
Efficient Parallel Solvers for Large Dense Systems

of Linear Interval Equations∗

Mariana Kolberg
Área de Tecnologia e Computaccão, Universidade
Luterana do Brasil, Av. Farroupilha 8001 Prédio 14,
sala 122, Canoas, Brasil

mariana.kolberg@ulbra.br

Walter Krämer and Michael Zimmer
Wissenschaftliches Rechnen/Softwaretechnologie,
Bergische Universität Wuppertal, Gaussstr. 20, 42097
Wuppertal, Germany

{walter.kraemer,michael.zimmer}@math.uni-wuppertal.de

Abstract

Verified solvers for dense linear (interval-)systems require a lot of re-
sources, both in terms of computing power and memory usage. Computing
a verified solution of large dense linear systems (dimension n > 10000)
on a single machine quickly approaches the limits of today’s hardware.
Therefore, an efficient parallel verified solver for distributed memory sys-
tems is needed.

In this work we present such a solver, implemented in C++ and using
the C-XSC library for scientific computing [10, 8]. The solver utilizes MPI
[27] for communication between the nodes in the parallel environment
and, where applicable, high performance ScaLAPACK [4] and BLAS [3]
routines for fast computing times. High precision dot products [5, 18, 19,
21] are used to compute narrow enclosures of the solution of the system.

We present test results on several high performance distributed mem-
ory systems with different architectures, which show that our solver a-
chieves good results, both in terms of numerical accuracy as well as com-
puting time, and is highly portable. Furthermore, even very large systems
(n ≥ 100000) can be solved given a cluster with sufficient resources.

Keywords: self-verifying methods, large linear interval systems, DotK methods,
parallelization, block cyclic distribution, C-XSC, interval computations

AMS subject classifications: 65H10, 15-04, 65G99, 65G10, 65-04, 68W15

∗Submitted: January 20, 2009; Revised: February 10, 2010; Accepted: March 1, 2010.

193

194 M. Kolberg et al., Parallel Solvers for Linear Interval Equations

1 Introduction

In this paper, we are interested in finding a verified solution of

Ax = b, A ∈ K
n×n

, x ∈ L
n
, b ∈ K

n

where K can be either R, IR, C or IC and L is either IR or IC, with IR denoting the set
of all real intervals and IC denoting the set of all complex intervals. Verified solution
means that x should be guaranteed to enclose the true solution of the linear system.
We do not make any restrictions on the structure of A (symmetric positive definite,
diagonally dominant,...) and A, x and b are supposed to be dense.

To compute such a solution, we use a widely known algorithm by Rump [25] based
on the Krawczyk operator [20], which is the fastest known algorithm for general dense
linear systems. The algorithm is described in Section 2. In a practical implementation,
this algorithm is about 6 to 8 times slower than a non-verified floating point solver
based on a LU-decomposition and requires several times more memory since not only
the matrix A must be stored, but also an approximate inverse R of A and an enclosure
[C] = ⋄(I −RA) (here we highlight interval quantities by using brackets, ⋄ means that
an interval enclosure of the following expression is to be computed).

Because of this, most serial solvers are limited to systems with only a few thousand
unknowns, especially when solving interval systems. Therefore, if one wants to com-
pute verified solutions of large dense systems of linear (interval-) equations, a parallel
solver for distributed memory systems is needed.

A parallel solver for dense linear interval systems using C-XSC already exists [6, 11],
but uses a master-slave approach that requires complete matrices to be stored by one
process, thus the problem size is still limited by the memory of the master process
instead of the memory of the whole cluster. This solver also uses high precision dot
products using the long accumulator (see Section 3.2) for all computations, which
leads to slow computing times. Recently, Intel added solvers for interval systems to its
Math Kernel Library. However, in our tests these didn’t perform very well and Intel
is already considering to remove these solvers from the MKL [2].

