
From Interval Arithmetic to Interval Constraints
∗

M.H. van Emden
Department of Computer Science

, University of Victoria, Canada

vanemden@csr.uvic.ca

Abstract

Two definitions of division by an interval containing zero are compared:
a functional one and a relational one. We show that the relational defi-
nition also provides interval inverses for other functions that do not have
point inverses, such as max and the absolute-value function. Applying the
same approach to the ≤ relation introduces the “companion functions” of
relations. By regarding the arithmetic operations +, −, ∗, and / as ternary
relations, we obtain the interval versions of the operations. This opens
the way for regarding arithmetic problems such as evaluating expressions
and solving equations as Constraint Satisfaction Problems (csps). These
have a useful computational theory, which is, however, influenced by their
predominantly discrete applications. We generalize the conventional for-
mulation to better accommodate real-valued variables, and state the main
results. When these results are applied to numerical csps we relate the
interval evaluation of an arithmetic expression to the family of solving
algorithms of csps. The key to our method of bringing interval arith-
metic and interval constraints under a common denominator are com-
panion functions. These functions form an alternative characterization of
n-ary relations and appear to be a new contribution to the mathematical
theory of relations.

Keywords: Constraint satisfaction problems, companion functions, interval arith-
metic, interval constraints.
AMS subject classifications: 65G30

1 Introduction

Analysis is primarily concerned with real-valued functions and only secondarily with
relations among the reals. The functions are defined by expressions that almost always
include the basic arithmetic operations. Interval analysis allows one to accommodate
to the limitations of computers by extending the operations on the reals to the analo-
gous ones on sets of reals. For practical reasons these sets are restricted to intervals.
These are computed in such a way as to ensure that all reals are included that may
have been the result of the infinite-precision version of the operation.

∗Submitted: January 23, 2009; Accepted: January 22, 2010.

144



Reliable Computing 15, 2011 145

Another way of stating the “may have been” is to say that interval arithmetic
yields intervals that exclude with certainty reals that are not results of the infinite-
precision version of the operation. This manner of excluding what is not part of a
solution is the essence of constraint processing, which is computation with Constraint
Satisfaction Problems (csps). This is a general paradigm, of which the branch dealing
with real-valued variables is somewhat neglected. This branch only became feasible
with interval arithmetic and IEEE-standard floating-point arithmetic.

This paper aims to show the advantages of regarding interval arithmetic as a special
case of constraint processing. It does this by starting within interval arithmetic and,
as it were, discovering constraint processing in response to difficulties within interval
arithmetic.

2 Interval division

Moore [12] defined exact-interval arithmetic as

[a, b] ◦ [c, d]
def
= {x ◦ y | a ≤ x ≤ b ∧ c ≤ y ≤ d} (1)

with ◦ being one of the symbols +, −, ∗, or /. He added: “except that we do not
define [a, b]/[c, d] if 0 ∈ [c, d]”.

In the practice of computation with reals the fact that, for reals x and y, x/y is only
defined for y 6= 0 is a problem, but it is a manageable problem. Restricting [a, b]/[c, d]
to 0 6∈ [c, d] may be acceptable when one is only intervalizing conventional algorithms.
But interval arithmetic is important for the new algorithms that it makes possible,
such as Interval Newton and Moore-Skelboe. Such use is severely handicapped by
requiring that divisor intervals exclude 0. Kahan [11] proposed an “extended interval
arithmetic” that allows division by an interval containing zero. This can be defined in
several ways.

One approach is:

Definition 1

[a, b]/[c, d]
def
= 2{x/y | x ∈ [a, b] ∧ y ∈ [c, d]}

for all intervals [a, b] and [c, d].

Here 2 is the function that maps any set of reals to the least interval containing it.
This is found, for example, in [8]. The reasoning behind it is: x/y being undefined
(when y = 0) means that it does not exist; if it does not exist, then it does give rise
to any contribution to the set being defined; therefore, the set is well-defined. The
validity of this approach depends on undefinedness implying non-existence. This is not
always accepted. For example, undefined could give rise to a special value outside the
reals, as is done in the IEEE floating-point standard, where NaN is such an extraneous
value.

