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Abstract

This article presents a unifying framework to uncertainty quantification
for systems subject to several design requirements that depend polynomi-
ally on both aleatory and epistemic uncertainties. This methodology, which
is based on the Bernstein expansions of polynomials, enables calculating
bounding intervals for the range of means, variances and failure probabili-
ties of response metrics corresponding to all possible epistemic realizations.
Moreover, it enables finding sets that contain the critical combination of
epistemic uncertainties leading to the best-case and worst-case results, e.g.,
cases where the failure probability attains its smallest and largest value.
These bounding intervals and sets, whose analytical structure renders them
free of approximation error while eliminating the possibility of convergence
to non-global optima, can be made arbitrarily tight with additional compu-
tational effort. This framework enables the consideration of arbitrary and
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possibly dependent aleatory variables as well as the efficient accommodation
for changes in the models used to describe the uncertainty.

Keywords: Uncertainty quantification, probability bounds, epistemic uncertainty.
AMS subject classifications: 65-00

1 Introduction

Uncertainty Quantification (UQ) is the process of determining the effect of parameter
uncertainties on response metrics of interest. Denote by p the parameter vector whose
value is uncertain. Uncertain parameters can be classified as either aleatory, which are
parameters subject to inherent and irreducible variability, or epistemic, which are reducible
uncertainties resulting from a lack of knowledge [8]. While being aleatory or not is an
intrinsic property of a parameter, being epistemic depends upon the knowledge the analyst
has on the value(s) of the parameter. Consequently, these two classes of uncertainty are
not mutually exclusive.

This article studies the performance and reliability of a system whose response metrics
are polynomial functions of the uncertain parameters. Regarding performance, the accept-
ability of the system depends upon the most likely outcomes of a response metric. The
performance analysis of a system consists of evaluating low-order moments of the perfor-
mance function for a given uncertainty model of p. These models are commonly prescribed
by random variables via Probability Density Functions (PDF) or Cumulative Distribution
Functions (CDF). Regarding reliability, the acceptability of the system depends upon its
ability to satisfy several design requirements simultaneously. These requirements, which
are represented by a set of inequality constraints, depend on p. The system is deemed
acceptable if all constraints are satisfied. Hence, the reliability analysis of a system con-
sists of evaluating the probability of violating at least one of the requirements, a.k.a. the
probability of failure.

The most common practice in UQ is to model all uncertainties as random variables and
calculate some statistics of the response metrics. In performance analysis these statistics
are the mean and the variance, while in reliability analysis this statistic is the probability of
failure. Statistical moments can be readily approximated using sampling-based methods.
The failure probability is also commonly approximated using these methods [7] as well as
approaches based on asymptotic approximations of the failure domain [9].

Methods for propagating epistemic uncertainties include interval-value probability [3],
second order probability [4], imprecise probability theory and Dempster-Shafer theory
of evidence [11]. A common approach to quantifying the effects of both aleatory and
epistemic uncertainties is to perform nested sampling. This involves drawing samples of
the epistemic variables in an outer loop and performing an UQ for the aleatory variables
in an inner loop. In this fashion, ensembles of statistics are generated by performing
an UQ analysis for each realization of the epistemic variables. Nested iteration tends to
be computationally expensive. Consequently, the nested sampling must often be under-
resolved, particularly at the epistemic outer loop, resulting in an under-prediction of the
range of statistics. Methods that replace the outer sampling loop with an optimization
loop have been developed [1]. Even though these methods are more efficient than their
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sampling-based counterparts, they lead to very same under-predictions when convergence
to non-global optima occurs.

Most of the approaches handling epistemic uncertainty treat it in a manner that is
inconsistent with its definition. Specifically, epistemic uncertainties are often described as
uniform random variables or probability boxes, a.k.a. p-boxes. A reducible uncertainty,
should, in principle, be reducible to a constant. The value of that constant is, indeed,
unknown in advance. However, the ignorance on such a value does not make the variable
or the response metric random. This distinction has significant implications in the resulting
UQ analysis. For example, let a be an aleatory variable modelled as a uniform random
variable in [0, 1], while e is an unknown constant in [0, 1]. In this setting we want to evaluate
the response metric g = a + e for various uncertainty models of e. When e is incorrectly
modelled as a uniform random variable, g is a triangular distribution in [0, 2]. When e is
incorrectly modelled as a p-box with vertical envelopes at 0 and 1, g is a p-box with lower
and upper CDF envelopes g and g+ 1 supported in [0, 1] and [1, 2] respectively. When e is
correctly modelled as an unknown constant, g is uniform in [e, e+ 1]. Let us look into the
mean, variance and probability of g exceeding 3/2. Denote by E[·], V [·] and P [·] the mean,
variance and probability operators on the probability space of a. While the probabilistic
model leads to E[g] = 1, V [g] = 3/18 and P [g > 3/2] = 1/16, the p-box model leads to
Range(E[g]) = [1/2, 3/2], Range(V [g]) = [0, 13/6] and Range(P [g > 3/2]) = [0, 1/2]. The
correct model on the other hand, yields Range(E[g]) = [1/2, 3/2], Range(V [g]) = 1/12
and Range(P [g > 3/2]) = [0, 1/2]. Since the probabilistic model yields results that are
not representative of the extreme values taken by the statistics, its usage may result
in unsound and misleading UQ assessments. As for the p-box model, the UQ analysis
yields conservative bounds for the range of the variance. Note that this conservatism is
irreducible. For general g’s, the range of statistics obtained by using this approach will
suffer from irreducible conservatism even if the propagation is exact. This is a consequence
of the uncertainty model not being sufficiently restrictive; e.g., in the example above the
probability box describing the interval allows for unintended probabilistic models of e.
This trivial example, where the resulting distributions and corresponding statistics are
markedly different, illustrates the significant effects that the assumed uncertainty model
has on the UQ analysis. Studies where epistemic uncertainties are modelled as uniform
random variables or p-boxes are abundant. As the above example demonstrates, these
models fail to properly describe the ubiquitous family of uncertainties that are unknown
constants. In contrast to the developments in [3, 4, 11], epistemic variables will be modelled
as such hereafter. Note that the values taken by aleatory variables are a function of the
operating conditions affecting the system, while those of the epistemic variables are not.
Therefore, only the aleatory variables can cause variations in the system’s response.

A key feature of the present article is that the distinction between aleatory and epis-
temic variables is made consistently both qualitatively and quantitatively. While aleatory
uncertainties are manipulated according to long-standing concepts of probability theory,
epistemic uncertainties are manipulated using properties of the Bernstein expansion of
polynomials. In the proposed context, each response metric becomes a random process.
The family of random variables associated with this process is parametrized by the value of
the epistemic variables. In regard to the management of aleatory uncertainty, the frame-
work proposed enables bounding tightly and rigorously the value of statistics supporting



100 Crespo, Giesy, and Kenny, Framework for Uncertainty Quantification

conventional UQ analyses; e.g., tight, formally verifiable ranges containing the failure prob-
ability range are calculated. In regard to the management of both aleatory and epistemic
uncertainties, the framework proposed enables bounding tightly and rigorously the range
of statistics corresponding to all possible realizations of the epistemic variables (e.g., the
range of failure probabilities), as well as the epistemic realizations where the statistics
take on extreme values (e.g., the combination of epistemic variables leading to the largest
failure probability). These realizations will be referred to as critical epistemic points. The
bounds of the ranges and of the critical epistemic points resulting from the approach pro-
posed can be made arbitrarily small with additional computational effort regardless of the
manner in which the response metrics depend on p.

