
Solving Decidability Problems with Interval

Arithmetic∗

German Tischler
Lehrstuhl für Informatik II, Universität Würzburg, am
Hubland, 97074 Würzburg, Germany

tischler@informatik.uni-wuerzburg.de

Jürgen Wolff von Gudenberg
Lehrstuhl für Informatik II, Universität Würzburg, am
Hubland, 97074 Würzburg, Germany

wolff@informatik.uni-wuerzburg.de

Abstract

An affine iterated function system (IFS, [4]) over the reals is given by
a set of contractive affine transformations on a complete metric space Rk

for some positive natural number k.

Thus an interesting problem is to decide, whether a given matrix M
describes a contraction mapping, i.e. whether there exists some s < 1 such
that |Mz| ≤ s|z| for each z ∈ Rk, where | · | denotes the Euclidean norm.
Using the characteristic polynomial and interval methods we present a
simple algorithm deciding the contraction mapping property for square
matrices over the rational numbers. Furthermore, we show that interval
arithmetic can be used to enclose the roots of complex polynomials with
coefficients having rational real and imaginary parts at arbitrary precision
such that each computed interval can be annotated with the exact number
of contained roots.

Keywords: interval computations, polynomials, roots, decidability

AMS subject classifications: 26C10, 03B25

1 Preliminaries

Let the sum and product of two subsets A and B of the complex numbers be given by
A + B = {a + b|a ∈ A, b ∈ B} and AB = {ab|a ∈ A, b ∈ B} respectively. We identify
the number c with the set {c} for each c ∈ C. For three non-empty subsets A, B and C
of C, the equation A(B+C) = AB +AC in general does not hold (e.g. let A = [−1, 2],

∗Submitted: January 11, 2009; Revised: February 10, 2010; Accepted: March 1, 2010.

279

280G. Tischler, W. Wolff von Gudenberg, Decidability and Interval Arithmetic

B = [−5, 2] and C = [−4, 3], then A(B + C) = [−18, 10] 6= [−18, 11] = AB + AC). To
see why, observe that

A(B + C) = {a(b + c)|a ∈ A, b ∈ B, c ∈ C}
= {ab + ac|a ∈ A, b ∈ B, c ∈ C} .

(1)

However, we can write

{ab + ac|a ∈ A, b ∈ B, c ∈ C} ⊆ {a1b + a2c|a1, a2 ∈ A, b ∈ B, c ∈ C}
= {ab|a ∈ A, b ∈ B} + {ac|a ∈ A, c ∈ C}
= AB + AC .

(2)

Assume that the function p : C 7→ ℘(C) (where ℘(C) denotes the power set of C) is
given by

p(x) = (x − S1)(x − S2) . . . (x − Sn) =
n

∏

j=1

(x − Sj) (3)

with Sj ⊆ C, Sj 6= ∅ for j = 1, . . . , n. Then it is clear from above that there is a
function P : C 7→ ℘(C) given by P (x) =

∑n

j=0 S′
jx

j such that

1. p(x) ⊆ P (x) for each x ∈ C and

2. each S′
j for j = 0, . . . , n is the result of the evaluation of an expression consisting

of the sets Sj , j = 1, . . . , n and the operations sum and product as defined above.

Such a function P can be obtained using the following steps:

1. Completely expand the expression given in equation 3. This produces an ex-
pression of the form

P ′′(x) =
k

∑

j=1

n
∏

i=1

S
qj,i

i xrj (4)

for some natural number k, qj,i ∈ {0, 1} for 1 ≤ j ≤ k, 1 ≤ i ≤ n and 0 ≤ rj ≤ n
for 1 ≤ j ≤ k. According to the discussion above, P ′′(x) ⊇ p(x) holds for each
x ∈ C.