Ratz proposed a definition of division by an interval regardless of whether and how
it contains a zero. He pointed out that

{y ∈ R | ∃z ∈ [a, b], x ∈ [c, d] . x ∗ y = z} (2)

coincides with (1) when ◦ is / and 0 /∈ [c, d]. But (2) is also defined when 0 ∈ [c, d],
although the set may in that case not be an interval. So Ratz defined [13]



146 M. H. van Emden, From Interval Arithmetic to Interval Constraints

Definition 2 [a, b]/[c, d]
def
= 2{y ∈ R | ∃z ∈ [a, b], x ∈ [c, d] . x ∗ y = z}

The definitions differ for the values they give for [0, 0]/[0, 0]: ∅ and R for defini-
tions 1 and 2, respectively. The reason behind the correctness properties of interval
arithmetic is that only those reals are removed from intervals that have been shown
not to be possible as values of the unknown. Accordingly, adopting the relational
Definition 2 ensures that no interval arithmetic applications are excluded. Moreover,
the relational approach opens up interesting extensions of interval arithmetic, which
we will examine further on in this paper.

Note that 2 can mean “smallest real interval containing the argument set” or
“smallest floating-point interval containing the argument set”. In the latter case,
Definition 2 defines all there is to define about interval division, as it takes outward
rounding into account as well. How to compute the bounds of the result interval on
the basis of the bounds of the argument intervals requires a detailed case analysis,
such as found in [8].

3 Other applications of relational form

All four interval arithmetic operations could have been expressed in relational form.
We start by defining the ternary relations:

sum
def
= {〈x, y, z〉 ∈ R

3 | x + y = z}

prod
def
= {〈x, y, z〉 ∈ R

3 | x ∗ y = z}

We have by analogy with Definition 2 for all four interval operations:

[a, b] + [c, d]
def
= 2{z ∈ R | ∃x ∈ [a, b], y ∈ [c, d] . 〈x, y, z〉 ∈ sum}

[a, b] ∗ [c, d]
def
= 2{z ∈ R | ∃x ∈ [a, b], y ∈ [c, d] . 〈x, y, z〉 ∈ prod}

[a, b] − [c, d]
def
= 2{y ∈ R | ∃z ∈ [a, b], x ∈ [c, d] . 〈x, y, z〉 ∈ sum}

[a, b]/[c, d]
def
= 2{y ∈ R | ∃z ∈ [a, b], x ∈ [c, d] . 〈x, y, z〉 ∈ prod} (3)

The function 2 is added to all definitions for the sake of uniformity when it is inter-
preted as the least real interval containing its argument; it is of course only necessary
for division, and then only for the case 0 ∈ [c, d]. When 2 is interpreted as the least
floating-point interval containing its argument it is necessary for all four definitions,
and it implies outward rounding.

The relational method of Ratz was originally used because of an inverse not being
everywhere defined. It can also be used when the inverse is multivalued. Consider the
function max : R2 → R that has as value the greater of its two arguments or the value
of both arguments when they are equal. This function fails to have an inverse because
it would be undefined at some points (e.g. for what x do we have max(x, 1) = 0?) and
multivalued at other points (e.g. for what x do we have max(x, 1) = 1?). By analogy
with Definition 2 we get for the inverse of max among intervals:

Definition 3

max−1([a, b], [c, d]) = {y ∈ R | ∃z ∈ [a, b], x ∈ [c, d]. max(x, y) = z}



Reliable Computing 15, 2011 147

To compute this function we can use

Theorem 1

max−1([a, b], [c, d]) =







if d < a: ∅
if d ≥ a and b ≥ c: [−∞, d]
if b < c: [c, d]

Let us next consider the absolute-value function such that abs(x) is x if x is positive
and −x otherwise. The inverse is undefined or multivalued. With Ratz’s relational
definition we have a well-defined interval inverse:

Definition 4

abs−1([a, b]) = 2{x ∈ R | ∃y ∈ [a, b]. abs(x) = y} (4)

Here 2 is needed to ensure an interval result when 0 < a.