The strategies proposed here yield exact results. The computed bound of an extreme
statistic does not suffer from approximation error, while the convergence to the critical
epistemic point(s) is guaranteed. Standard probabilistic methods, such as polynomial
chaos, Monte Carlo sampling, imprecise probabilities, FORM, etc., cannot bound the ap-
proximation error present in their estimate of statistics, nor can they identify the extreme
values attained by such statistics when epistemic variables are present. As compared
to methods based on interval analysis [5], whose results are also formally verifiable, the
bounds proposed are better since they can always be made to converge to the exact range.
Bounds based on interval arithmetic suffer from irreducible conservatism when the require-
ment functions have repeated uncertain parameters. As compared to methods where the
search for critical epistemic values is carried out using nonlinear programming or sampling,
the methods developed here eliminate the possibility of under-predicting the range of the
statistic of interest; i.e., the search for the extrema of non-convex functions via nonlinear
optimization may converge to non-global optima, thereby producing a UQ assessment that
under-predicts the range of the statistic of interest. Furthermore, this framework enables
the consideration of uncertainty models comprised of arbitrary and possibly dependent
aleatory variables, as well as the accommodation for changes in such a model with a small
amount of computational effort, e.g., evaluating the change in the failure probability that
stems from changing the random variables that prescribe the aleatory variables. On the
down side, as with all the UQ methods listed above, “the curse of dimensionality” re-
stricts the applicability of the proposed strategies to systems with a moderate number of
uncertainties.

This article is organized as follows. Basic concepts and notions are introduced in
Sections 2 and 3. Section 4 presents strategies for UQ in the presence of aleatory uncer-
tainties. Section 5 presents developments for UQ in the presence of epistemic and aleatory
uncertainties. Low-dimensional, easily reproducible examples are used to facilitate the pre-
sentation of the results and benchmark the scope of framework. Finally, a few concluding
remarks are made.

2 Basic Concepts and Notions

In a system that depends on the uncertain parameter p, response metrics are real-valued
functions defined on a master domain D ⊆ Rs. These metrics include performance func-
tions and requirements functions. A performance function, such as the cost of a system, is
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a metric used to evaluate a system’s performance. This function will be denoted by g(p),
where g : D → R. On the other hand, a reliability requirement is an admissible range
of variation of a performance metric, e.g., cost not exceeding the available budget. The
functions prescribing reliability requirements will be called requirements functions. These
requirements are prescribed by the vector inequality1 g(p) < 0, where g : D → Rv.

The failure domain, denoted as F ⊂ Rs, is comprised of the uncertain parameter
realizations that fail to satisfy at least one of the reliability requirements. Specifically, the
failure domain is given by

F =

v⋃
i=1

{p : gi(p) ≥ 0} = {p : w(p) ≥ 0} , (1)

where w(p) = maxi≤v{gi(p)} is the worst-case requirement function. When the com-
ponents of g are polynomials, w is in general piecewise polynomial. The safe domain,
given by S = C(F), where C(·) denotes the complement set operator over the universal
set D, e.g., S = D \ F , consists of the parameter realizations satisfying all the design
requirements.

Techniques for bounding F and S will be presented below. The resulting bounding
sets are comprised of hyper-rectangles. The hyper-rectangle R ∈ Rs, whose “lower left”
and “upper right” corners are at x and y with x < y, is given by

R(x,y) = {p : x < p ≤ y} = (x1,y1]× (x2,y2]× · · · × (xs,ys], (2)

where the latter expression is the Cartesian product of intervals which exclude the left
endpoint and include the right. Hyper-rectangles can be subdivided into smaller hyper-
rectangles without overlap, so that each point of the original hyper-rectangle falls into
exactly one of the subdividing hyper-rectangles. Under these circumstances, the larger
hyper-rectangle is said to have been partitioned or subdivided into smaller hyper-rectangles.
If ρ(R) = {R1, . . . ,Rt} is a pairwise disjoint collection of hyper-rectangles where R =
R1 ∪ . . . ∪ Rj , then ρ is a partition of R. Multiple subdivision schemes are possible. For
instance, a bisection-based subdivision of R in the ith direction, i ≤ s, is given by

ρ(R(x,y)) = {R(x,x + w),R(y −w,y)} , (3)

where w = [y1 −x1, . . . , (yi −xi)/2, . . . ,ys −xs]. Throughout this manuscript the input
to ρ is either a single hyper-rectangle or a list of several of them. In the latter case,
each sub-rectangle comprising the input set will be bisected using Equation (3) where the
bisecting direction is a maximal side of R.

The uncertainties considered in this article are classified as either epistemic or aleatory.
Denote by e ∈ Re a sub-vector of p containing the epistemic variables, and by a ∈ Ra

a sub-vector of p containing the aleatory variables such that a + e = s. Without loss of
generality, we will perform this analysis under the assumption that p = 〈a, e〉 and a > 0.

1Throughout this article, it is assumed that vector inequalities hold component-wise,
super-indices denote a particular vector or set, and sub-indices refer to vector components;

e.g., p
(j)
i is the ith component of the vector p(j).
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In this article, we will use probabilistic models for a and non-probabilistic ones for
e. Epistemic variables will be modeled by a set. This set, called the support set of the
epistemic variables, will be denoted as ∆e ⊆ Re. Each epistemic variable is modeled by
providing an interval within which its value lies. Therefore, ∆e is the Cartesian product of
these intervals. Aleatory parameters will be modeled as random variables. A probabilistic
uncertainty model assigns a measure of probability to each member of the support set. This
model is fully prescribed by the joint PDF f(a) : ∆a ⊆ Ra → R, or equivalently, by the
CDF F (a) : ∆a ⊆ Ra → [0, 1]. Note that ∆a ×∆e ⊆ Da ×De = D. If Proja(X ) denotes
the projection of X ⊆ Rs onto the aleatory subspace and Proje(X ) denotes the projection
of the same set onto the epistemic subspace, De = Proje(D) and Da = Proja(D).

When epistemic and aleatory uncertainties are present, the failure domain can be
described as

F =
⋃

e∈∆e

Fa(e), (4)

where Fa(e)
∆
= {p = 〈a, e〉 : g(p) > 0}, is a set value function of the epistemic variable.

The mean, variance and failure probability associated with the uncertainty model of the
aleatory variables are

E[g(p)] =

∫
∆a

g(p)f(a)da, (5)

V [g(p)] = E[g2(p)]− E[g(p)]2, (6)

P [Fa] =

∫
Fa

f(a)da. (7)

When all uncertain parameters are aleatory, these statistics are constants. Conversely,
when there are both epistemic and aleatory variables, these statistics are random processes
parametrized by the value of the epistemic variable. The subscript of Fa will be omitted
hereafter since its meaning can be easily inferred by context.

3 Bernstein Expansion

The image of a hyper-rectangle when mapped by a multivariable polynomial is a bounded
interval. By expanding that polynomial using the Bernstein basis over the rectangle,
rigorous bounds to such an interval can be calculated by mere algebraic manipulations.
Bernstein polynomials [2, 12, 6] will be used for determining if a hyper-rectangle R is fully
contained in the failure/safe domain or not. The outcome of the set containment test
presented below depends exclusively on how much refinement of R the analyst is willing
to perform. The refinement of R is determined by the number and size of sub-rectangles
in a partition of R. Better refinements can always be used to render the set containment
tests conclusive. The mathematical foundation of this approach is presented next.

The Bernstein expansion first requires mappingR into the unit hyper cube. LetR ⊆ D
be an arbitrary hyper-rectangle in the master domain. Denote by u = U(p) the affine
transformation that maps the hyper-rectangle R onto the unit hyper-cube U = R(0,1).
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Let g be an arbitrary polynomial in p. Then h(u)
∆
= g(U−1(u)) is a polynomial in U .