2. Group the summands according to the respective power of x. This produces the
expression

P ′(x) =

n
∑

j=0

xj

kj
∑

i=1

n
∏

l=1

S
qi,l

l

 (5)

such that kj is a natural number for each 0 ≤ j ≤ n and qi,l ∈ {0, 1} for each
1 ≤ i ≤ kj and 1 ≤ l ≤ n. As we have only factored out singletons xi for
0 ≤ i ≤ n during the transformation, we have P ′(x) = P ′′(x) for each x ∈ C.

3. Evaluate the coefficient expressions for each power of x. This finally produces
the expression

P (x) =
n

∑

j=0

S′
jx

j , (6)

where S′
j ⊆ C, S′

j 6= ∅ for 0 ≤ j ≤ n and P (x) = P ′(x) for each x ∈ C. Note that
if for some reason, e.g. due to the usage of some kind of interval arithmetic, we
are only able to compute supersets of the sets S′

j instead of the real sets, then
this is no problem as then we obtain P (x) ⊇ P ′(x) for each x ∈ C, which still
ensures that P (x) ⊇ p(x) for each x ∈ C.

Reliable Computing, 2011 281

2 The Problem

Let M denote a square matrix over the real numbers. M describes a contraction
mapping, iff there exists some s < 1 such that |Mz| ≤ s|z| for all real vectors z of
the appropriate dimension. This property holds, iff maxz 6=0 |Mz|/|z| = |M |2 ≤ s < 1,
where |M |2 denotes the spectral norm of M . |M |2 equals the square root of the
maximal eigenvalue of the real symmetric positive-semidefinite matrix S = MT M
(where MT denotes the transpose of M). These properties of S guarantee that the
characteristic polynomial χS of S, whose roots are the eigenvalues of S, has only real
roots. M is a contraction mapping iff the largest such root is smaller than 1. Thus
to decide, whether M is contraction, we can use any algorithm which decides if the
largest eigenvalue of S is smaller than 1. One of the algorithms we present in this
paper is such a decision algorithm. The other presented algorithms are generalizations
of the approach we describe.

The algorithms we present in this paper are not answers to the general question,
whether the treated problems are decidable at all. The well-known Tarski-Seidenberg
theorem can be used to solve these (and even much more general) questions regarding
properties of sets of real numbers (cf. [5]). To our best knowledge the approach using
interval arithmetic we present in this paper has not been proposed before in this form.
It provides solutions which are very simple to describe and to implement. Thus for
some settings, they may be a good choice for applications.

In the following we consider polynomials that only have real roots. As we are
discussing decidability issues and want to avoid undecidability of basic properties
like the order between single numbers, we consider only polynomials with rational
coefficients. Thus the respective roots of the polynomials are algebraic numbers. Let

p(x) =
n

∑

i=0

cix
i (7)

denote a polynomial of degree n. Assume that p only has single roots and that we
have computed a set of n disjoint real intervals I1, . . . , In and have proved for each
interval that it contains a root of p using the intermediate value theorem. It is easy to
see that this is possible using bisection. Then we know that the real interval coefficient
polynomial P : R 7→ ℘(R) given by

n
∏

j=1

(x − Ij) ⊆
n

∑

j=0

Cjx
j = P (X) (8)

satisfies the constraints

1. p(x) ∈ P (X) for each real interval X and x ∈ X and

2. cj ∈ Cj for each j = 0, . . . , n.

If p has multiple roots, then the situation is only slightly more complicated. We
can use interval bisection to compute a set of intervals I1, . . . , Im such that 0 ∈ p(Ij)
for each j = 1, . . . , m and the union of the Ij contains all roots of p. Now each
such interval Ij possibly contains a root. There is, however, at least one choice t =
(i1, i2, . . . , im) ∈ Nm such that

1.
∑m

j=1 ij = n and

2.
∏m

j=1(x − Ij)
ij ⊆ ∑n

j=0 Cjx
j such that cj ∈ Cj for j = 1, . . . , n.

