
An Interval Newton Method Based on the

Bernstein Form for Bounding the Zeros of

Polynomial Systems

P. S. V. Nataraj
Systems and Control Engineering, CRNTS Building,
Indian Institute of Technology Bombay, Mumbai-400
076, India

nataraj@sc.iitb.ac.in

M. Arounassalame
Systems and Control Engineering, CRNTS Building,
Indian Institute of Technology Bombay, Mumbai-400
076, India∗

aroun@sc.iitb.ac.in

Abstract

Interval Newton methods are widely used to find reliable enclosures
for the roots of the polynomial systems. But the computation process
needs the evaluation of an enclosure for the derivative of the polynomial
and evaluation of the polynomial at a particular point. Again, the subdi-
visions (if any are needed) will require repeated evaluation of the function
values. We propose an alternative approach using Bernstein coefficients
to find the value of the Newton operator. This Bernstein Newton operator
doesn’t require evaluation of the function at any particular point. Instead
the function value is obtained directly from the vertex points. Again the
computation of the derivative is very simple using the Bernstein coefficient
approach. In addition to this the range enclosures obtained using Bern-
stein coefficients are much sharper than the range enclosures obtained
using many other interval forms. We compare the performance of the
proposed Bernstein Newton Contractor with that of Interval Newton con-
tractor using numerical examples, proving the superiority of the proposed
approach.

Keywords: Bernstein Newton contractor, Bernstein polynomials, Interval Newton,
subdivision

AMS subject classifications: 65H10, 65G20, 65G30, 34A34

∗Submitted: January 20, 2009; Accepted: January 16, 2010.

109

110 Nataraj et al, Interval Newton Method Based on the Bernstein Form

1 Introduction

Engineering applications such as robotics, global optimization, chemical process, etc.
require finding all the isolated solutions to polynomial systems. Polynomials are pop-
ular in curve and surface representations and in many critical problems arising in
computer aided geometric design. In general these problems are reduced to finding
zeros of a polynomial system of equations

f(x) = 0 (1)

where f = (f1, f2, ...fn), and each fi is a polynomial of l independent variables
x = (x1, x2, ..., xl). Several root-finding algorithms are proposed in literature [7, 10] to
find the solutions to system of polynomial equations. The solutions can be obtained
either by directly solving the set of nonlinear polynomial equations or by solving the
set of simpler functions obtained by decomposing the nonlinear polynomial equations.
The nonlinear polynomial systems of equations can be directly solved using interval
analysis [6, 14, 5]. In general, guaranteed interval enclosures to all the zeros of the
polynomial systems can be obtained using interval branch and bound methods. In-
terval methods often require repeated evaluation of the polynomial functions, which
is a time consuming operation. Pruning operators such as interval Newton can be in-
troduced to reduce the number of iterations. But the evaluation of interval enclosures
for these operators requires derivatives. Finding derivatives of polynomial systems
using interval methods is also a time consuming process. In this paper we propose an
algorithm based on the Bernstein form combined with the Newton operator to find
the enclosures for the roots of systems of polynomial equations.

Any multivariate power form of a polynomial can be represented equivalently by
the Bernstein form of the polynomial [1]. The coefficients of the Bernstein polynomial
are called Bernstein coefficients. The minimum and maximum Bernstein coefficients
enclose the range of the polynomial. In general the range enclosure obtained by Bern-
stein form is much sharper than the range enclosures obtained using other interval
forms [22, 23]. The subdivision of the intervals and the evaluation of the values of the
polynomial systems over the subdivided intervals are avoided by using the Bernstein
coefficient approach. The Bernstein coefficients of the subdivided intervals can be
derived directly from the Bernstein coefficients of the original interval.

A basic Bernstein form of Branch and Bound (BBB) type of algorithm was al-
ready used in [11, 12]. This type of algorithm can be used for the computation of
interval enclosures for the solution of polynomial systems. But this method requires
more subdivisions, making the algorithm inefficient in terms of computation time and
number of iterations. The algorithm can be made more efficient by introduction of
pruning steps using the proposed Bernstein Newton operator. Since we are proposing
a method based on Bernstein approach to evaluate the value of Newton operator, we
can avoid the complications in the interval derivative, as the derivative in Bernstein
domain is much simpler and straightforward. This algorithm is more efficient than the
BBB algorithm as it reduces the number of iterations considerably. We further modi-
fied this algorithm to avoid the evaluation of Bernstein coefficients after the pruning
step. We use Bernstein coefficient contraction to replace this evaluation step, so as to
avoid this slow computation procedure.

