related material.
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focus here on the use of Bernstein polynomials in reliable computing, which
covers the years since 1966, beginning just over a half-century after 1912.

The starting point was the paper [4] in which the range enclosing property of
the Bernstein polynomials was first given: Since these polynomials form a basis
for the space of the degree l polynomials, we can represent a given polynomial

p(x) =

l∑
i=0

aix
i (2)

over I = [0, 1] as

p(x) =

l∑
i=0

biB
l
i(x). (3)

Then we have for the range of p over I the enclosure

min
i
{bi} ≤ p(x) ≤ max

i
{bi}, x ∈ I. (4)

Property (4) is a consequence of the fact that the polynomials (1) are non-
negative over I and form a partition of unity, i.e., they sum up to 1. For
further properties of the polynomials (1) see, e.g., [9]. Rivlin [23] proved (lin-
ear) convergence of the bounds when the degree of the expansion is elevated
and considered the case of complex polynomial coefficients. In a series of papers
including [24, 25, 26], Rokne extended the results to (real and complex) interval
polynomials. Lane and Riesenfeld [16] introduced subdivision, which exhibits
quadratic convergence of the bounds, see, e.g., [10, 12].

The Bernstein expansion (3) was extended from the univariate to the n-
variate case in two ways: Over the unit box In by tensorial Bernstein polyno-
mials [12] and over the unit simplex in Rn by simplicial Bernstein polynomials,
see, e.g., [12, 17]. The fact that the enclosure (4) remains in force in the multi-
variate case opened the way for a broad application of the Bernstein expansion
in many fields where verification of the results is required. Furthermore, the use
of interval arithmetic provides a guarantee of the enclosure also in the presence
of rounding errors, e.g., [10, 28].

It is known that the representation (3) is numerically stable with respect to
perturbations of the coefficients of the polynomial (2) and to rounding errors
occurring during floating-point computations, e.g., [9]. “The importance of this
attribute stems from the high premium placed on the ‘robustness’ (i.e., accuracy
and consistency) of the geometrical computations performed in CAD systems.
Unlike most other forms of scientific or engineering computation, the output
of CAD systems — geometric models — are not ends in themselves. Such
models are rather the point of departure for downstream applications (meshing
for finite-element analysis, path planning for manufacturing, etc.) that cannot
succeed without accurate and consistent geometrical representations.” [9, p.
394].

Besides its optimal stability for evaluation, the Bernstein basis (1) has opti-
mal shape preserving properties, minimal conditioning of its collocation matrices



Reliable Computing 17, 2012 iii

and fastest convergence rates of the corresponding iteration approximation, e.g.,
[8, 9].

We list here those applications that are, in our opinion, the most important;
in each case we give a few references, where the focus is on papers from this
issue:

1. Root isolation for polynomials, e.g., [16, 19], or more generally, the enclo-
sure of the solutions of systems of polynomial equations and inequalities,
e.g., [1, 11, 14, 28].

2. Computer aided geometric design: This includes, e.g., the computation
of intersection points of planar algebraic curves and algebraic surfaces as
an application of item 1. and the approximation by interval Bézier curves
[27].

3. Robust control, e.g., invariance of stability properties of polynomials under
polynomial parameter dependency [30].

4. Dynamic systems, e.g., computation of the reachable set of a polynomial
dynamic system [6].

5. Global optimization: This includes (unconstrained) global minimization
of polynomials over the standard simplex [17] or a box; for a list of ap-
plications in the quadratic case see [7]. In the constrained case, bound
functions for the objective and constraint functions which may be used as
relaxations in a branch and bound framework can be constructed by using
the Bernstein expansion, see, e.g., [22] for constant and [13, 28] for affine
bound functions.

6. Analysis and optimization of programs, e.g., memory requirement estima-
tion [5].

7. Automatic theorem proving: This recent application includes proof of non-
linear inequalities using the functional programming language Haskell in
the flyspeck project, which aims at a formal proof of the Kepler conjecture
[15], and implementations using the mechanical theorem prover Prototype
Verification System (PVS) [21] and the COQ system with SSREFLECT

extension [2].

By a very recent and somewhat surprising result [20], tight bounds on the
range of a multivariate rational function over a box can be computed from the
Bernstein enclosure of the ranges of the numerator and denominator polynomi-
als. This will allow one to expand the range of problems which can be treated
by the Bernstein approach.

We have collected eleven papers on Bernstein polynomials and have divided
them into two groups: The first concerns mainly new properties of these poly-
nomials, whereas the second group focuses on new applications.

We would like to thank all the authors for their rapid submissions and valu-
able contributions and the referees (see the list below) for their timely reviews
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which have made it possible that this issue appears in the year of the hundredth
anniversary. By a serendipitous coincidence, 2012 marks the occasion of the
centennial anniversary not only of Bernstein’s proof of the Weierstrass approx-
imation theorem but also of Brouwer’s fixed point theorem [3] on which many
proofs of results in interval mathematics rely.

Constance, Germany, December 2012
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