282G. Tischler, W. Wolff von Gudenberg, Decidability and Interval Arithmetic

If an m-tuple t satisfies these constraints for the intervals I1, . . . , Im, then we
say that (t, I1, . . . , Im) generates p. If there exists some m-tuple t for the intervals
I1, . . . , Im such that (t, I1, . . . , Im) generates p, then we say that the set {I1, . . . , Im}
is able to generate p.

Our goal is to give a simple interval arithmetic based algorithm deciding whether
all roots of a polynomial having only real roots are less than a given rational constant
d. We may imagine that the presented algorithm observes two processes running in
parallel. The first process tries to prove that all roots of the given polynomial are
smaller than d and terminates as soon as it is able give a proof. The second process
tries to prove that there is at least one root that is not smaller than d, by first checking
whether d is a root and otherwise by enclosing all roots below d at ever increasing
precision, i.e. with decreasing width of the intervals, and proving that these roots are
at some precision no longer able to generate the complete polynomial. If it finds a
proof than it terminates.

We are sure that one of the two processes will eventually terminate. As soon as
one of the two has terminated, the decision problem is solved. The algorithm uses
subdivision and is described in more detail in section 4.

3 The Subdivision Process

3.1 Real Interval Bisection

If we apply interval bisection to our starting interval [−b, b], where b is a root bound
for the polynomial, we can construct sets of intervals I1, . . . , Im such that 0 ∈ p(Ij)
and the diameter of each interval Ij is at most 2−k for each k ∈ N.

3.2 Interval Newton

The interval Newton method (cf. [2, 1, 3]) for real functions is a generalization of the
non-interval Newton method for real functions. It computes enclosures of all real roots
of a function in a given start interval using division by intervals containing zero. Hence
different ways to extend interval division have been suggested. Kulisch [9] defines an
extended division by an interval containing zero by returning 2 unbounded intervals.
If the numerator is a proper interval, there is a gap between the upper bound of the
lower interval and the lower bound of the upper interval. This gap is important for
the interval Newton method, because it certainly does not contain any zero of the
function. The interval hull of these two intervals is the complete real line. Hence a
simple extension of interval arithmetic delivers that as a result of extended division.
This kind of extended interval arithmetic was introduced by Walster in [10].

Real Newton

The Newton iteration for a real function f(x) with first derivative f ′(x) = df

dx
(x) is

given by

xk+1 = xk − f(xk)

f ′(xk)
. (9)

In the example of f(x) = x2 − 2, f ′(x) = 2x and x0 = 2, we obtain a sequence xk such
that limk→∞ xk =

√
2. There are however some cases where the method fails, e.g. if

we reach some xk such that f ′(xk) = 0.

Reliable Computing, 2011 283

Interval Newton

Let f(x) be a continuous real function and f ′(x) = df

dx
(x). The interval Newton

method is derived from the Newton method. Assume that the equation

f(z) ∈ f(y) − f ′(X)(z − y) (10)

holds for the real interval X and y, z ∈ X. As we are searching roots, we assume
f(z) = 0, i.e.

0 ∈ f(y) − f ′(X)(z − y) (11)

which is equivalent to

z ∈ y − f(y)

f ′(X)
(12)

for y, z in the real interval X. One iteration of the interval Newton method is given
by

⋃

j

X(k+1)j
=

⋃

j

(

Xkj
∩

(

ykj
− f(ykj

)

f ′(Xkj
)

))

(13)

where ykj
is usually chosen as the middle of the interval Xkj

(or a suitable alternative
in Xkj

, if Xkj
is not a finite interval). If the interval evaluation of the derivative

f ′ of f contains the number 0 for Xkj
, then the division may produce two separate

result intervals, which is why we use the union operators on the left and right side
of equation 13. It is a well known result in interval arithmetic that for each given
finite set of start intervals {X00

, . . . , X0k
} and each given real function f , the method

converges to a set of intervals {Y0, . . . , Yl} such that all real roots of f in each interval
X0,i for i = 0, . . . , k are contained in the union of the intervals Y0, . . . , Yl and that the
intersection used on the right side of equation 13 does not remove any potential roots
of f from the computed intervals.