The remaining sections in this paper are organized as follows. In section 2 we give a
brief introduction to the Bernstein expansion of multivariate power form polynomials
and the subdivision procedure. In section 3, we explain the algorithm for the pro-
posed Bernstein Newton approach. In section 4, we propose the Bernstein coefficient

Reliable Computing 15, 2011 111

contraction procedure which avoids the reevaluation of Bernstein coefficients over the
new domain. In section 5, we compare the performance of the proposed and existing
methods on a few numerical examples. Finally, conclusions of the work are given in
section 6.

2 Background

2.1 The Bernstein form

Following the notations given in [2, 15, 17], let l ∈ N be the number of variables and
x = (x1, x2, ..., xl) ∈ R

l. A multi-index I is defined as I = (i1, i2, ..., il) ∈ N
l and

multi-power xI is defined as xI = (xi1
1 , xi2

2 , ..., xil
l). A multi-index N is defined as

N = (n1, n2, ..., nl). Inequalities I ≤ N for multi-indices are meant component-wise,
where 0 ≤ ik, k = 1, 2, ..., l. With I = (i1, ..., ir−1, ir, ir+1, ..., il) we associate the index
Ir,k given by Ir,k = (i1, ..., ir−1, ir + k, ir+1, ..., il), where 0 ≤ ir + k ≤ nr. Also we
write (N/I) for (n1/i1,n2/i2,...,nl/il). Let x = [x,x] be a real interval, where x=inf
x and x=sup x. The width of the interval x is represented as wid x = x− x

We can write an l-variate polynomial p in the form

p(x) =
∑

I≤N

aIx
I , x ∈ R

l, (2)

with N as the degree of p. We can expand a given multivariate polynomial into a Bern-
tein polynomial to obtain bounds for its range over an l-dimensional box x=(x1x2...xl).
Without loss of generality, we consider the unit box u = [0, 1]l since any nonempty
box x of R

l can be mapped affinely onto this box. The Ith Bernstein polynomial of
degree N is defined as

BN
I (x) = Bn1

i1
(x1)...B

nl
il

(xl), x ∈ R
l, (3)

where for ij = 0, 1, ..., nj , j = 1, 2, ..l

B
nj

ij
(xj) =

(

nj

ij

)

x
ij

j (1 − xj)
nj−ij (4)

The Bernstein coefficients bI(u) of p over the unit box u are given by

bI (u) =
∑

J≤I

(

I
J

)

(

N
J

)aJ , I ≤ N. (5)

Thus the Bernstein form of a multivariate polynomial p is defined by

p (x) =
∑

I≤N

bI (u)BN
I (x) (6)

The Bernstein coefficients are collected in an array B(u) = (bI(u))I∈S, where S = {I :
I ≤ N}. This array is called as a patch.

The following lemma describes the range enclosure property of the Bernstein coeffi-
cients.

112 Nataraj et al, Interval Newton Method Based on the Bernstein Form

Lemma 1 [16, 17] Let p be a polynomial of degree N , and let p(x) denote the range
of p on the given domain x. Then, the following property holds for a patch B(u) of
Bernstein coefficients: p(x) ⊆ [minB(u),maxB(u)].

The range enclosure of the multivariate polynomial p on the domain x can be
found by transforming the polynomial from power form to Bernstein form. Then, by
Lemma 1, the coefficients of the expansion in the Bernstein form provide lower and
upper bounds for the range.

The following lemma describes the vertex property of the Bernstein coefficients.

Lemma 2 (Vertex property lemma) [3] The upper bound or lower bound is sharp
if and only if min(bI(u))I∈S (resp., max(bI(u))I∈S) is attained at the indices of the
vertices of the array B(u). This condition is known as the vertex property.