Also, there are several serial software solutions available. Intlab [24] provides a
fast and easy to use solver. However, due to memory constraints because of the
matlab overhead, the maximum problem size is even more limited than with a serial
C++ solver. C-XSC provides two older solvers for real [7] and interval systems [9].
However, these also use exact dot products throughout and thus are very slow. We
recently developed [16] a serial solver using C-XSC which is a lot faster (about as fast
as Intlab). It uses the same basic ideas as the parallel solver presented here and was
the basis for our development of the new parallel solver.

This paper is organized as follows: First, in Section 2, we give a short summary
of the mathematical background of computing a verified solution of a linear dense
(interval-)system. In section 3 we give a short overview of some of the libraries utilized
by our solver and of the algorithms used to compute exact or higher precision dot
products. Then, in Section 4 we discuss the steps taken for the parallelization, while
in Section 5 we give some test results on a few different cluster computers. Finally,
Section 6 contains some final remarks and discusses further work that needs to be
done.

Reliable Computing 15, 2011 195

2 Verified solution of linear (interval-)systems

The basic algorithm used in our solver is a well known algorithm by Rump, which is
based on the Krawczyk-Operator [25, 20]. The Krawczyk-Operator is defined as

K(x) = R ⋄ (b − Ax̃) + ⋄(I − RA)x,

where R is an approximate inverse of A (or of mid(A), the midpoint matrix of A,
if A is an interval matrix) computed by some floating point algorithm and x̃ is an
approximate solution (normally computed by x̃ = Rb). If in an iteration based on
this operator a new iterate lies in the interior of the previous iterate, it can be shown
[25, 20] that A is regular and the new iterate contains the unique solution of the linear
system. Algorithm 1 shows Rump’s algorithm based on this operator.

Input: Square matrix A and right hand side b

Output: An interval vector enclosing the solution of Ax = b

Compute approximate inverse R of A

Compute approximate solution x̃ := Rb

repeat
x̃ := x̃ + R(b − Ax̃)

until x̃ accurate enough or max. iterations reached
Z := R ⋄ (b − Ax̃)
C := ⋄(I − RA)
Y := Z

repeat
YA := blow(Y, ǫ)
Y := Z + C · YA

until Y ⊆ int(YA) or max. iterations reached
if Y ⊆ int(YA) then

Unique solution in x ∈ x̃ + Y

else
Algorithm failed, A is singular or cond(A) is too large

Algorithm 1: Rump’s algorithm for the verified solution of dense linear
systems

If A is an interval matrix and b is an interval vector, the midpoint matrix of A and
the midpoint vector of b are used for the computation of R and x̃. The blow function
in the above algorithm is a so called epsilon inflation, meaning that the interval is
inflated a little in order to “catch” a nearby fixed point.

This algorithm will work up to a condition number of A of about 1015 (in this
paper, we define the condition number of a matrix A as cond(A) = ||A||∞||A−1||∞).
For higher condition numbers, the approximate inverse R of A will be too inaccurate,
meaning that the spectral radius of |I − RA| will be greater than 1 and an inclusion
in the interior can not be obtained during the verification step.

For such badly conditioned systems, a second stage of the algorithm using an
inverse of double length can be used. Here, an approximate inverse RS of S := RA is
computed. Since

A
−1 = (RA)−1

R

and since S will in general have better condition than A, RSR should be a better
approximation of A−1. RSR should be computed as the sum of two matrices R1 + R2

196 M. Kolberg et al., Parallel Solvers for Linear Interval Equations

of double precision using higher precision dot products. Recently, an extension of this
approach for matrices with extremely bad condition numbers has been published [23].

3 Tools

In this section we discuss the libraries used in the implementation of our solver and
give a short overview of how dot products in higher precision are computed if needed.

3.1 Libraries

The solver itself is based on the C-XSC (eXtended Scientific Computing) library, a
C++ class library for scientific computing developed at the Universities of Karlsruhe
and Wuppertal. It provides basic datatypes for computations using interval arithmetic,
as well as the most important standard mathematical functions. Corresponding matrix
and vector classes are also available. These datatypes are used throughout the solver.
C-XSC is capable of computing dot products in maximum precision using the long
accumulator described in Section 3.2.