The following example shows that the the interval Newton method may get stuck
in some situations. If this happens, we can enforce progress by substituting the corre-
sponding step of the interval Newton method by one step of interval bisection.

Example 1 Let f(x) = (x− 2)2. Then f ′(x) = 2x− 4. Let X00
= [0, 4] and X0j

= ∅
for j 6= 0. Then the Newton iteration yields

⋃

j X1j
= [0, 4] ∩

(

2 − (2−2)2

2[0,4]−4

)

= [0, 4] ∩
(

2 − 0
[−4,4]

)

= [0, 4] ∩ (2 − [−∞,∞])
= [0, 4] ∩ [−∞,∞]
= [0, 4],

(14)

i.e. the step has not lead to any progress.

The results of this example change significantly, if we use Kulisch’s definition of
extended interval arithmetic. Here we choose 0

B
= 0 · 1

(−∞,∞)
= 0. Then, Newton

iteration yields
⋃

j
X1j

= [0, 4] ∩
(

2 − (2−2)2

2[0,4]−4

)

= [0, 4] ∩
(

2 − 0
[−4,4]

)

= [0, 4] ∩ (2 − 0 · (−∞,∞))
= [0, 4] ∩ [2, 2]
= [2, 2],

(15)

284G. Tischler, W. Wolff von Gudenberg, Decidability and Interval Arithmetic

This time the exactly representable zero was found. It is, however, not recom-
mended to start Newton iteration with a zero of a function, since information may be
lost.

The interval Newton method augmented with bisection where necessary usually
converges faster to the real roots of a polynomial than pure bisection.

Existence

The existence of a zero can be proved by the intermediate value theorem. Another
way to prove the existence of some roots is Brouwer’s fixed point theorem.

Theorem 1 (Fixed point theorem of Brouwer) Let d ∈ N, d > 0. Every continuous
function from the closed unit ball in Rd into itself has a fixed point.

If on the right side of equation 13 a finite interval is mapped to a sub-interval of
itself (before the application of the intersection), then this interval contains a fixed
point of the iteration. As the fixed points of the iteration are the roots of the function,
this implies that a root is present in the interval.

However, there are cases where neither the fixed point theorem of Brouwer nor the
intermediate value theorem are able to prove the existence of a root in an interval that
appears during the application of the interval Newton method.

Example 2 Let f(x) = (x2 − 2)2 = x4 − 4x2 + 4 = (x −
√

2)2(x +
√

2)2. Then
f ′(x) = 4x3 − 8x. The function f has the double roots x = ±

√
2. We cannot prove

any of the two roots using bisection and the intermediate value theorem, if we are
using intervals that have rational lower and upper bounds. We consider the starting
interval A = [−4, 4]. Then a step of the interval Newton method produces the successor
intervals [−∞,−0.0138ω] and [0.0138ω ,∞] before the intersection. (Here 8ω means
infinitely many repetitions of the digit 8.) Although both intervals contain a root of f ,
both obtained intervals are neither finite nor subsets of A.

4 The Algorithm

The presented algorithm is inspired by the following well known theorem.

Theorem 2 Let A be a set such that equality is decidable for the elements of the set
A ∪ A. Then it is decidable, whether a ∈ A, if and only if both A and its complement
A are recursively enumerable.

Theorem 3 Let p(x) =
∑n

i=0 cix
i denote a real polynomial where all roots of p are

real numbers and ci ∈ Q for i = 0, . . . , n. Further let d ∈ Q. Then Algorithm 1 is able
to decide, whether all roots of p are smaller than d.