Note that the extrema of g on R are identical to the extrema of h in U .
For simplicity in the presentation we first consider a univariate polynomial. Since p,

u and g are scalars here, we will represent them as p, u and g without the bold font. The
transformation of g into the unit cube leads to

h(u) =

n∑
i=0

aiu
i, (8)

whose Bernstein expansion is given by

h(u) =

n∑
i=0

bi(R, g)Bn
i (u), (9)

where

Bn
i (u) =

(
n

i

)
ui(1− u)n−i, (10)

is the ith Bernstein polynomial of degree n (i.e., an element of the basis) and

bi(R, g) =

i∑
j=0

(
i
j

)(
n
j

)aj , (11)

is the ith Bernstein coefficient. Some fundamental properties of this basis are
∑
Bn

i (u) = 1
(partition of unity), 0 ≤ Bn

i (u) ≤ 1 for 0 ≤ u ≤ 1 (boundedness), and Bn
i (u) = Bn

n−i(1−
u) > 0 (symmetry). Some of the Bernstein coefficients assume the same value taken by
the polynomial at the vertices of the hyper-rectangular domain. This leads to the “free
function evaluation property”2 at the interval’s endpoints, which is given by

h(0) = b0(R, g), (12)

h(1) = bn(R, g). (13)

The range enclosing property is described next. Suppose R is a hyper-rectangle and
{bi(R, g) : 0 ≤ i ≤ n} are the Bernstein coefficients of g on R. The range enclosing
property dictates that, for p ∈ R, min0≤i≤n bi(R, g) ≤ g(p) ≤ max0≤i≤n bi(R, g). Tighter
bounds are obtained if R is subdivided. In particular, if ρ(R) = {R1, . . . ,Rt}, we have
that, for all p ∈ R,

g(p, ρ) ≤ g(p) ≤ g(p, ρ), (14)

where

g(p, ρ) =

t∑
j=1

min
0≤i≤n

{bi(Rj , g)} I(p ;Rj), (15)

g(p, ρ) =

t∑
j=1

max
0≤i≤n

{bi(Rj , g)} I(p ;Rj), (16)

2This property is also referred to as “end points interpolation” in the literature [2]. We
chose the above name to emphasize that the selected Bernstein coefficients exactly match
the values of the polynomial at the endpoints of the interval.
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where I(· ;Rj) is the indicator function ofRj . This function is defined as follows. I(p ;Rj) =
1 if p ∈ Rj , I(p ;Rj) = 0, otherwise. Each of the bounding functions g and g is constant on
each set Rj . We call g and g the Bernstein lower and upper function bounds, respectively,
of g.

The multivariate polynomial case is considered next. Define the multi-index i to be
a vector of non-negative integers of length s. The monomial ui1

1 ui2
2 · · ·uis

s is abbreviated
as ui. A s-variate polynomial can be represented as

h(u) =
∑

0≤i≤n

aiu
i, (17)

where u ∈ U . The Bernstein expansion of (17) is given by

h(u) =
∑

0≤i≤n

bi(R, g)Bn
i (u), (18)

where
Bn
i (u) = Bn1

i1
(u1) · · ·Bns

is
(us) (19)

is the ith Bernstein polynomial of degree n and

bi(R, g) =
∑
j≤i

 p∏
k=1

(ik
jk

)
(nk

jk

)
 aj , (20)

for 0 ≤ i ≤ n, is the ith Bernstein coefficient. In this setting the free function evaluation
property is

h (〈i1/n1, . . . , is/ns〉) = bi(R, g), (21)

where i is an element of {0,n1}×· · ·×{0,ns}. The range enclosing property is as follows:
suppose R is a hyper-rectangle and {bi(R, g) : 0 ≤ i ≤ n} are the Bernstein coefficients
of g on R. The range enclosing property dictates that, for p ∈ R, min0≤i≤n bi(R, g) ≤
g(p) ≤ max0≤i≤n bi(R, g). As before, tighter bounds are obtained if Bernstein expansions
over partitions of R are calculated. Specifically,

g(p, ρ) ≤ g(p) ≤ g(p, ρ), (22)

for all p ∈ R where

g(p, ρ) =

t∑
j=1

min
0≤i≤n

{bi(Rj , g)} I(p ;Rj), (23)

g(p, ρ) =

t∑
j=1

max
0≤i≤n

{bi(Rj , g)} I(p ;Rj). (24)

As before, g and g are constant on each set Rj . If p(j) is the center of Rj , these constant

values are equal to g(p(j)) and g(p(j)). Since g is a continuous function on a connected
set, we have

Range(g) =

[
min
p∈R

g(p),max
p∈R

g(p)

]
⊆
[

min
p∈R

g(p),max
p∈R

g(p)

]
. (25)
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If the partition of R is successively refined so that the maximum volume of the subsets
approaches zero, the endpoints of the bounding interval converge to the global extrema of
g.

A strategy for bounding the values of p where the global extrema of a polynomial
occur is presented next. These values will be referred to as critical since they attain the
extreme values of the function within the domain. Let ρ be a partition of R and let pmin

and pmax denote the point sets where g achieves its global minimum and global maximum,
respectively, over the hyper-rectangle. The lower and upper bounding functions in (23-24)
can be used to calculate supersets of pmin and pmax. These supersets, denoted hereafter
as Pmin and Pmax, are given by

Pmin =
⋃
j

{
Rj : g(p(j)) ≤ min

p∈R
g(p)

}
⊃ pmin, (26)

Pmax =
⋃
j

{
Rj : g(p(j)) ≥ max

p∈R
g(p)

}
⊃ pmax. (27)

Therefore, the superset containing the point where g(p) attains its global minima is com-
prised of all rectangles where the minima of the upper bounding function g is larger than
the lower bounding function g. Because the optimizations at the right-hand side of the
inequalities in (26) and (27) entail finding the extrema of piecewise constant functions
over a finite partition of R, they can be calculated exactly in a finite number of steps3.
The supersets Pmin and Pmax approach pmin and pmax respectively as the partition of R
becomes finer. The mathematical foundation supporting the polynomial bounds guaran-
tees that Pmin and Pmax will contain all the critical epistemic points regardless of their
number and their location. Equations (25) yield lower and upper bounds of the extrema
of g(p) while Equations (26) and (27) are supersets of the epistemic realizations where
such extrema occur.

The preceding analysis of a single polynomial function can be applied on a component
by component basis to the vector g prescribing the failure domain. For a given partition
of R, the preceding analysis is applied to each component of g to determine the bounding
functions in (22). These functions can be used to calculate bounds of the worst-case
requirement function in (1). The lower and upper bounding functions of w, denoted as w
and w, are given by

w(p, ρ) =

t∑
j=1

(
max
i≤v

gi(p
(j))

)
I(p,Rj), (28)

w(p, ρ) =

t∑
j=1

(
max
i≤v

gi(p
(j))

)
I(p,Rj), (29)

where ρ(R) = {R1, . . . ,Rt}. As before, w and w are piecewise constant on each member
of the partition. The following theorems, which make use of these bounding functions,

3Smaller supersets Pmin and Pmax result from replacing the arguments of the min and
max operators in Equations (26) and (27) with a vector comprised of all free function eval-
uations, i.e., Equation (21), for all the elements of the partition. This practice, however,
cannot be carried out when the metric of interest is a statistic of g(a).
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enable determining whether a set Z ∈ Rs is fully contained (or not) in the safe domain S
or failure domain F .