To compute this inverse we can use:

Theorem 2

abs−1([a, b]) = [−b, b] if b ≥ 0

= ∅ if b < 0

So far we have shown that the relational method is successful for obtaining interval
inverses in cases where the real-valued function does not have an inverse. The method
depends on translating the function to a relation. Let’s see what happens if we apply
the same method in a case where we do not start out with a function at all: the not-
greater-than relation among reals. Below we define an interval function analogously
to (4), replacing abs(x) = y by x ≤ y:

f([c, d]) = {x ∈ R | ∃y ∈ [c, d]. x ≤ y} = [−∞, d]

Analogously to the usual notion of abs([a, b]) we have

g([a, b]) = {y ∈ R | ∃x ∈ [a, b]. x ≤ y} = [a,∞]

Due to the nature of the relation involved, the 2 operation would not have an effect
in either case.

The functions f and g represent two ways of associating an interval function with
an arbitrary binary relation, one that does not need to be a function. These functions
are examples of the companion functions for a binary relation. A general definition
will be given in Section 5.2.

The companion functions for this particular binary relation cast light on the ques-
tion that sometimes asked by newcomers to interval arithmetic: What is the truth
value of [a, b] ≤ [c, d]? If b < c or if d < a the answer is clear. The lack of obviousness
in the remaining case indicates that it is not helpful to think of intervals as a kind of
generalized number, as in [12].

What is a better way to think about intervals? Let’s retreat to familiar ground
and consider the addition operator. Regarding an interval as a generalized number
suggests defining [a, b] + [c, d] by asking

What is the set of all x + y when x ∈ [a, b] and y ∈ [c, d]?



148 M. H. van Emden, From Interval Arithmetic to Interval Constraints

But we can ask instead:

Is x + y = z possible when x ∈ [a, b] and y ∈ [c, d]? And if so, what are
the possible values of z?

The first part of this question is not interesting. But we can ask, analogously:

Is x ≤ y possible when x ∈ [a, b] and y ∈ [c, d]? And if so, what are the
possible values for x and y?

Here we regard x ≤ y as a constraint to be imposed on the values of x and y that are
known to be a priori in [a, b] and [c, d]. The constraint reduces these possible values
to x ∈ ([a, b] ∩ f([c, d])) and y ∈ ([c, d] ∩ g([a, b])). Or, as in the following theorem,
where the companion functions f and g have had their definitions substituted:

Theorem 3

leq ∩ ([a, b] × [c, d]) = ∅ if d < a

= [a, d] × [a, d] if c ≤ a ≤ d ≤ b

= [a, b] × [a, d] if b ≤ d ∧ c ≤ a

= [c, b] × [c, b] if a ≤ c ≤ b ≤ d

= [a, d] × [c, d] if a ≤ c ∧ d ≤ b

= [a, b] × [c, d] if b ≤ c

where leq = {〈x, y〉 ∈ R2 | x ≤ y}.

4 Arithmetic constraints

In (3) we saw a set-theoretic expression for interval division in relational form. For
better understanding it helps to convert it to algebraic form:

{y ∈ R | ∃x ∈ [a, b], z ∈ [c, d] . 〈x, y, z〉 ∈ prod}

= πy({〈x, y, z〉 ∈ R
3 | x ∈ [a, b], z ∈ [c, d] . 〈x, y, z〉 ∈ prod})

where prod = {〈x, y, z〉 ∈ R3 | x ∗ y = z}.
This is an example of a companion function — this time for the ternary prod

relation. A general definition will be given in Section 5.2.
This is but one of three symmetrical formulas for the projection. Putting all three

together we have:

Z/Y = πx(2(prod ∩ (R × Y × Z)))

Z/X = πy(2(prod ∩ (X × R × Z))) (5)

X ∗ Y = πz(2(prod ∩ (X × Y × R)))

Suppose that all candidates for solutions are in X ×Y ×Z, but that the constraint
prod ⊆ R3 has not yet been taken into account. Then we can restrict the candidates
for solutions to prod ∩ (X × Y × Z). Because this intersection is typically difficult to



Reliable Computing 15, 2011 149

represent we store 2(prod ∩ (X × Y × Z)). The function (X × Y × Z) 7→ 2(prod ∩
(X × Y × Z)) we call the domain restriction operator (dro) of prod, denoted γprod.