Remark 1 The value of the Bernstein coefficients present at the vertex points represent
the true value of the function at these points.

The partial derivative of a polynomial in a particular direction can be found using
the Bernstein coefficients of the original polynomial using the following relation [21, 25].
On a box d ⊆ x, the first partial derivative with respect to xr of a polynomial p(x) in
Bernstein form is

p′
r(d) =

nr

wid d

∑

I≤Nr,−1

[bIr,1(d) − bI(d)]BNr,−1,I(x), 1 ≤ r ≤ l, x ∈ d (7)

Now, p′
r(d) contains an enclosure of the range of the partial derivative of p on d.

Similar formulae exist for the higher partial derivatives.

The Bernstein coefficients of a multivariate polynomial p over a box can be effi-
ciently computed using the matrix method of Ray [21]. Ray uses a two-dimensional
array or matrix representation for computing the coefficients of a n−dimensional pol-
ynomial on a general box. We use this method for the computation of Bernstein
coefficients in the sequel.

2.2 Subdivision procedure

The range enclosure obtained using Bernstein coefficients can be further improved
either by degree elevation of the Bernstein polynomial or by subdivision. The sub-
division strategy is generally more efficient than the degree elevation strategy [2, 25]
and is therefore preferred. A subdivision in the rth direction (1 ≤ r ≤ l) is a bisection
perpendicular to this direction. Let

x = [x1, x1] × ... × [xr, xr] × ... × [xl, xl]

be any subbox and suppose the patch B(x) has already been computed. Further
suppose that x is bisected along the rth component direction. Then, two subboxes xA

and xB are generated by this bisection or subdivision as

xA = [x1, x1] × ... × [xr, m(xr)] × ... × [xl, xl],

xB = [x1, x1] × ... × [m(xr), xr] × ... × [xl, xl]

Reliable Computing 15, 2011 113

where, m(xr) denotes the midpoint of [xr, xr]. Starting with B0(x) = B(x) we set for
k = 1, 2, ..nr ,

b
(k)
I (x) =

{

b
(k−1)
I (x) : ir ≤ k

(1 − λ)b
(k−1)
Ir,−1

(x) + λb
(k−1)
I (x) : k ≤ ir

}

(8)

where λ is the subdivision parameter. To obtain the new coefficients, the above formula
is applied for ij = 0, ..., nj , j = 1, ..., r − 1, r + 1, ..., l. Then

B(xA) = Bnr (x) (9)

The Bernstein coefficients B(xB) on the neighboring subbox xB are the intermediate
values of this computation since for k = 0, 1, ..., nr the following relation holds [25]

bi1,...,nr−k,...,il
(xB) = bi1,...,nr ,...,il

(xA) (10)

By the above subdivision procedure, the explicit transformation of the subboxes gen-
erated by the subdivisions back to original box is avoided.

3 Bernstein Newton operator

The proposed Bernstein Newton method is based on the following:

• If we choose x(k) to be any vertex point of x(k), then by Remark 1, f
(

x(k)
)

is

given directly by the Bernstein coefficient value at x(k). This obviates the need
to evaluate the system of polynomials at x(k) as done in the interval Newton
method.

• From the Bernstein coefficients of f on x(k), we can compute the Bernstein
coefficients of each first partial derivative by just finding their difference, cf.
(7). The range enclosure of any partial derivative is simply the minimum to
maximum over the respective set of Bernstein coefficients. Using these range

enclosures, we form the interval Jacobian matrix J
(

x(k),x(k)
)

. Thus, there

is no need for automatic differentiation or interval computations to find the
interval partial derivatives, as done presently in the interval Newton method.

• At each iteration, the resulting linear interval system can be solved using the
interval Gauss-Seidel method [9] or the interval hull method [18], just as done
presently in the interval Newton method.

• The Bernstein coefficients on the contracted box x(k+1) are needed in the next
iteration for further work. Since straightforward evaluation of the Bernstein
coefficients on x(k+1) can be time consuming, we instead use the Bernstein coef-
ficient contraction (BCC) method in section 4 to obtain the Bernstein coefficients
for the contracted box. In this procedure, the coefficients for x(k+1) are derived
from those already available for x(k) (but are not freshly computed).