For the more costly parts of the solver in terms of computing time, optimized rou-
tines from the ScaLAPACK (Scalable LAPACK) [4] library are used. ScaLAPACK is
a parallel version of LAPACK, providing highly optimized and efficient parallelizations
of the routines from the serial LAPACK library. A parallel version of the BLAS [3]
called PBLAS is also included. These routines are used for the computation of the
approximate inverse R and of the interval matrix [C] = ⋄(I−RA), as proposed in [12].
For the computation of [C], manipulation of the rounding mode is used to achieve
verified enclosures of the result, similar to the approach described in [24, 12]. More
details on ScaLAPACK and its usage follow in Section 4.

3.2 Algorithms for high precision dot products

C-XSC itself uses a so called long accumulator [18, 19] to compute dot products. A
long accumulator is essentially a fixed-point register of sufficient length which can store
the results of a dot product or summation exactly. The result can then be rounded
to the nearest floating point number, leading to a floating point result with maximum
accuracy.

g 2emax t t 2|emin|

Figure 1: Long accumulator

The accumulator has to be large enough so that it can even store the result of a
constant summation of the largest representable number without overflowing during
the lifetime of a modern PC. Figure 1 shows the needed length of the accumulator.
Here, t is the length of the mantissa, emin and emax are the smallest and largest
exponent, respectively, and g is a certain number of guard digits to prevent overflow.
A hardware implementation of this method would be even faster than normal floating
point computations [17], but is unfortunately not available in today’s hardware.

Reliable Computing 15, 2011 197

In C-XSC, the accumulator is implicitly used for all matrix and vector products.
It can also be used directly through the datatype dotprecision, allowing to store the
intermediate results of a longer calculation exactly without rounding.

Recently, Oishi et al. presented a fast algorithm for dot products in (simulated)
higher precision, called the DotK algorithm [21, 22]. This algorithm is based on error-
free transformations and allows to compute a dot product in K-fold double precision,
K ≥ 2. In most cases K = 2 will deliver results of sufficient quality and be a lot
faster than computation using the software accumulator 1. Since it is also possible to
compute a rigorous bound on the remaining error, the DotK algorithm can be used to
compute interval enclosures of the correct result of any dot product in K-fold precision.

In [16], we presented our implementation of the DotK algorithm in several C++
classes using C-XSC. With these classes, the DotK algorithm can be used as a faster,
more flexible (but less accurate) alternative to the accumulator in C-XSC. Table 1
shows some results comparing the performance of our implementation of the DotK
algorithm and the accumulator on a Pentium 4 with 2.8 GHz. Since C-XSC version
2.3.0, the DotK algorithms are directly included in the C-XSC library [28].

n Computed with... real interval complex cinterval

1000

Accumulator 0.19 0.40 0.72 1.64

DotK, K=2 0.03 0.12 0.20 0.47

DotK, K=3 0.09 0.21 0.37 0.87

DotK, K=4 0.12 0.27 0.47 1.07

DotK, K=5 0.14 0.32 0.57 1.28

10000

Accumulator 1.85 4.02 7.05 16.22

DotK, K=2 0.35 1.16 2.03 4.64

DotK, K=3 0.98 2.27 4.02 9.56

DotK, K=4 1.24 2.79 5.04 11.62

DotK, K=5 1.49 3.30 6.07 13.70

100000

Accumulator 18.65 40.32 70.73 161.82

DotK, K=2 3.53 11.66 20.41 46.46

DotK, K=3 9.86 24.57 41.48 97.83

DotK, K=4 12.44 29.76 51.91 118.75

DotK, K=5 15.02 34.95 62.34 139.64

Table 1: Timings for dot products, cond = 1030, repeated 1000 times

In our tests, the numerical quality of the results using the DotK algorithm were
indeed of K-fold precision, while always computing an enclosure of the correct result.

1The computation of exact dot products of floating point vectors using hardware support
would be much faster than the fastest DotK algorithm [17, 5].

198 M. Kolberg et al., Parallel Solvers for Linear Interval Equations

4 Parallelization

A former implementation of a parallel verified solver [6, 11] using the same algorithm
was based on a master-slave concept, where one node was administrating the whole
computation. This approach had several drawbacks, especially concerning load bal-
ancing and memory usage. Since the matrices A, R and [C] all had to be stored
by the master node, the maximum possible dimension of the system did not increase
compared to the serial solver.