Theorem 1 (Set Containment in the Safe Domain). Let w(p) be the worst-case require-
ment function defined in (1) and ρ(H) = {R1, . . . ,Rt} be a partition of the bounding set
H satisfying Z ⊆ H. The set containment condition Z ⊆ S holds if

max
p

w(p, ρ) < 0. (30)

Furthermore, Z 6⊆ S if there exists a k ≤ v, a j ≤ t, and a multi-index i ∈ {0,n1}× · · · ×
{0,ns} such that

bi(Rj , gk) ≥ 0. (31)

While Formula (30) results from using w(p) ≤ w(p) for all p ∈ H in Equation (1),
Formula (31) results from applying the free function evaluation property (21).

Theorem 2 (Set Containment in the Failure Domain). Let w(p) be the worst-case re-
quirement function defined in (1) and ρ(H) = {R1, . . . ,Rt} be a partition of the bounding
set H satisfying Z ⊆ H. The set containment condition Z ⊆ F holds if

min
p
w(p, ρ) ≥ 0. (32)

Furthermore, Z 6⊆ F if there exists a k ≤ v, a j ≤ t, and a multi-index i ∈ {0,n1}× · · · ×
{0,ns} such that

bi(Rj , gk) < 0. (33)

While Formula (32) results from using w(p) ≤ w(p) for all p ∈ H in Equation (1),
Formula (33) results from applying the free function evaluation property (21).

The implicit formulation for calculating Bernstein coefficients proposed in [10] was
adopted. This formulation is much more efficient than using Equation (11). Further
efficiency can be realized by using the subdividing logic in Equation (3) along with the
algorithms of [6] that relate the Bernstein coefficients of a hyper-rectangle with those of
its subsets.

4 UQ for Aleatory Uncertainties

In this section we develop strategies for bounding failure probabilities, means, and vari-
ances of piecewise polynomial response metrics that depend exclusively on aleatory vari-
ables.

4.1 Reliability Analysis

In the context of aleatory uncertainties only, by reliability analysis we refer to the quantifi-
cation or bounding of the probability of failure. The key developments in this section are
the calculation of inner and outer bounding sets to the failure domain and the calculation
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of their probabilities. These sets are comprised by hyper-rectangles whose membership
into such domains is established using Theorems 1 and 2 above.

This section presents an algorithm to generate and sequentially expand subsets of the
failure and safe domains. These sets are unions of disjoint hyper-rectangles chosen from
a partition Q of D. Let F sub and Ssub denote subsets (i.e., inner approximations) of the
failure and safe domains formed from selected elements of Q. Note that ∅ ⊆ F sub ⊆ F ⊆
C(Ssub) ⊆ D and that the failure domain boundary, denoted as ∂F , lies in the region
between the interiors of F sub and Ssub.

The sequences of inner bounding sets {Ssub
1 ,Ssub

2 , . . .} and {F sub
1 ,F sub

2 , . . .} are gener-
ated by the algorithm below. These sequences are made to converge to the domain being
bounded. In particular, the algorithm iteratively generates indexed partitions Qi of D
and indexed sets Ssub

i , F sub
i and Λi which are unions of hyper-rectangles from Qi, where

Ssub
i is an inner approximation to the safe domain, F sub

i is an inner approximation to the
failure domain, and Λi is a region comprised by the rectangles of Qi that are not in Ssub

i

or F sub
i . Note that while Qi is a list of hyper-rectangles, Ssub

i , F sub
i and Λi are sets com-

prised by the union of some of these rectangles. The algorithm proceeds by successively
selecting each of the component hyper-rectangles R of Λi. Then, Theorems 1 and 2 are
used to determine if R is contained by the failure domain or the safe domain. If the tests
determine that R ⊆ S or R ⊆ F , then R is removed from Λi and added to Ssub

i or F sub
i ,

respectively. If neither of these determinations can be made, R is subdivided, and the
resulting sub-rectangles replace R in the partition. The algorithm terminates when the
volume of Λi is sufficiently small. The algorithmic representation of this procedure is as
follows.

Algorithm 1: Let the inequality constraint g(p) < 0 defined over p ∈ D prescribe
the system requirements and F (a) be the uncertainty model of p in ∆a ⊆ D. Set i = 1,
Q1 = {D}, Λ1 = D, F sub

1 = ∅, and Ssub
1 = ∅. Pick a convergence criterion ε > 0.

1. Let L contain the elements of Qi comprising Λi.

2. Apply Theorems 1 and 2 to each hyper-rectangle in L without partitioning it, to
determine which elements of L are contained in the safe domain and which ones
are contained in the failure domain. Denote by U the list of elements contained by
the safe domain, by V the list of elements contained by the failure domain, and by
W the list of elements that are not in U nor V . Furthermore, let U and V be the
union of the elements in U and V respectively.

3. Make Ssub
i+1 = Ssub

i ∪ U ; F sub
i+1 = F sub

i ∪ V; and Λi+1 = Λi \ (U ∪ V).

4. If Vol(Λi+1) < ε stop. Otherwise, make Qi+1 = (Qi \W )∪ρ(W ), increase i by one,
and go to Step (1).

As the number of iterations increases, Ssub
i and F sub

i approach the safe and failure domain.
Notice that the subdividing algorithm only partitions boxes whose containment in S or in
F has not been established. The partitioning logic, prescribed by ρ, can be set arbitrarily.
Further notice that the closure of Λi not only covers the boundary of F but also approaches
that boundary more and more closely as i increases.
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If a particular CDF defined over p ∈ ∆ ⊆ D is prescribed, bounds to the failure
probability, given by

P [F sub
i ] ≤ P [F ] ≤ 1− P [Ssub

i ], (34)

can be readily calculated. These expressions are evaluated by adding up the probabil-
ity of the rectangles comprising the bounding sets. Note that P [F sub

i ] and P [Ssub
i ] are

monotonically increasing functions of i; while P [Λi] is a monotonically decreasing func-
tion of i. The choice of ρ made at Step (4) implies that these bounds converge to P [F ]
as i increases. Therefore, all the conservatism in the bounds is reducible by additional
computational effort. Further notice that once the bounding sets are available, failure
probability bounds corresponding to any distribution supported in a subset of D can be
calculated with minimal computational effort.

The values taken by w and w over the members of the partition ρ, which were required
to compute the bounding sets Ssub and F sub, can be used to bound the CDF of the worst-
case requirement function w. In particular, if ρ(D) = Q = {R1, . . . ,Rt}, Fw is bounded
by

Fw(x) =
∑

j∈j(x)

P [Rj ] ≤ Fw(x) ≤
∑

j∈j(x)

P [Rj ] = Fw(x), (35)

where j(x) = {j : 1 ≤ j ≤ t, w(p(j)) ≤ x} and j(x) = {j : 1 ≤ j ≤ t, w(p(j)) ≤ x} for all x
in the range of w. A few manipulations lead to

1− Fw(0) ≤ P [F ] ≤ 1− Fw(0). (36)

This expression is equivalent to (34). The evaluation of (35) for each member of the par-
tition sequence Qi resulting from the algorithm above yields a sequence of CDF bounds.
These CDFs become tighter near w = 0 as i increases.