The equalities in (5) show that the dro can be computed by means of interval
arithmetic. In fact, if we already have a priori intervals X, Y , and Z, then we can
modify (5) so that we get the projections of 2(prod ∩ (X × Y × Z)):

X ∩ Z/Y = πx(2(prod ∩ (X × Y × Z)))

Y ∩ Z/X = πy(2(prod ∩ (X × Y × Z))) (6)

Z ∩ X ∗ Y = πz(2(prod ∩ (X × Y × Z)))

The interval arithmetic operations are special cases of applying the dro. For
example, we have πy(γprod(X × R × Z)) = Z/X. In fact, for interval Y sufficiently
wide compared to intervals X and Z, we have πy(2(γprod(X × Y × Z))) = Z/X.

In [9] similar characterizations were introduced for the relational versions of sum,
prod, integral power, ≤, and =.

Benhamou and Older [2] introduced ternary versions of interval operations: X ∩
Z/Y instead of Z/Y , Y ∩ Z/X instead of Z/X, and Z ∩ X ∗ Y instead of X ∗ Y .

Example Let X = [−0.5, +0.5], Y = [−1, +1], and Z = [+1, +1]. Note that

πx(2(γprod(X × Y × Z))) = X ∩ Z/Y = ∅.

This is to be compared with Definitions 1 and 2, which give

Z/Y = 2([−∞,−1] ∪ [1, +∞]) = [−∞, +∞].

Thus the dro gives more information than interval division.

5 Constraints in a general setting

So far we have only seen how the individual interval arithmetic operations generalize
to arithmetic constraints. The evaluation of complex expressions in interval arithmetic
also generalizes to interval constraints. To see this we need to move from binary and
ternary constraints to the n-ary case. While we generalize this, we might as well lift
the restriction from reals and intervals to allow other types of values.

5.1 Types, domains, and domain systems

We are going to consider relations over n variables. A common numerical example of
such a constraint takes the form f(x0, . . . , xn−1) = 0. With f a given function, this
defines an n-ary relation constraining the values of x0, . . . , xn−1. In the general case,
not necessarily numerical, we allow for the possibility that each of the variables takes
its value from a set independently of the others. Thus we have sets T0, . . . , Tn−1, which
we call types, not necessarily different, from which the variables take their values.

We will use constraints to obtain information about the variables. We do this
by finding as small as possible subsets of the types to which the variables can be
restricted. Computational realities often force us to limit the variety of sets of values
under consideration. When the type is R, these subsets are restricted to intervals. For



150 M. H. van Emden, From Interval Arithmetic to Interval Constraints

other types it may also be necessary to similarly restrict the subsets of the type under
consideration. We refer to such allowed subsets of a type as domains.

We call a domain system for a set S a set of subsets of S that has S itself as
element and is closed under intersection. A trivial example is P(S); this is typically
used when S is finite, and small. To model real-valued variables in a computer we
need a non-trivial domain system, and this is provided by the set of floating-point
intervals. Note that the inclusion of the infinities among the floating-point numbers
supports the requirement that R itself belong to the domain system.

5.2 The companion functions of an n-ary relation

Let r ⊆ T0 × · · · × Tn−1 be an n-ary relation. Let D(Ti) be a domain system for
Ti, for i = 0, . . . , n − 1. The companion functions r0, . . . , rn−1 of r have the type
ri : D(T0) × · · · × D(Tn−1) → D(Ti). The dro of r has the type

γr : D(T0) × · · · × D(Tn−1) → D(T0) × · · · × D(Tn−1).

Both are defined as:

Definition 5

ri(D0, . . . , Dn−1)

def
= πi(r ∩ (D0 × · · · × Di−1 × Ti × Di+1 × · · · × Dn−1))

= {xi ∈ Ti | ∃j∈(n⊖i)xj ∈ Dj . r(x0, . . . , xn−1)},

where n ⊖ i = {0, . . . , n − 1}\{i}.
The dro of r is defined by its projections; for i = 0, . . . , n − 1:

πi(γr(D0, . . . , Dn−1)) = 2(Di ∩ ri(D0, . . . , Dn−1))

where 2 is the smallest domain product containing its argument.

Theorem 4 γr is non-increasing:

πi(γr(D0, . . . , Dn−1)) ⊆ Di

for i = 0, . . . , n − 1, and it is idempotent:

πi(γr(γr(D0, . . . , Dn−1)) = πi(γr(D0, . . . , Dn−1))

for i = 0, . . . , n − 1.