In our new implementation, we don’t use a master-slave concept. Instead, every
step of the solver is divided as equally as possible among the involved nodes, leading to
a better load balancing and far better memory usage. Furthermore, highly optimized
ScaLAPACK-routines are used to compute the approximate inverse and the matrix
[C], thus guaranteeing that the O(n3) parts of the algorithm are computed as fast as
possible.

ScaLAPACK requires a special distribution scheme of the involved matrices, called
two dimensional block cyclic distribution. This scheme is used for the whole solver, also
for the parts not using ScaLAPACK. In a two dimensional block cyclic distribution,
all involved processes are logically ordered (meaning this ordering is only used in
software, the true physical ordering still depends on the network) in a process grid as
seen in Figure 2. The number of rows and columns is selectable by the user but should
normally be the same or nearly the same for best performance.

P0 P1 P2

P3 P4 P5

P6 P7 P8

P9 P10 P11

Figure 2: Process grid for the two dimensional block cyclic distribution, 12
processes Pi

The matrix is then divided into blocks of size nb × nb, where nb is a choosable
parameter. The best value for nb depends on the used hardware, especially cache sizes
and the speed of communication between the processes, and can have a significant
impact on the overall performance. A good starting point is nb = 256, from where the
best value for the machine used has to be found through trial and error. The process
grid is then used to determine which block is stored by which process, as shown in the
example in Figure 3.

As stated, the basic elements of the solver are essentially the computation of an
approximate inverse, the computation of [C] and the computation of a few matrix-
vector products. The approximate inverse can be computed directly by the appro-
priate ScaLAPACK function. For the computation of [C], the ScaLAPACK routine
for matrix-matrix products is used in combination with manipulation of the rounding
mode to achieve a verified enclosure. In the most simple case of a real point system,
the computation I−RA is performed twice, once with the rounding mode set to down-
wards and once with the rounding mode set to upwards, giving a lower and an upper
bound for [C]. The appropriate algorithms for the other cases are given in [24, 29].

The remaining computations are basically matrix-vector products, which are com-
puted using the DotK algorithm (the accumulator can also be used by selecting pre-
cision K = 0 for our DotK classes, which will in most cases be unnecessary). Since

Reliable Computing 15, 2011 199

P0 P1 P0 P1

P2 P3 P2 P3

P0 P1 P0 P1

P2 P3 P2 P3

Figure 3: Distribution of a 13 × 13 matrix in two dimensional block cyclic
distribution using a 2 × 2 process grid based on 4 processes Pi and block size
nb = 4

these use no ScaLAPACK routines, the parallelization has to be performed manually.

For this, so called MPI-communicators are introduced for the rows and columns
of the process grid. An MPI-communicator basically bundles a number of processes
together into a communication group, enabling the programmer to perform a broad-
cast only inside the communicator (in our case for all processes in the respective
row/column). Vectors are always stored completely in every process, since their mem-
ory usage is negligible. To compute a matrix-vector product, each process computes
the parts of every single dot product for which it stores the corresponding data (the
necessary parts of the respective matrix row), so that all processes in one row of the
process grid compute a part of the respective dot products. These results are then
broadcasted in the respective row of the process grid in form of a long accumulator to
prevent rounding errors. Every process in the same row of the process grid can then
compute the final result of the respective dot product. The result is then broadcast
to all processes in the same column of the process grid, so that finally every process
stores the complete result vector of the matrix-vector-product. Algorithm 2 shows
this procedure in simplified way (myrows is a set containing all indices of the rows of
which the respective process stores elements according to the storage scheme explained
above).