Proof: As p has only rational coefficients, all roots of p are algebraic numbers, for
which order is decidable (cf. [6]). We will use interval arithmetic using rational lower
and upper bounds. Thus all basic (arithmetic) operations and decidability problems
(e.g. order) can be solved effectively. If p is constant, then p has either no roots and
thus all roots are smaller than d or every real number x is a root of p ≡ 0, implying
that p has roots that are at least d. Now assume that p is not constant. As d is
rational, we can determine whether d is a root of p by simply evaluating p for d. If

Reliable Computing, 2011 285

p(d) = 0, then there is at least one root of p that is not smaller than d. Now assume
that p(d) 6= 0 and p(x) is not constant. Let b a positive rational root bound for p
(cf. [8]). The key idea is to divide the interval [−b, b] into 2 regions Lk and Rk. Let
L0 = {[−b, d]} and R0 = {[d, b]}. We can use interval bisection to refine the sets L0 and
R0 to Lk = {Lk1

, . . . ,Lksk
} and Rk = {Rk1

, . . . ,Rktk
} such that Lk and Rk contain

only intervals of diameter smaller than 2−k and such that the interval evaluation of p
contains zero for each Lj ∈ Lk and each Rj ∈ Rk. We know that for each k the union
of the intervals in Lk and Rk is able to generate an interval polynomial that satisfies
the constraints given above. If all roots of p are smaller than d, then this is also true
for any k and the set Lk. If on the other hand at least one root of p is not smaller
than d, then there is some k ∈ N such that Lk is no longer able to generate p. Thus
the decision algorithm can be formulated as shown in Algorithm 1. �

Although theoretically correct, Algorithm 1 is, at least in the presented form, usable
only for very limited examples in practice. This is due to the for each loop starting
in line 24. We can however reach a speed-up by further investigating which tuples are
relevant and which are not.

Assume that we found a set of intervals Lk = {Lk1
, . . . ,Lkmk

} and an mk-tuple
tk such that (tk,Lk1

, . . . ,Lkmk
) generates a polynomial p in the k-th run of the while

loop starting in line 13. New intervals are constructed from the elements of Lk at
the end of the loop in line 35. Assume that the interval Lkj

is split into the intervals
Lk+12j+1

and Lk+12j+2
. This implies that we have possible successor tuples such that

the sum of the number of roots assigned to Lk+12j+1
and Lk+12j+2

equals the number
of roots assigned to Lkj

by tk. Apart from the primitive tuple (n) that is used in the
first run of the loop, all relevant tuples are obtained in this way. In practice this means
that a lot of tuples that would satisfy the constraint stated in line 24 are irrelevant.

Another way to improve the algorithm is to substitute the bisections in line 35
and 37 partly by the interval Newton method (while falling back to bisection, if the
Newton method shows low progress). The Newton method is not only often faster than
bisection, it also has the advantage of mostly only generating one successor interval
instead of two, as bisection does. This keeps the cardinality of the sets Lk and Rk

smaller, which in turn keeps the number of tuples to be considered in the loop of line
24 smaller.

A C++ implementation of the method sketched in Algorithm 1 can be found at
http://www2.informatik.uni-wuerzburg.de/mitarbeiter/tischler/.

Two important implications of Theorem 3 are given in the following statements.

Theorem 4 Let M be a complex square matrix of dimension n for n ∈ N, n > 0 such
that the symmetric real square matrix S = MHM (where MH denotes the conjugate
transpose of M) contains only rational numbers. Then it is decidable by applying
Algorithm 1 to the characteristic polynomial of the matrix S whether the spectral norm
of M is less than a given rational number d.

Proof: The spectral norm |M |2 of the matrix M is the maximum eigenvalue of the
real symmetric positive semi-definite matrix S = MHM . It is well known that MHM
is diagonizable and has only real eigenvalues, i.e. the characteristic polynomial χS of
S can be decomposed into linear factors and has only real roots. By construction
χS has only rational coefficients. Thus according to Theorem 3 it is decidable using
Algorithm 1, whether all roots of χS are smaller than d. �

286G. Tischler, W. Wolff von Gudenberg, Decidability and Interval Arithmetic

Input : Real polynomial p =
∑

n

i=0
aix

i where ai ∈ Q for i = 0, . . . , n
and all roots of p are real, rational number d.