We now present the algorithm.

Algorithm: The Bernstein Newton method

Inputs: Degree N of the variables x = (x1, x2, ..., xl) occurring in the polynomials
f = (f1, f2, ..., fl), the coefficients aI of these polynomials in the power form, the
l−dimensional initial domain box x, and the tolerance parameter ǫ.

114 Nataraj et al, Interval Newton Method Based on the Bernstein Form

Outputs: Either the message ‘no solution exists in x’, or the zero(s) of
f = (f1, f2, ..., fl) in x.

BEGIN Algorithm

1. {Compute the Bernstein coefficients} Using the matrix method of Ray [21],
compute the Bernstein coefficients B(x) of f on the initial box x.

2. {Initialize iteration number} Set k = 0, x(0) = x.

3. {Compute f at a vertex point} Choose x(k) to be any vertex point of x(k), and

obtain the value of f
(

x(k)
)

directly from the Bernstein coefficient value at x(k).

4. {Compute J} From the Bernstein coefficients of f on x(k), compute the Bern-
stein coefficients of all the first partial derivatives of f on x(k)via (7). From
the minimum and maximum Bernstein coefficients of the first derivatives, con-
struct their range enclosing intervals, and form the interval Jacobian matrix

J
(

x(k),x(k)
)

.

5. {Compute the preconditioner} Compute the preconditioning matrix R as

R =
{

mid J
(

x(k),x(k)
)}−1

6. {Solve linear interval system} Solve the linear interval system

−Rf
(

x(k)
)

= RJ
(

x(k),x(k)
) [

N
(

x(k),x(k)
)

− x(k)
]

and obtain N
(

x(k),x(k)
)

. The interval Gauss-Seidel method [9] or the interval

hull method [18] can be used to solve the system. Update the solution

x(k+1) = x(k)
⋂

N
(

x(k), x(k)
)

7. (Check for non-existence) If x(k+1) = ∅, then print ‘no solution exists in x’ and
EXIT algorithm.

8. {Termination} If wid x(k+1) < ǫ, print ‘solution: ’, x(k+1) and EXIT algorithm.

9. {Find Bernstein coefficients for the new box} Apply the Bernstein Coefficient
Contraction procedure given in section 4

B(x(k+1)) = BCC(B(x(k)),x(k),x(k+1))

and obtain the Bernstein coefficients on the contracted box x(k+1).

10. Set k = k + 1 and return to Step 3.

END Algorithm

If division by zero occurs in Step 6 of the above algorithm, then it can be dealt
with using extended interval arithmetic, see [6].

The presence of multiple zeros in x can be handled in this manner, but requires
maintaining a working list of boxes, etc. We refer the reader to [4].

Reliable Computing 15, 2011 115

4 Bernstein Coefficient Contraction

The Bernstein Newton algorithm contracts an input box d into a smaller box dnew .
The Bernstein coefficients on the new box dnew then need to be computed for further
work. Straightforward evaluation of the Bernstein coefficients over the new box will,
however, be time consuming. We instead propose to use a new so-called Bernstein
coefficient contraction to obtain the Bernstein coefficients for the contracted box dnew .
The coefficients for the contracted box dnew are derived from those already available
for d.

This procedure uses the idea in section 2.2. To explain the idea, consider any
component direction, say the first. In this direction, the interval components are
d1 = [d1, d1] and d1new = [d1new ,d1new], with d1new ⊆ d1.

First, obtain the Bernstein coefficients on the subinterval [d1,d1new] from those

on the interval d1 = [d1, d1]. This can be done using (8) and (9) where λ = λ1 is
given by

λ1 =
(d1new − d1)

(d1 − d1)
(11)

Next, similarly obtain the Bernstein coefficients on the subinterval [d1,d1new] from

those on the interval [d1,d1new], where λ = λ2 is given by

λ2 =
(d1new − d1)

(d1new − d1)
(12)

Lastly, obtain the required Bernstein coefficients on subinterval [d1new ,d1new] as in-

termediate values of the computation via (10), as [d1new , d1new] is the neighboring

subinterval to [d1,d1new] when [d1,d1new] is subdivided. Repeat this procedure in all
other component directions to obtain the Bernstein coefficients B(dnew).