Input: A distributed matrix A and vector x

Output: The result of A times x

for all i ∈ myrows do
compute own parts of dot product
broadcast intermediate results in own row
compute final result for row i

broadcast final result in own column

Algorithm 2: Parallel matrix-vector product

The second stage of the solver, using an inverse of double length, is intended for
badly conditioned system matrices (condition number ≥ 1015). In this stage, only

200 M. Kolberg et al., Parallel Solvers for Linear Interval Equations

the approximate inverse can be computed using ScaLAPACK, the computation of [C]
uses the DotK algorithm to achieve results of better quality (without a higher precision
dot product, the verification step will also most likely fail in these cases). Especially
because of this, the second stage takes a lot more time than the first stage. A parallel
version can be very helpful in this case, even for lower dimension like n = 1000 (see
timings in Section 5).

The matrix-matrix products in the computation of [C] for Stage 2 now also have
to be parallelized manually. For this the process grid is set to only have one column, so
that all processes store complete rows of the matrix. This leads to significant advan-
tages for Stage 2, since the previous distribution would require a lot of communication
of intermediate results which for accuracy reasons have to be communicated in form
of long accumulators, leading to a lot of communication overhead. With this new data
distribution, the parallelization can be done in a pretty straightforward way that we
don’t explain here (see [16, 29] for more details).

5 Test results

In this section, we present a few results of our tests on different platforms, demon-
strating the efficiency of our solvers. The results presented here are intended to give a
broad overview of the performace of the solver and to show that it runs and performs
well on platforms with vastly different architecture. ScaLAPACK 1.8.0 and C-XSC
2.2.3 are used for all tests.

The first system is a cluster of 24 standard PCs with Core2Duo processor clocked
at 2.33 GHz, 2GB RAM and a standard gigabit ethernet. We used the GNU Compiler,
Version 4.2.1 and ATLAS BLAS Version 3.8.1.

On this system, we solve a real, interval, complex, and complex interval system
respectively, each with dimension n = 5000 and precision K = 2 for dot products. The
Tables 2, 3 and 4 show timings, speed up (if t(p) is the needed time using p processes,

the speed up using p processes is t(p)
t(1)

) and numerical quality for Stage 1 of the solver.

For all tests using only one process the serial version of the solver described in [16, 29]
has been used. Apparently, the solver scales quite nicely, though for 4 and especially
8 processors, the problem size here is so small that the communication overhead is too
large for optimal speed ups. The quality of the numerical results is very good overall,
giving a tight enclosure of the actual solution.

P real interval complex cinterval

1 124.5 180.8 589.9 690.3

2 78.7 103.3 295.7 346.5

4 53.7 69.7 187.4 212.3

8 39.2 51.4 119.1 133.9

Table 2: Time in s, condition 1010, n = 5000, K = 2

Reliable Computing 15, 2011 201

P real interval complex cinterval

1 1.00 1.00 1.00 1.00

2 1.58 1.75 1.99 1.99

4 2.32 2.59 3.15 3.25

8 3.18 3.52 4.95 5.16

Table 3: Speed up, condition 1010, n = 5000, K = 2

P real interval complex cinterval

1 14.6 5.0 (13.9, 14.0) (3.8, 4.0)

2 14.6 5.0 (13.9, 14.0) (3.8, 4.0)

4 15.3 5.0 (14.7, 14.8) (3.8, 4.0)

8 15.3 5.0 (14.7, 14.8) (3.8, 4.0)

Table 4: Average number of exact digits, condition 1010, n = 5000, K = 2

Tables 5, 6 and 7 show the corresponding results for the second stage of the solver.
In these tests, the matrix had a condition number of about 1017, for which in the first
stage the approximate inverse will be too bad, meaning that the spectral radius of
|I − RA| will be greater than one and thus no verification will be possible. Using the
second stage, a verified enclosure of the solution can be found. Since the computing
times are a lot higher for the second stage, only dimension n = 1000 is used.

P real interval complex cinterval

1 173.5 281.7 578.7 1047.3

2 87.6 138.1 284.9 516.0

4 42.5 69.5 147.7 260.5

8 25.1 39.0 75.2 133.8

Table 5: Time in sec., condition 1017, n = 1000, K = 3

Since the second stage requires a lot of computations and the communication
overhead thus becomes less important, the speed up is very good also for 4 and 8
processors. The numerical quality of the results is very good, although for the interval
systems no verified solution could be found, which is a typical behavior for such badly
conditioned systems. Since the quality of the results stayed basically the same for all
systems we tested our solvers on, we only give timing information for the following
systems.