Example Let n = 3, Ti all equal to R, D(Ti) all equal to the set of intervals, and
r = {〈x, y, z〉 ∈ R3 | x ∗ y = z}. The three projections of γr(D0, D1, D2) are given by
(6) if D0, D1, D2 are X, Y, Z, respectively.

Example This will be familiar to Sudoku puzzlers. Let n = 3, Ti all equal to
{1, 2, 3, 4, 5, 6, 7, 8, 9}, D(Ti) all equal to P(Ti). The rules of the puzzle require certain
combinations of variables to have different values. Suppose we have a priori x ∈
{3, 5, 9} and y and z both in {3, 9}. Then the dro for the constraint that requires the
values of these variables to be all different reduces the domain for x to {5} without
causing any change in the domains for y and z.



Reliable Computing 15, 2011 151

6 Constraint Satisfaction Problems

We introduced the notion of constraint with the ≤ relation, then extended it to other
binary relations and to ternary relations. Most recently we considered n-ary relations
as constraints. Now we turn to multiple constraints to be satisfied simultaneously.

Waltz [14] introduced a new computational paradigm: he generalized the familiar
systems of equations between numerical expressions to include other relations that
constrain the values that variables are allowed to assume. His motivation for the
generalization was that he needed to solve a certain type of combinatorial problem
expressed by means of non-numeric constraints. The characteristics of these problems
are: a large number of variables, a large number of constraints, and small finite sets of
values over which the variables can range. The constraints involve only small subsets
of the set of all variables, yet the constraints typically share at least one variable
with one or more other constraints. In case such a constraint system would consist of
numerical equations or inequalities, it would be called “sparse”.

The solution method adopted by Waltz was to associate with each variable a set of
values (the variable’s “domain”). These values include by default all conceivable ones.
By examining each constraint separately, some values in the domain of one or more of
its variables may be found not to satisfy the constraint. Such values are removed.

This process terminates because of the finiteness of all entities involved. As only
values have been removed that cannot be part of a solution, at every stage the set of
solutions is contained in the Cartesian product of the domains. At termination the
following possibilities exist:

1. A domain is empty; this implies that there is no solution.

2. The terminal Cartesian product contains only a single tuple. There is a unique
solution, and this is the one.

3. The terminal Cartesian product contains more than one tuple. None of these
may be a solution. But possibly existing solutions have to be among these.
Whether this is the case has to be established by enumeration.

Since Waltz’s work much research has been done in csps. As this was mostly
concerned with finite domains, the conventional formalization [1] is suitable for this
situation. The application of constraint solving to numerical problems [7] has not
followed this convention. The conventional formulation has the great advantage that
useful results have been obtained for it. To be able to exploit these, we generalize the
conventional formalization to accommodate reals as type, without excluding the other
kinds of csp.

Definition 6 A Constraint Satisfaction Problem (csp) consists of a finite set X =
{x0, . . . , xn−1} of variables, a set C = {C0, . . . , Cm−1} of constraints, each of which
is a relation over a sequence of elements of X and has an associated dro. With each
variable xi is associated a type Ti, which is the set of values that xi can assume. For
each type there is a domain system. A solution of a csp is an assignment to each
variable xi of an element of Ti such that each constraint in C is satisfied.

Theorem 5 The solution set equals C0 1 · · · 1 Cm−1 where 1 is the natural join in
the sense of relational database theory.

Proof {C0, . . . , Cm−1} can be translated to an existentially quantified conjunction of
atomic formulas of first-order predicate logic. According to [6] an atomic formula



152 M. H. van Emden, From Interval Arithmetic to Interval Constraints

denotes a cylinder in the space of all variables, while the conjunction denotes the
intersection of these cylinders. The “natural join” in the sense of database theory can
be characterized as the intersection of such cylinders2

Definition 7 A computation state of a csp is D0 × · · · × Dn−1 where Di ⊆ Ti is a
domain and is associated with xi, for i = 0, . . . , n − 1.
A computation of a csp is a sequence of computation states in which each (after the
initial one) is obtained from the previous one by the application of the dro of one of
the constraints of the csp.
The limit of a computation is the intersection of its states.
A fair computation of a csp is a computation in which each of the constraints is
represented by its dro infinitely many times.