Example 1: Consider the requirement functions

g1 = p2
1p

4
2 + p4

1p
2
2 − 3p2

1p
2
2 − p1p2 +

p6
1 + p6

2

200
− 7

100
, (37)

g2 = −p2
1p

4
2

2
− p4

1p
2
2 + 3p2

1p
2
2 +

p5
1p

3
2

10
− 9

10
, (38)

defined over the master domain D ∈ [−2, 2] × [−2, 2]. The parameters p1 and p2 are
aleatory uncertain parameters, i.e., a = {p1,p2} and e = ∅, distributed according to the
joint PDF

fp1p2
(p1,p2) =

cos2(p1p2)

8 + Si(8)
, (39)

where Si(·) is the sine integral. Note that the uncertainty models of p1 and p2, shown
in Figure 1, are strongly dependent. For instance, the conditional probability density
function of p1 given p2 is uniform at p2 = 0, and it is tri-modal at p2 = −2. In this case,
the probability of a hyper-rectangle can be calculated analytically.

Figure 2 shows the set approximations F sub
i and Ssub

i for a fixed value of i as well
as the failure domain boundary ∂F . Boxes comprising F sub

i are colored in red, those
comprising Ssub

i are colored in green, and boxes comprising Λi are colored in white. Note
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Figure 1: Joint PDF of aleatory uncertainties.

that Λi is a tight approximation of ∂F . Further notice that the density of boxes per unit
of area increases with the closeness to ∂F .

The failure probability bounds in (34) corresponding to this partition are 0.492 ≤
P [F ] ≤ 0.571. Note that this probability cannot be calculated using standard UQ methods,
including sampling-based techniques. The difficulty stems from the inability to sample the
joint PDF in (39) and transforming it to another probability space. Note that with the
approximations F sub

i and Ssub
i at hand, we can calculate bounds corresponding to any

other joint PDF having a support set within D with minimal computational effort.

4.2 Performance Analysis

If M denotes the expected value or variance operators, the problem of interest is to calcu-
late or bound M [g(p)], where p is an aleatory variable distributed according to the CDF
F (a).

If the performance function g is a single polynomial in p and the aleatory parameters
are independent random variables, moments of any order can be calculated exactly. When
g is piecewise polynomial and p is comprised of arbitrarily distributed parameters, these
moments cannot in general be calculated exactly. Lower and upper bounds of moments of
any performance function that depends on aleatory variables within a bounded support
set can be calculated from Equation (22). A technique for bounding E[g(p)] and V [g(p)],
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Figure 2: F sub (red) and Ssub (green) and failure domain boundary (thick
line).

applicable to the case mentioned above, is developed next.

In regard to the mean, the application of the expected value operator to Equation
(22) yields

t∑
j=1

g(p(j))P [Rj ] = E[g] ≤ E[g] ≤ E[g] =

t∑
j=1

g(p(j))P [Rj ], (40)

where ρ(D) = {R1, . . . ,Rt}.
Bounds on the variance are considered next. Interval arithmetic will be used to simplify

the notation. The starting point is the equation V [g] = E[g2] − E[g]2 and the interval
inclusion g ∈ [g, g]. We recall the formulae for interval subtraction and interval squaring:

[a, b]− [c, d]
∆
= [a− d, b− c] and

[a, b]2
∆
=


[a2, b2] if 0 < a,

[b2, a2] if b < 0,

[0,max
{
a2, b2

}
] otherwise.

(41)
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The bounds of E[g2], given by E
[
[g, g]2

]
= [µ, ν], are

µ =
∑
j∈u

g(p(j))2P [Rj ] +
∑
j∈v

g(p(j))2P [Rj ], (42)

ν =
∑

j∈u∪x
g(p(j))2P [Rj ] +

∑
j∈v∪y

gp(j))2P [Rj ], (43)

where

u = {1 ≤ j ≤ t : g(p(j)) ≥ 0}, (44)

v = {1 ≤ j ≤ t : g(p(j)) < 0}, (45)

x = {1 ≤ j ≤ t : g(p(j))g(p(j)) < 0, |g(p(j))| ≤ |g(p(j))|)}, and (46)

y = {1 ≤ j ≤ t : j 6∈ (u ∪ v ∪ x)}. (47)

The bounds corresponding to V [g] ∈ E
[
[g, g]2

]
−
[
E[g], E[g]

]2
are given by

max {0, α} ≤ V [g] ≤ β, (48)

where

α =


µ− E[g]2 if E[g] > 0,

µ− E[g]2 if E[g] < 0,

µ−max
{
E[g]2, E[g]2

}
otherwise,

(49)

β =


ν − E[g]2 if E[g] > 0,

ν − E[g]2 if E[g] < 0,

ν otherwise .

(50)

An algorithm to generate and sequentially refine outer bounds to the mean and variance
of a performance function is presented next. In contrast to Algorithm 1, this algorithm
does not generate bounding sets of the failure and safe domains.

Algorithm 2: Let g(p) be a performance function defined over p ∈ D and F (a) be the
uncertainty model of p in ∆a ⊆ D. Set i = 1 and Q1 = {D}. Pick a selection criterion
0 < η < 1 and a convergence criterion ε > 0.

1. Calculate the bounding functions g(p) and g(p) over D.

2. Calculate the limits of the bounding interval of M via Equations (40) or (48).

3. Find the elements of the partition Qi satisfying4 g− g > ηmax
{
g − g

}
. Denote by

L be the list of rectangles satisfying this condition.

4Alternatively, E[g − g |R] > ηmax
{
E[g − g |R]

}
, where R is an element of Qi, can

also be used.
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4. If M [q − g] < ε stop. Otherwise, make Qi+1 = (Qi \ L) ∪ ρ(L), and go to Step (1).

As with the probability of failure, the bounds on the moments converge monotonically to
their actual value as the partition becomes finer.

Example 2: For the same problem statement of Example 1, here we want to bound the
expected value and variance of the worst-case requirement function w. This is a piecewise
polynomial function whose discontinuities cannot be calculated in closed form. Figures 3
and 4 show the set approximations F sub

i and Ssub
i for a fixed value of i corresponding to two

qualitatively different partitions. Note that the set containment conditions, thus the col-
oring of the rectangles, are not required to calculate the bounding intervals. The partition
used to generate Figure 3 only subdivides boxes where w(p)−w(p), the spread between the
bounding functions, is in the top 50%. This partition leads to 3.21052 ≤ E[w] ≤ 4.71449
and 80.97456 ≤ V [w] ≤ 145.11712. In this case, the density of boxes per unit of area

Figure 3: F sub (red) and Ssub (green) and ∂F (thick line).

increases with the separation between w and w. This separation is an indicator of the
size of the range of w over a box. Consequently, the size of a box tends to be inversely
proportional to the magnitude of the gradient of w within the box. The partition used
to generate Figure 4 only subdivides boxes where E[w(p)−w(p) |R], where R is a mem-
ber of the partition of D, is in the top 50%. This yields 3.40700 ≤ E[w] ≤ 4.50007 and
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82.9050 ≤ V [w] ≤ 143.5641. These bounds are tighter than those from Figure 3 because
the partition they are based on takes the uncertainty model into account. In this case,
the size of a box tends to be inversely proportional to the magnitude of the probability-
weighted gradient of w within the box. As before, standard UQ methods are inapplicable

Figure 4: F sub (red) and Ssub (green) and ∂F (thick line).

to this problem.

5 UQ for Mixed Uncertainties

In this section we develop strategies for bounding the range of failure probabilities, means
and variances of piecewise polynomial response metrics that depend on both aleatory and
epistemic parameters. As before, the aleatory variables can be arbitrarily distributed.

Recall that the propagation of probabilistic uncertainty in the aleatory variables
through the response metrics yields random processes that are are parametrized by the
epistemic variables. Note that for a fixed value of the epistemic variable, the UQ methods
of Section 4 apply. While for the aleatory-only case the statistics take on a constant value,
taking into account the epistemic intervals of uncertainty spreads each aleatory statistic
over its own interval of uncertainty. Each value in that interval is a possible realization of
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the statistic. The values of the epistemic realizations prescribing the lower and upper in-
terval’s limits will be referred to as best-case and worst-case. These values will be denoted
hereafter as emin and emax. In this section we use the Bernstein expansion approach to
bound the range of statistics of the response metric and calculate supersets of the critical
epistemic points emin and emax. The mathematical background for this is presented next.