The next machine is AliceNext, the supercomputer of the University of Wuppertal.
It consists of 2 × 512 AMD Opteron processors with 1.8GHz and 1GB RAM per

202 M. Kolberg et al., Parallel Solvers for Linear Interval Equations

P real interval complex cinterval

1 1.00 1.00 1.00 1.00

2 1.98 2.04 2.03 2.03

4 4.08 4.05 3.92 4.02

8 6.91 7.22 7.70 7.83

Table 6: Speed up, condition 1017, n = 1000, K = 3

P real interval complex cinterval

1 15.8 − (15.8, 15.8) −

2 15.8 − (15.8, 15.8) −

4 15.8 − (15.8, 15.8) −

8 15.8 − (15.8, 15.8) −

Table 7: Average number of exact digits, condition 1017, n = 1000, K = 3

processor. The network is a Gigabit-Ethernet ordered in a 2D-Torus. On this machine,
we used the GNU compiler version 3.3.1 and the AMD Core Math Library. Since this
system is out of date and will be out of service soon, we only show a few timings in
Table 8 to compare with the above results.

P real interval complex cinterval

1 298.1 465.5 − −

2 191.8 278.0 789.5 902.7

4 120.8 166.3 461.7 483.3

8 86.7 95.6 250.0 289.9

Table 8: Time in s, condition 1010, n = 5000, K = 2

Now we want to focus on tests involving large dense linear systems. First we take
a look at the XC6000 cluster at the University of Karlsruhe. This cluster consists of
128 Intel Itanium2 processors with 1.5GHz, 6GB RAM per processor and a Quadrics
WsNet II interconnect network. We used the Intel Compiler 10.0 and the Intel Math
Kernel Library 10.0 on this machine. Results for real systems are shown in Table 9
and 10, results for interval systems are shown in Table 11 and 12.

Reliable Computing 15, 2011 203

Time in s P=20 P=50 P=100

n = 10000 108.1 52.0 35.3

n = 25000 1188.0 532.2 299.7

n = 50000 - - 1978.6

Table 9: K = 2, well conditioned real system

Speed Up P=20 P=50 P=100

n = 10000 - 80.1% 59.0%

n = 25000 - 89.3% 79.3%

n = 50000 - - -

Table 10: K = 2, well conditioned real system, speed up given as percentage of
theoretical optimum

Time in s P=20 P=50 P=100

n = 10000 136.0 64.6 42.2

n = 25000 1571.7 687.3 385.3

n = 50000 - - 2561.1

Table 11: K = 2, well conditioned interval system

Speed Up P=20 P=50 P=100

n = 10000 - 84.2% 64.5%

n = 25000 - 91.5% 81.6%

n = 50000 - - -

Table 12: K = 2, well conditioned interval system, speed up given as percentage
of theoretical optimum

In the Tables 9 and 11 the symbol − indicates that the system could not be solved
due to memory limitations. These results show that the accumulated memory of all
nodes is the only limiting factor for the dimension of the system to solve. So using
100 processors with 6GB each we were able to solve a dense system of dimension
n = 50000. The speed up for such large systems is very good as well. Using the full
cluster (all 128 processors), we were even able to solve a real point system of dimension
n = 100000 in about 200 minutes.

204 M. Kolberg et al., Parallel Solvers for Linear Interval Equations

Finally, we take a short look at some timings for the JUMP cluster from the
Forschungszentrum Jülich. It consists of 14 nodes with 32 IBM Power6 processors
clocked 4.7GHz each and 128GB RAM per node. It uses an Infiniband network. On
this machine, we used the IBM XLC compiler. The timings are shown in Table 13 and
14.