Output: Yes if and only if all roots of p are less than d.

if p is constant then1

if p(d) = 0 then2

Output←No3

else4

Output←Yes5

else if p(d) = 0 then6

Output←No7

else8

Output←Undefined9

b← positive root bound of p10

L← {[−b, d]}11

R← {[d, b]}12

while Output=Undefined do13

L′ ← ∅14

R′ ← ∅15

foreach L ∈ L do if 0 ∈ p(L) then L′ ← L′ ∪ {L}16

foreach R ∈ R do if 0 ∈ p(R) then R′ ← R′ ∪ {R}17

if R′ = ∅ then Output← Yes18

else19

L← L′
20

R← R′
21

g ← No // polynomial generated?22

// Assume that L = {L1, . . . ,Lm}23

foreach (n1, . . . , nm) ∈ Nm such that
∑

m

i=1
ni = n do24

p′ =
∑

n

i=0
A′

i
xi ←

∏

m

i=1
(x− Li)ni

25

g′ ← Yes26

foreach i = 0, 1, . . . n do27

if {ai} ∩ A′
i
= ∅ then g′ ← No28

if g’=Yes then g ← Yes29

if g=No then Output← No30

else31

L′ ← ∅32

R′ ← ∅33

foreach L = [L,L] ∈ L do34

L′ ← L′ ∪
{[

L, L+L

2

]}

∪
{[

L+L

2
,L

]}

35

foreach R = [R,R] ∈ R do36

R′ ← R′ ∪
{[

R, R+R

2

]}

∪
{[

R+R

2
,R

]}

37

L← L′
38

R← R′
39

return Output40

Algorithm 1: Decision algorithm

Reliable Computing, 2011 287

Corollary 1 Let M be a complex square matrix of dimension n for n ∈ N, n > 0 such
that the symmetric real square matrix S = MHM contains only rational numbers.
Then it is decidable by applying Algorithm 1 to the characteristic polynomial of the
matrix S whether M is a contraction mapping.

5 Decomposition of complex polynomials

Unlike the real case, there are several possible choices concerning the shape of com-
plex intervals, e.g. rectangular or circular. In this paper we use rectangular complex
intervals, as they are suitable for our application.

The extension of the subdivision algorithm from the real to the complex case is
straight-forward. We can decompose each non-empty rectangular interval into four
equally sized quadrants such that the union of the quadrants is exactly the original
interval. This is similar to the quad-tree decomposition of pixel images, as it is per-
formed in WFA based image compression (cf. [7]). The size of a quadratic complex
interval can be described by a single real number, which significantly simplifies the
subsequent construction and discussion of algorithms.

We will for sake of simplicity assume that all rectangular intervals that are split
by bisection operations are quadratic, i.e. their size can be described by a single real
number. We refer to this number as the width of the interval. The interval evaluation of
an expression for a quadratic interval is not necessarily a quadratic interval. However,
we only compute evaluations to test, whether they contain the number 0. We do not
split the computed intervals using bisection operations.

The check, whether an input polynomial p in Algorithm 1 has a root at d, i.e. the
evaluation of p at a single point d, is critical. In the case of complex polynomials,
there is no similar operation, i.e. if we have a complex interval B such that all roots
of some polynomial are contained in B, we in general cannot decompose B into two
intervals that touch in one single point and partition B. We can however still check,
whether a set of complex intervals generates a complex polynomial. Thus we can state
the following theorem.

Theorem 5 Let p(x) denote a complex polynomial where the real and imaginary parts
of all coefficients are rational numbers. Let L and Ri denote complex intervals for
i = 1, . . . , m for some natural number m such that all roots of p are contained in the
union of L and all Ri and the intersection of L with every Ri is empty. Then it is
decidable by using a generalization of Algorithm 1, whether L contains a root of p.