Fair computations have infinite length. However, for all practical csps no change occurs
from a certain point onward. By the idempotence of the dros, this is detectable by
algorithms that generate fair computations, so that they can terminate accordingly.

Theorem 6 The limit of a fair computation of a csp is equal to the intersection of
the initial state of the computation with the greatest fixpoint common to all dros.

Proof A tuple that belongs to all states of the computation has been subjected to the
dros of all constraints. Therefore the intersection of all states is a fixpoint of all dros.
We next consider whether it is the greatest.

Let t be a tuple be a tuple not belonging to the intersection of all computation
states, yet belonging to a fixpoint common to all dros. As t is not in the intersection,
it has been removed by the dro of a constraint. Therefore t does not satisfy that
constraint and does not belong to any common fixpoint. This contradiction shows
that no such t can exist, and that the intersection of all computation states is the
greatest common fixpoint of all dros2

For a given csp the intersection of the states of any fair computation only depends
on the initial state. It is therefore independent of the computation itself. Apparently
the csp maps the set of Cartesian products to itself. It is a non-increasing, idempotent
mapping.

Theorem 7 Let D be the initial state of a fair computation of a csp. Then the limit
of the fair computation contains the intersection of D with the solution set.

The limit is not, in general, the smallest box containing the intersection of D with
the solution set.

6.1 Numerical CSPs

We are interested in csps with the following characteristics. The variables range over
the reals; that is, all types T0, T1, . . . are equal to R. The domain system is that of the
floating-point intervals. The constraints include sum, prod, ≤, max, and abs. The
reason is that these have dros that are efficiently computable, as shown in this paper.
dros are also easily obtainable for = and for rational powers. dros for the constraints
corresponding to the transcendental functions are not easy to obtain, as their definition
requires them to be the least floating-point box containing the intersection of the
relation with the argument box. But reduction operators closely approximating this
ideal are used in some systems [7].



Reliable Computing 15, 2011 153

We call such instances numerical csps. They are interesting because many nu-
merical problems take the form of mixtures of equalities and inequalities between
arithmetical expressions that may contain transcendental functions as terms. Such
problems can be translated to numerical csps.

Example Consider the equation x(x− 2)+1 = y, where x and y are real variables.
It represents a constraint on the values of x ∈ X and y ∈ Y . Constraint processing is
not directly applicable here, as we only have available the constraints sum and prod.
A logically equivalent form of x(x − 2) + 1 = y is

∃z, u ∈ R. sum(2, z, x) ∧ prod(x, z, u) ∧ sum(u, 1, y).

The equation is therefore translated to a csp with the following set of constraints:

C = {sum(2, z, x), prod(x, z, u), sum(u, 1, y)}

The initial computation state is specified by x ∈ X, y ∈ Y, z ∈ [−∞, +∞], u ∈
[−∞, +∞]

The end result depends on the initial intervals X and Y . They can be such that
the limit of the csp is empty. In such a case it has been proved that no solution has
an x value in the initial X, and similarly for y. In other cases termination may occur
with the intervals for x and y narrowed to a small box around a solution.

Let us now consider some special cases of this example. Suppose the initial interval
for y is [0, 0]. In that case the csp is used to approximate the solution set of x(x −
2) + 1 = 0. If the initial interval of x is large enough to contain both solutions, it will
narrow to an interval containing both solutions. A sufficiently small interval around
one of the solutions can be expected to narrow to an interval small enough to represent
an accurate approximation.

If, on the other hand, the initial interval for y is [−∞, +∞], then the csp represents
the task of evaluating X(X−2)+1 in interval arithmetic. If the constraints are selected
in a suitable order, then none of the dros needs to be applied more than once2

In general, for any expression E in variables x0, . . . , xn−1, we can translate the
equation E = y to a numerical csp with variables x0, . . . , xn−1, y with as initial do-
mains the intervals X0, . . . , Xn−1, Y. If we set Y := [−∞, +∞], it may be proved
that the limit of the CSP has as projections X0, . . . , Xn−1, E[x0/X0, . . . , xn−1/Xn−1],
where this last expression is evaluated in interval arithmetic. Moreover, there is a
computation where the limit is reached in the same number of steps as the number of
subexpression evaluations needed for evaluating E.