Time in s P=20 P=50 P=100

n = 10000 95.8 44.4 30.7

n = 25000 1265.9 552.8 289.8

n = 50000 - - 2130.0

Table 13: K = 2, well conditioned real system

Speed Up P=20 P=50 P=100

n = 10000 - 86.3% 62.4%

n = 25000 - 91.6% 87.4%

n = 50000 - - -

Table 14: K = 2, well conditioned real system, speed up given as percentage of
theoretical optimum

The results are comparable to that of the XC6000 cluster. Keep in mind however,
that the JUMP and XC6000 clusters have a vastly different architecture. This shows
that our solvers are highly portable and perform well on a wide range of platforms due
to the use of optimized libraries for each system.

6 Conclusion

Our verified solvers for dense linear (interval-)systems using C-XSC are fast and flex-
ible. The parallel version for distributed memory systems presented in this paper can
be used to solve large dense systems in an acceptable time with good numeric results.
The parallelization is also helpful for the second stage of the solver for badly condi-
tioned systems, which is very demanding in terms of computing time because of the
use of high precision dot product algorithms.

Since this solver is intended for general dense linear systems, it is inefficient when
using systems with a special structure and especially sparse systems. While it can
solve such system in general, it doesn’t take advantage of the sparsity, neither in
terms of computations nor in terms of memory usage. Because of this, specialized
sparse solvers are needed. For sparse systems, Algorithm 1 can not be used since the
approximate inverse R will in general be dense even for sparse A. Thus, a modified
version of this algorithm (or a completely different approach) has to be used (see for
example [15, 26]). This will be a focus of our future work.

Reliable Computing 15, 2011 205

Acknowledgments

We would like to thank Prof Dr. Lippert and Wolfgang Frings of the Forschungszen-
trum Jülich for granting us access to the JUMP-cluster.

References

[1] Downloads:
C-XSC library: http://www.math.uni-wuppertal.de/˜xsc/
Solvers: http://www.math.uni-wuppertal.de/˜xsc/xsc/cxsc software.html

[2] Intel Software Network Community:
http://software.intel.com/en-us/forums/intel-math-kernel-library/topic/57435/

[3] Blackford, L. S.; Demmel, J.; Dongarra, J.; Duff, I.; Hammarling, S.; Henry, G.;
Heroux, M.; Kaufman, L.; Lumsdaine, A.; Petitet, A.; Pozo, R.; Remington, K.;
Whaley, R. C.: An Updated Set of Basic Linear Algebra Subprograms (BLAS)
ACM Trans. Math. Softw., 28(2) (2002), pp. 135–151.

[4] Blackford, L. S.; Choi, J.; Cleary, A.; D’Azevedo, E.; Demmel, J.; Dhillon, I.;
Dongarra, J.; Hammarling, S.; Henry, G.; Petitet, A.; Stanley, K.; Walker, D.;
Whaley, R. C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, 1997.

[5] Bohlender, G.: What Do We Need Beyond IEEE Arithmetic?, Computer Arith-
metic and Self-Validating Numerical Methods (Ch. Ullrich, ed.), Academic Press,
San Diego, 1990, pp. 1–32.

[6] Grimmer, M.: Selbstverifizierende Mathematische Softwarewerkzeuge im High-
Performance Computing. Konzeption, Entwicklung und Analyse am Beispiel der
parallelen verifizierten Lösung linearer Fredholmscher Integralgleichungen zweiter
Art, Logos Verlag, 2007.

[7] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D.: Numerical Toolbox for Verified
Computing I: Basic Numerical Problems, Springer Verlag, 1993.

[8] Hofschuster, W.; Krämer, W.: C-XSC 2.0: A C++ Library for Extended Scientific
Computing, in Numerical Software with Result Verification, Lecture Notes in
Computer Science, Volume 2991/2004, Springer-Verlag, Heidelberg, 2004, pp. 15–
35.

[9] Hölbig, C.; Krämer, W.: Selfverifying solvers for dense systems of linear equations
realized in C-XSC. Technical Report BUW-WRSWT 2003/1, 2003.

[10] Klatte, Kulisch, Wiethoff, Lawo, Rauch: C-XSC — A C++ Class Library for
Extended Scientific Computing. Springer-Verlag, Heidelberg, 1993.