Proof: We use an algorithm similar to Algorithm 1. By precondition L is disjoint
from each Ri, hence we cannot encounter sequences of intervals that converge to a
point in an intersection of L and any Ri. Thus we refine the intervals L and each
Ri, until either all intervals obtained from L have an interval evaluation that does not
contain zero, or the intervals obtained from the Ri are no longer able to generate the
polynomial p. �

We can extend this to check, whether some free-standing complex interval contains
at least k roots for some natural number k.

Theorem 6 Let p(x) denote a complex polynomial where the real and imaginary parts
of all coefficients are rational numbers and let k a natural number. Let L and Ri denote
complex intervals for i = 1, . . . , m and some natural number m such that all roots of

288G. Tischler, W. Wolff von Gudenberg, Decidability and Interval Arithmetic

p are contained in the union of L and all Ri and the intersection of L with each Ri

is empty. Then it is decidable by using a generalization of Algorithm 1, whether the
number of roots contained in the interval L is k.

Proof: We again compute refinements of the given intervals like we do in Algorithm
1. When we try to generate a polynomial from a set of n intervals, we enumerate n-
tuples of natural numbers (see Algorithm 1, line 24). When we observe the history of a
computation, some intervals in the tuple will be descendants of the interval L and some
of the intervals Ri. As L and the Ri are disjoint, we will at some finite precision reach
a point, where no interval descendant of some Ri is able to substitute any descendant
of L and vice versa, when we produce a polynomial with interval coefficients and
check whether the coefficients of p are contained in the corresponding intervals. Thus
at some finite precision we will observe that for each tuple that generates p, the sum
of the elements corresponding to descendants of the interval L is identical and equals
some number κ. If this holds for one precision, then it holds for any greater precision.
The number of roots in the interval L is k, if and only if k = κ. �

Finally, we can use this to formulate a polynomial decomposition result. The
method employed is a simple extension of the one given in the proof of Theorem 6.

Theorem 7 Let p(x) denote a complex polynomial of degree n, where the real and
imaginary parts of all coefficients are rational numbers and let ǫ denote a rational
number. Then we can compute a natural number u and pairs of complex intervals and
positive natural numbers (Ii, ki) for i = 1, . . . , u such that

• ∑u

i=1 ki = n,

• Ii ∩ Ij = ∅ for (i, j) ∈ {1, . . . , u}2, i 6= j,

• the width of Ii is at most ǫ for i = 1, . . . , u and

• Ii contains exactly ki (not necessarily distinct) roots of p

using an extension of the method given in the proof of Theorem 6.

Note that using this method we are only only able to compute polynomial root
approximations of arbitrary precision. The method does in general not provide the
information, how many distinct roots of the polynomial are contained in each computed
interval.

References

[1] G. Alefeld and J. Herzberger. Über Simultanverfahren Zur Bestimmung Reeller
Polynomwurzeln. Zeitschrift für Angewandte Mathematik und Mechanik, 54:413–
420, 1974.

[2] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, 1983.

[3] D. W. Arthur. The use of interval arithmetic to bound the zeros of real polyno-
mials. Journal of the Institute of Mathematics and its Applications, 10:231–237,
1972.

[4] M. F. Barnsley. Fractals everywhere. Morgan Kaufmann, 2nd edition, 2000.

[5] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer, 2003.

Reliable Computing, 2011 289

[6] H. Cohen. A course in computational algebraic number theory. Springer, 1993.

[7] K. Culik II and J. Kari. Inference algorithms for WFA and image compression. In
Y. Fisher, editor, Fractal Image Compression: Theory and Application. Springer,
1995.

[8] J. R. Johnson. Real algebraic number computation using interval arithmetic. In
P. S. Wang, editor, Proceedings of the International Symposium on Symbolic and
Algebraic Computation, pages 195–205, Berkeley, CA, 1992. ACM Press.

[9] U. Kulisch. Computer Arithmetic and Validity. de Gruyter, 2008.

[10] G. W. Walster. The extended real interval system. http://www.mscs.mu.edu/

~globsol/Papers/extended_intervals.ps, 1998.