This special case of Y = [−∞, +∞] only serves to illustrate interval arithmetic as
special case of constraint processing. More interesting is to start off with Y narrow
enough to cause some of the X0, . . . , Xn−1 to narrow. In the extreme case of Y = [0, 0]
we have equation solving. In that case the limit is not the smallest box containing the
solution set C0 1 · · · 1 Cm−1; it is usually far from being the smallest box. See [7] for
supplementary techniques that result in tighter enclosures.

7 Related work

We have emphasized a progression from interval arithmetic to interval constraints.
Accordingly we took Ratz’s relation definition of 1994 as starting point. But Cleary [4]
and Davis [5] described dros for the arithmetic constraints as found here in Section 4.



154 M. H. van Emden, From Interval Arithmetic to Interval Constraints

Ratz’s definition is subsumed by the dro for the product constraint. BNR Prolog [3]
included dros for the max and abs constraints; so used the equivalent of theorems 1
and 2. Although we are concerned here with earliest sources rather than a survey of
the literature, mention should be made of the comprehensive [10], which treats both
interval arithmetic and interval constraints.

8 Conclusions

For many observers the motivation for interval arithmetic is control of rounding errors.
However, from the beginning [12] the field has been more than the invervalizing of
conventional algorithms (which always lead to disappointingly wide intervals). Interval
Newton was an early example of an algorithm that is much more powerful than its
non-interval counterpart. Moore-Skelboe is an algorithm that does not even seem to
have a non-interval counterpart.

It may seem that interval constraints is just another application of interval arith-
metic. Conversely, interval arithmetic may seem just a special case of interval con-
straints. This paper is designed to suggest that there are opportunities for more
interplay between the two interval methods; opportunities that are likely to be amply
rewarded.

References

[1] K. R. Apt, Principles of Constraint Programming, Cambridge University Press,
2003.

[2] F. Benhamou, W. J. Older, Applying interval arithmetic to real, integer, and
Boolean constraints, Journal of Logic Programming, Vol. 32, pp. 1–24, 1997.

[3] BNR, BNR Prolog User Guide and Reference Manual, Version 3.1 for Macintosh,
1988.

[4] J. G. Cleary, Logical arithmetic, Future Computing Systems, Vol. 2, pp. 125–149,
1987.

[5] E. Davis, Constraint propagation with interval labels, Artificial Intelligence, Vol.
32, pp. 281-331, 1987.

[6] L. Henkin, J. D. Monk, A. Tarski, Cylindric Algebras, Parts I, II, Studies in
Logic and the Foundations of Mathematics, North-Holland, 1985.

[7] P. Van Hentenryck, L. Michel, Y. Deville, Numerica: A Modeling Language for
Global Optimization, MIT Press, 1997.

[8] T. Hickey, Q. Ju, M.H. van Emden, Interval arithmetic: from principles to im-
plementation, Journal of the ACM, Vol. 48, pp. 1038–1068. 2001.

[9] T. J. Hickey, M.H. van Emden, H. Wu, A unified framework for interval con-
straints and interval arithmetic, in: (Michael Maher and Jean-Franccois Puget,
eds., Principles and Practice of Constraint Programming — CP98, pp. 250–264,
Springer-Verlag, 1998, Lecture Notes in Computer Science 1520.

[10] L. Jaulin, M. Kieffer, O. Didrit, É. Walter, Applied Interval Analysis, Springer-
Verlag, 2001.

[11] W. M. Kahan, A more complete interval arithmetic, Technical report, University
of Toronto, Canada, 1968.



Reliable Computing 15, 2011 155

[12] R. E. Moore, Interval Analysis, Prentice-Hall, 1966.

[13] D. Ratz, On extended interval arithmetic and inclusion isotonicity, Technical
report, Institut für Angewandte Mathematik, Universität Karlsruhe, 1996.

[14] D. Waltz, Understanding line drawings in scenes with shadows, in: Patrick Henry
Winston, editor, The Psychology of Computer Vision, pp. 19–91. McGraw-Hill,
1975.