5.1 Reliability Analysis

The reliability analysis of a system subject to the design requirements g(a, e) < 0 consists
of calculating the failure probability range

Range (P [F(e)]) =

[
min
e∈∆e

P [w(a, e) > 0], max
e∈∆e

P [w(a, e) > 0]

]
, (51)

and locating the sets of epistemic points that realize this interval’s endpoints. While it may
not be feasible to calculate the critical epistemic points exactly, the techniques presented
here will enclose them in a sequence of supersets. This sequence is made to converge to
all critical parameter points regardless of their number and location.

As in Section 4.1, a key development in this section is the calculation of bounding sets
of the failure domain. An algorithm for generating and sequentially expanding subsets
of the failure and safe domains is developed. Even though this algorithm has the same
rationale of Algorithm 1, the logic governing the mechanism by which the master domain
is partitioned is different. This logic segregates the epistemic subspace, where the critical
epistemic realizations and their supersets are located, from the aleatory subspace, where
the probability calculations are carried out. The expressions required to bound the failure
probability range in Equation (51) and calculate supersets of the epistemic realizations
attaining extreme failure probabilities are derived next.

Recall that the worst-case requirement function is bounded by

w(a, e, ρ) ≤ w(a, e) ≤ w(a, e, ρ), (52)

where ρ is a partition of the master domain D = Da ×De. This expression implies that

Fw(x; e) ≤ Fw(x; e) ≤ Fw(x; e). (53)

where Fw(· ; e) (resp. Fw(· ; e) and Fw(· ; e)) is the family of CDFs of w(a, e) (resp. w(a, e)
and w(a, e)) corresponding to the CDF F of a and all possible realizations of e in ∆e.
As before, simple manipulations of (53) lead to

1− Fw(0; e) ≤ P [F(e)] ≤ 1− Fw(0; e). (54)

Observe that the evaluation of (54) and (58) at a fixed value of e yields the expressions
(34) and (35) of Section 4.1.

Developments for bounding the epistemic realizations emin and emax leading to ex-
treme failure probabilities are presented next. Expression (54) yields the outer bounding
interval X given by

Range (P [F(e)]) ⊆ X ⊆
[
1− max

e∈∆e
Fw(0; e), 1− min

e∈∆e
Fw(0; e))

]
. (55)
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Since w and w are piecewise constant on a finite partition of ∆e, the minimum and
maximum in (55) can be calculated exactly in a finite number of steps. Supersets of emin

and emax, where the extreme failure probabilities occur, are given by

Emin =
⋃

j∈j(0,e)

{
Proje(Rj) : Fw(0; e) ≥ max

e∈∆e
Fw(0; e)

}
⊃ emin, (56)

Emax =
⋃

j∈j(0,e)

{
Proje(Rj) : Fw(0; e) ≤ min

e∈∆e
Fw(0; e)

}
⊃ emax. (57)

These expressions result from applying Equations (26-27) to the bounds in (54).
Equations (55), (56) and (57) are evaluated as follows. If ρ(D) = {R1, . . .Rt} is a

partition of the master domain, the bounds in (53) are given by

Fw(x; e) =
∑

j∈j(x,e)

P [Proja(Rj)] , (58)

Fw(x; e) =
∑

j∈j(x,e)

P [Proja(Rj)] , (59)

where first k(e) = {j : 1 ≤ j ≤ t and e ∈ Proje(Rj)} contains the indices of the members
of the partition whose projection onto the epistemic subspace contains the epistemic real-
ization e, and then j(x, e) = {j ∈ k(e) : w(p(j)) ≤ x} and j(x, e) = {j ∈ k(e) : w(p(j)) ≤
x} pick out those members of the partition which contribute to the respective CDFs. Note
the similarity between the bounds in (35) and those in (58) and (59). A few manipulations
lead to

Fw(0; e) = 1−
∑

j∈q(e)

P [Proja(Rj)] , (60)

Fw(0; e) =
∑

j∈q(e)

P [Proja(Rj)] , (61)

where q(e) = {j ∈ k(e) : Rj ⊆ F sub} and q(e) = {j ∈ k(e) : Rj ⊆ Ssub}. The
bounds Fw(0; e) and Fw(0; e) assume a constant value over the subsets Proje(Rj) of De.
Consequently, the minimum and maximum in (55-57) can be calculated exactly in a finite
number of steps.

When the volume of the undetermined region Λ of the partition Q approaches zero,
X converges to the failure probability range, while Emin, and Emax converge to emin and
emax respectively. The supersets Emin and Emax contain all the epistemic points where the
global extrema of P [F(e)] occur. While the expressions above apply to arbitrary parti-
tions of the master domain, there are partitions leading to tighter bounding intervals and
smaller supersets. An algorithm for generating a sequence of improved partitions, having
the same rationale of Algorithm 1, is presented next.

Algorithm 3: Let the inequality constraint g(p) < 0 defined over p ∈ D prescribe
the system requirements. Prescribe the epistemic range ∆e ⊆ Re and the CDF of the
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aleatory variable F (a) : ∆a ⊆ Ra, where ∆a ×∆e ⊆ D. Set i = 1, Q1 = {D}, Λ1 = D,
F sub

1 = ∅, Ssub
1 = ∅, X1 = [0, 1], Emin

1 = ∆e and Emax
1 = ∆e. Pick a selection criterion

0 < η < 1 and a convergence criterion ε > 0.

1. Let L contain the elements of the partition Qi comprising Λi whose projection onto
the epistemic subspace is contained by Emin

i ∪ Emax
i . Let L be the union of the

rectangles in L.

2. Apply Theorems 1 and 2 to each hyper-rectangle in L without partitioning it, to
determine which elements of L are contained in the safe domain and which ones
are contained in the failure domain. Denote by U the list of elements contained by
the safe domain, by V the list of elements contained by the failure domain, and by
W the list of elements that are not in U nor V . Furthermore, let U and V be the
union of the elements in U and V respectively.

3. Make Ssub
i+1 = Ssub

i ∪ U , F sub
i+1 = F sub

i ∪ V, and Λi+1 = Λi \ (U ∪ V).

4. Calculate the bounding interval Xi+1 and the supersets Emin
i+1 and Emax

i+1 by using
Equations (55), (56) and (57).

5. If Volume
[
Emin
i+1 ∪ Emax

i+1

]
< ε stop. Otherwise, make Qi+1 = (Qi \ W ) ∪ ρ(W ),

increase i by one, and go to Step (1).

Note the similarities between this algorithm and Algorithm 1. Step (1) ensures that only
those regions of the epistemic space where the critical epistemic realizations may be lo-
cated are partitioned further. Step (4) enforces a stopping criterion based on the supersets
of emin and emax being sufficiently small. The stopping criterion Volume [Xi \Xi−1] < ε,
which requires a converged bounding interval, can also be used. As before, the supersets
converge monotonically to their target value(s), and X converges monotonically to the fail-
ure probability range; as the partition becomes finer. In regard to the operator ρ in Step
(6), note that while finer partitions in the aleatory dimensions will tighten the bounding
interval X, finer partitions in the epistemic dimensions will tighten the supersets Emin and
Emax.