[11] Kolberg, M., Fernandes, L. G., Claudio, D.: Dense Linear System: A Parallel
Self-verified Solver. International Journal of Parallel Programming, 36(4) (2008),
pp. 412–425.

[12] Kolberg, M., Bohlender, G., Claudio, D.: Improving the Performance of a Verified
Linear System Solver Using Optimized Libraries and Parallel Computation, in
Lecture Notes in Computer Science: 8th VECPAR - International Meeting on
High Performance Computing for Computational Science 5336/2008, Toulouse,
France, 2008, Revised Selected Papers, Springer Verlag, 2008.

206 M. Kolberg et al., Parallel Solvers for Linear Interval Equations

[13] Kolberg, M., Krämer, W., Zimmer, M.: A Note on Solving Problem 7 of the
SIAM 100-Digit Challenge Using C-XSC, in Springer Lecture Notes in Computer
Science: Cuyt et al. (Editors), Numerical Validation in Current Hardware Archi-
tectures, Springer Verlag, 2008

[14] Kolberg, M.: Parallel Self-Verified Solver for Dense Linear Systems. Ph.D. The-
sis, Pontif́ıcia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil,
2009.

[15] Krämer, W., Kulisch, U., Lohner, R.: Numerical Toolbox for Verified Computing
II, Advanced Numerical Problems. Draft, about 400 pages. Available on the web:
http://www.uni-karlsruhe.de/~Rudolf.Lohner/papers/tb2.ps.gz

[16] Krämer, W., Zimmer, M.: Fast (Parallel) Dense Linear System Solvers in C-XSC
Using Error Free Transformations and BLAS, Lecture Notes in Computer Science:
Cuyt et al. (Editors), Numerical Validation in Current Hardware Architectures,
Springer Verlag, 2008.

[17] Kulisch, U.: Computer Arithmetic and Validity - Theory, Implementation and
Applications. De Gruyter, Studies in Mathematics 33, 2008.

[18] Kulisch, U.; Miranker, W.: The arithmetic of the digital computer: A new ap-
proach, SIAM Rev. 28(1):1–40, 1986.

[19] Kulisch, U.: Die fünfte Gleitkommaoperation für Top-Performance Computer.
Berichte aus dem Forschungsschwerpunkt Computerarithmetik, Intervallrechnung
und numerische Algorithmen mit Ergebnisverifikation, 1997.

[20] Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken. Computing 4 (1969), pp. 187–201.

[21] Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product, SIAM Journal
on Scientific Computing 26(6) (2005), pp. 1955–1988.

[22] Oishi, S., Tanabe, K., Ogita, T., Rump, S.M., Yamanaka, N.: A Parallel Algo-
rithm of Accurate Dot Product, Parallel Computing 34(6–8) (2008), pp. 392–410.

[23] Oishi, S., Ogita, T., Rump, S.M.: Iterative Refinement for Ill-conditioned Linear
Equations, 2008 International Symposium on Nonlinear Theory and its Applica-
tions, NOLTA’08, Budapest, Hungary, September 7-10, pp. 516–519, 2008.

[24] S.M. Rump. INTLAB - INTerval LABoratory, Developments in Reliable Comput-
ing (T. Scendes ed.), Kluwer Academic Publishers, Dordrecht, 1999, pp. 77–104.

[25] Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen. Dissertation, Univer-
sity of Karlsruhe, 1980.

[26] Rump, S.M.: Validated Solution of Large Linear Systems, Validation Numerics:
Theory and Applications (R. Albrecht, G. Alefeld, and H.J. Stetter eds.), volume
9 of Computing Supplementum, pages 191-212. Springer, 1993.

[27] Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The
Complete Reference, MIT Press, 1995

[28] Zimmer, M., Krämer, W., Bohlender, G., Hofschuster, W.: Extension of the C-
XSC Library with Scalar Products with Selectable Precision, Serdica Journal of
Computing 4(3) (2010), pp. 349–370.

[29] Zimmer, M.: Laufzeiteffiziente, parallele Löser für lineare Intervallgleichungssys-
teme in C-XSC. Master’s Thesis, University of Wuppertal, 2007.