Example 3: Consider the requirement functions

g1 = −3p2
1p

5
2 + 3p2

1 − p2
2 − 4p2 − 15, (62)

g2 = −p11
1 p2 + p2

1p
7
2 −

1

10
, (63)

g3 = −2p4
1 − p6

2 − p2
1p2 −

p1p
5
2

10
+

1

500
, (64)

defined over the master domain D ∈ [−2, 2] × [−2, 2]. To start, p1 will be considered a
Beta-distributed aleatory variable with parameters 〈4, 4〉 supported in ∆a = [−2, 2] while
p2 will be epistemic supported in ∆e = [−2, 2]. Therefore, a = {p1} and e = {p2}. In
this setting we want to calculate X, Emax, and Emax.

Figure 5 shows terms of the sequences Emin
i and Emax

i as a function of the iteration
number. This figure illustrates how the supersets are progressively refined. In both cases,
there seems to be a single extrema. The existence of an isolated region in the vicinity of
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Figure 5: Emax
i (top) and Emin

i (bottom) for a = {p1} and e = {p2}.

p2 = 0 for Emax at iteration number 8 and of p1 = 0.39 for Emax at iteration number 14,
and their subsequent disappearance, suggests the existence of non-global extrema. Figure
6 shows a fine partition of the parameter space. Note that Λ, the region containing the
failure domain boundary colored in white, has not been uniformly refined. Further notice
that the density of boxes in the epistemic direction p2 increases with the proximity to the
global extrema. These extrema occur within Emax = [1.9336, 2] and Emin = [−1.07,−0.941]
at iteration i = 20.

The top of Figure 7 shows the probability of Λ as a function of the epistemic variable
p2 for the partition in Figure 6. The bottom shows the failure probability bounds in
(54) over the epistemic domain. The supersets Emin and Emax corresponding to the last
iteration in Figure 5 are displayed as vertical strips. Note that P [Λ] approaches zero at
the supersets of the best- and worst- case epistemic values. By design, these are the very
same regions where the spread between the upper and lower failure probability bounds is
minimal. Values of p2 where P [Λ] is comparatively large are regions of no interest.

Finally, Figure 8 shows the ensemble of all CDF bounds in (53), as well as those
corresponding to epistemic values in Emin and Emax. While the lower CDF bound of the
worst-case representative crosses w = 0 at Fw(0; e) = 1− 0.97148, the upper CDF bound
of the best-case representative crosses w = 0 at Fw(0; e) = 1 − 0.076931. These two
values determine the endpoints of the bounding interval X = [0.076931, 0.97148]. Note
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Figure 6: Partition of the master domain for a = {p1} and e = {p2}.

that the separation between the lower and upper CDF bounds of the best- and worst-case
representatives decreases with the proximity to w = 0 by design.

We will now repeat this example by considering p1 as an epistemic variable supported
in ∆e = [−2, 2] while p2 is an aleatory variable modelled as a Beta random variable with
parameters 〈4, 6〉 supported in ∆a = [−2, 2]. Therefore a = {p2} and e = {p1}. Figure
9 shows terms of the sequences Emax

i and Emin
i as a function of the iteration number. In

contrast to the previous example, the Emax sequence suggests the existence of two global
minima. Recall that the exact nature of the approach guarantees that all global extrema
will be found and that no prior knowledge of the location or number of such extrema
is required. Figure 10 shows the corresponding partition of the parameter space. Note
that the density of boxes in the epistemic direction p1 increases with the proximity to
Emax = [1.2578, 2] and Emin = [−0.48434,−0.46094] ∪ [0.46094, 0.48434]. These supersets
correspond to iteration i = 20. Figure 11 and 12 are analogous to Figures 7 and
8. While the lower CDF bound of the worst-case representative crosses w = 0 near
Fw(0; e) = 1 − 0.74623, the upper CDF bound of the best-case representative crosses
w = 0 at Fw(0; e) = 1− 0.017921. Hence, the bounding interval of the failure probability
range is X = [0.017921, 0.74623].
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Figure 7: Probability of Λ and bounds of P [F ] for a = {p1} and e = {p2}.

Figure 8: Ensemble of CDF bounds, worst- and best-case CDF bounds rep-
resentatives for a = {p1} and e = {p2}.
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Figure 9: Emax
i (top) and Emin

i (bottom) for a = {p2} and e = {p1}.

5.2 Performance Analysis

The problem of interest is to calculate the range of M

Range (M [g(·, e)]) =

[
min
e∈∆e

M [g(a, e)], max
e∈∆e

M [g(a, e)]

]
, (65)

and locate the sets of epistemic points that realize these interval’s endpoints. While it may
not be feasible to calculate the critical epistemic points exactly, the techniques presented
here will enclose them in a sequence of supersets. As before, this sequence converges to
all critical parameter points regardless of their number and location.

E[g(a, e)] and V [g(a, e)] can be calculated analytically when the aleatory parameters
are independent random variables and g is a polynomial. In such a case one can solve for
the extreme value of the moments and the corresponding best- and worst- case epistemic
realizations by applying the analysis of Section 3 to the analytical expressions for the
moments. These expressions will be polynomials in the variable e. If g is a piecewise
polynomial function of p, and the components of a are arbitrarily and possibly dependently
distributed, an approach analogous to the one in the preceding section can be applied. This
approach yields bounds of the range in Equation (65) as well as supersets of the critical
epistemic realizations. The expressions required to carry out this analysis are derived next.
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Figure 10: Partition of the master domain for a = {p2} and e = {p1}.

The bounding functions of w yield the outer bounding interval of the mean given by

Range (E[g(·, e)]) ⊆ X =

[
min
e∈∆e

E[g(·, e)], max
e∈∆e

E[g(·, e)]

]
, (66)

where
E[g(·, e)] =

∑
j∈k(e)

g(p(j))P [Proja(Rj)] , (67)

E[g(·, e)] =
∑

j∈k(e)

g(p(j))P [Proja(Rj)] , (68)

and k(e) = {j : 1 ≤ j ≤ t, e ∈ Proje(Rj)} contains the indices of the members of the
partition whose projection onto the epistemic subspace contains the epistemic realization
e. Supersets of the epistemic realizations where the extreme values of E[g(·, e)] occur are

Emin =
⋃

j∈k(e)

{
Proje(Rj) : E[g(·, e)] ≤ min

e∈∆e
E[g]

}
⊃ emin, (69)

Emax =
⋃

j∈k(e)

{
Proje(Rj) : E[g(·, e)] ≥ max

e∈∆e
E[g]

}
⊃ emax. (70)
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Figure 11: Probability of Λ and bounds of P [F ] for a = {p2} and e = {p1}.

These expressions result from applying Equations (26-27) to the bounding functions in
(66).

An outer bounding interval of the variance is

Range (V [g(·, e)]) ⊆ X = [max{0, α(e)}, β(e)] , (71)

where α(e) and β(e) are given by Equations (49) and (50) with the expected values given
by Equations (67) and (68), and with µ(e) and ν(e) given by

µ(e) =
∑

j∈u(e)

g(p(j))2P [Proja(Rj)] +
∑

j∈v(e)

g(p(j))2P [Proja(Rj)] , (72)

ν(e) =
∑

j∈u(e)∪x(e)

g(p(j))2P [Proja(Rj)] +
∑

j∈v(e)∪y(e)

g(p(j))2P [Proja(Rj)] , (73)

where u, v, x and y are defined in Equations (44-47) and e ∈ Proje(Rj). Supersets of the
epistemic realizations where the extreme variances occur are

Emin =
⋃

j∈k(e)

{
Proje(Rj) : max{0, α(e)} ≤ min

e∈∆e
β(e)

}
⊃ emin, (74)

Emax =
⋃

j∈k(e)

{
Proje(Rj) : β(e) ≥ max

e∈∆e
{max{0, α(e)}}

}
⊃ emax. (75)
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Figure 12: Ensemble of CDF bounds, worst- and best-case CDF bounds
representatives for a = {p2} and e = {p1}.

These expressions result from applying Equations (26-27) to the bounding functions in
(71). As before, the right-hand side of the inequalities prescribing the supersets can be
found exactly in a finite number of steps. The algorithmic implementation of these ideas,
which follows the same rationale of Algorithm 2, is as follows.

Algorithm 4: Let g(p) defined over p ∈ D be a performance function. Prescribe the
epistemic range ∆e ⊆ Re and the CDF of the aleatory variable F (a) : ∆a ⊆ Ra, where
∆a × ∆e ⊆ D. Set i = 1 and Q1 = {D}. Pick a selection criterion 0 < η < 1 and a
convergence criterion ε > 0.

1. Calculate the bounding functions g(a, e) and g(a, e) over D.

2. Calculate the bounding interval Xi via Equations (66) or (71), and the supersets
Emin
i and Emax

i via Equations (69-70) or Equations (74-75).

3. Denote by U a list with the elements of the partition Qi whose projection onto the
epistemic subspace is contained by Emin

i ∪ Emax
i .

4. Denote by L a list with the elements of U where5 g − g > ηmaxR∈U{g − g}.

5. If Volume
[
Emin
i ∪ Emax

i

]
< ε stop. Otherwise, make Qi+1 = (Qi\L)∪ρ(L), increase

i by one, and go to Step (1).

5The expression E[g − g |R] > ηmaxR∈U{E[g − g |R]} can be used instead.
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As before, the outer bounding interval X converges monotonically to the range of M as
the partition is refined further. In regard to the operator ρ in Step 4, note that while finer
partitions in the aleatory dimensions will tighten the bounding interval X, finer partitions
in the epistemic dimensions will tighten the supersets Emin and Emax.

Example 4: Given the same problem statement of Example 3, we now apply Algo-
rithm 4 to bound the range of E[w(e)] and V [w(e)]. To start we consider, a = {p1}
and e = {p2}. The left graphs of Figure 13 show the resulting piecewise constant
bounds of the mean and the variance for a fixed partition of the master domain. A
logarithmic scale has been used to facilitate visualization. The bounding functions lead
to Range(E[w(e)]) ⊆ [−0.69975, 61.0855] and Range(V [w(e)]) ⊆ [0, 11541.14248]. The
endpoints of these bounding intervals are given by the extreme values of the bounding
functions. The dashed line in between the bounds is a Monte Carlo approximation with
1000 sample points. Note that by design, the offset between the Monte Carlo approx-
imation and the upper bounding function is small when the moments are large, while
the offset between the Monte Carlo approximation and the lower bounding function is
small when the moments are small. Further notice the locations where the Monte Carlo
approximations lay outside the bounds (e.g., see V [w(e)] near p2 = −1). This outcome
is the result of the approximation error in the Monte Carlo estimates. We now consider
a = {p2} and e = {p1}. The corresponding results are shown to the right of Figure 13.
In this case, the bounding functions lead to Range(E[w(e)]) ⊆ [−1.72522, 1022.75501] and
Range(V [w(e)]) ⊆ [0, 1060602.13]. While the Monte Carlo approximations capture the
trends of E[w(e)] and V [w(e)] well in all cases, its generation and the calculation of its
extrema may be complex tasks, e.g., sampling the PDF in (39), finding the global extrema
of a high-order piecewise polynomial M(e) over ∆e.

6 Discussion

The strategies above require polynomial response metrics with known functional forms.
When these forms are available, the resulting analysis is not only exempt from approxi-
mation error but also is formally verifiable [6]. Furthermore, the outer bounding interval
X and the supersets Emin and Emax can always be made arbitrarily tight with additional
computational effort, i.e., the conservatism in the output metric is reducible.

In principle, response metrics assuming known non-polynomial forms can be formally
bounded with polynomials. These bounding polynomials may be defined globally or lo-
cally, e.g., g = exp(p) in p ∈ [−1, 1] is bounded by l = x + α with α ≤ 1 from below
and by u = x + β with β ≥ exp(1) − 1 from above. The application of the proposed
algorithms to such polynomials, i.e., the calculation of the lower bounding function l and
the upper bounding function u, renders formally verifiable results. However, the offset
between the original response metric g and the bounding polynomials l and u introduces
irreducible conservatism into the calculated metrics. This conservatism can be reduced,
but not totally eliminated, by using tighter bounding polynomials, e.g., by making α = 1
and β = exp(1) − 1. Unfortunately, the generation of tight bounding polynomials is in
itself a laborious task.
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Figure 13: Upper and lower bounds of the mean (top) and variance (bottom)
for a = {p1} and e = {p2} (left) and for a = {p2} and e = {p1} (right).
Dashed lines indicate Monte Carlo approximations.

When function evaluations of the response metrics are available, g(p(i)) for i = 1, . . . n,
polynomial surrogate models can be readily built. Surrogate models bounding such data
from below and above can be constructed and used in the above UQ analyses. While this
practice guarantees a rigorous UQ treatment, it will inherit the approximation error that
stems from using surrogate models at points outside the data set. This approximation
error, which affects the reliability and performance analyses equally, can only be managed
in an ad hoc fashion by augmenting the data set.

A few remarks on computational complexity are in order. The number of Bernstein
coefficients that must be calculated per hyper-rectangle grows exponentially with the num-
ber of uncertain parameters s, linearly with the number of requirement functions v, and
polynomially of degree s with the degree of each gi. The former dependency restricts the
applicability of the method to systems with a moderate number of uncertainties. The
number of hyper-rectangles, on the other hand, increases linearly with each subdivision
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of the hyper-rectangles of interest. While non-overlapping portions of the master domain
can be processed in parallel, the interdependencies between the response metrics and the
uncertain parameters preclude using parallel computing to mitigate the computational
demands of systems with large number of uncertainties. The ideas proposed however, can
be used to identify unimportant uncertainties, thus, to reduce the number of uncertainties
that should be considered in UQ. The following paragraph explains the rational supporting
this statement.

Note that the sensitivity of the failure probability, the mean and the variance of a
response metric to the uncertain parameters in e is less than the spread of the bounding
interval X. Small bounding intervals indicate that e can assume any uncertainty model in
∆e, even a probabilistic one, and the resulting value of the statistic will remain within the
bounding set, e.g., if X is a bounding interval of the failure probability range for a = {p1}
and e = {p2}, where F (p1) is supported in δ1 and ∆e = δ1; the failure probability
corresponding to a = {p1,p2}, where F (p1) is supported in δ1 and F (p2) is supported in
δ2, will remain within X.

7 Conclusions

This article presents a unifying framework to uncertainty quantification of polynomial
systems subject to both epistemic and aleatory uncertainties. The methods are appli-
cable to piecewise polynomial functions of arbitrarily and possibly dependent aleatory
variables. The Bernstein expansion approach enables the calculation of analytical bounds
to moments and failures probabilities as well as the calculation of supersets of the corre-
sponding best- and worst-case epistemic realizations. These bounds and supersets, which
can be made as tight and as small as desired, are rigorous, e.g., the supersets are guar-
anteed to contain all global optima. The analytical nature of the approach eliminates the
approximation error that characterizes techniques commonly used in UQ as well as the
possibility of under predicting the range of the statistic of interest that may result from
using nonlinear optimization or sampling. The computational complexity of the method
restricts its applicability to problems having a moderate number of uncertain parameters.
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