We present an algorithm for this so-called Bernstein coefficient contraction.

Algorithm: Bernstein Coefficient Contraction (BCC)

B(dnew) = BCC(B(d),d, dnew)

Inputs: Bernstein coefficients B(d) for the given box d, given box d, and the con-
tracted box dnew ⊆ d.
Outputs: Bernstein coefficients B(dnew) for the contracted box dnew .

BEGIN Algorithm:

1. Choose the first component direction, i.e., consider d1.

2. Compute the values of λ1 and λ2 using equations (11) and (12).

3. Using λ = λ1 in (8) and (9), obtain the value of Bernstein coefficients on
[d1,d1new] from the Bernstein coefficients on d1.

4. Using λ = λ2 in (8), (9) and (10), obtain the Bernstein coefficients on subinterval
[d1new , d1new] from the Bernstein coefficients found in the above step.

5. Repeat the above steps for all the remaining component directions.

6. Return the Bernstein coefficients got at the end of the above step as B(dnew).

END Algorithm

116 Nataraj et al, Interval Newton Method Based on the Bernstein Form

5 Examples

In this section we present two examples which illustrate the superiority of the proposed
Bernstein Newton operator over the interval Newton operator. We used INTLAB [20],
a MATLAB [13] package to perform interval related operations. All computations are
done on a desktop PC Pentium IV, 3 GHz with 512 MB RAM.

5.1 Example 1

This example is taken from [19, 24]. This is a problem with 4 variables. The polynomial
system is given by

1 + x1 + x2 + x3 + x4 = 0

x1 + x1x2 + x2x3 + x3x4 + x4 = 0

x1x2 + x1x2x3 + x2x3x4 + x3x4 + x4x1 = 0

x1x2x3 + x1x2x3x4 + x2x3x4 + x3x4x1 + x4x1x2 = 0

and the bounds on the variables are

x1 = [0.95, 1.05], x2 = [0.95, 1.05], x3 = [−2.65,−2.6], x4 = [−0.4,−0.37].

We perform three consequential iterations to contract the domain using Bernstein
Newton contractor (BNC) and Interval Newton contractor (INC). We perform the
iterations until we obtain an accuracy of 10−10. The results are tabulated in Table 1.

Table 1: Comparison Convergence of solution using Interval Newton contractor

and Bernstein Newton contractor

Iter Bounds Width Bounds Width
(Interval (Interval (Bernstein (Bernstein
Newton) Newton) Newton) Newton)

1 [0.9568225842, 1.0433575799] 0.0865349957 [0.9967561714, 1.0032653277] 0.0065091563
[0.9500000000, 1.0500000000] 0.0000000001 [0.9959739153, 1.0040438373] 0.0080699220
[-2.6243772238, -2.6000000000] 0.0243772238 [-2.6213883739, -2.6124901398] 0.0088982341
[-0.3846435421, -0.3700000000] 0.0146435421 [-0.3829125022, -0.3804434631] 0.0024690391

2 [0.9888255033, 1.0109474627] 0.0221219594 [0.9999842682, 1.0000154365] 3.11682999e-05
[0.9863125650, 1.0136169675] 0.0273044025 [0.9999802551, 1.0000194310] 3.91759000e-05
[-2.6243772238, -2.6122128287] 0.0121643951 [-2.6180607485, -2.6180075112] 5.32372999e-05
[-0.3846435421, -0.3797684476] 0.0048750945 [-0.3819734874, -0.3819590099] 1.44774999e-05

3 [0.9999564046, 1.0000499831] 9.35785000e-05 [0.9999999999, 1.0000000000] <1e-10
[0.9999446065, 1.0000611056] 1.16499100e-04 [0.9999999999, 1.0000000000] <1e-10
[-2.6181056946, -2.6179507960] 1.54898599e-04 [-2.6180339888, -2.6180339887] <1e-10
[-0.3819894111, -0.3819396989] 4.97121999e-05 [-0.3819660112, -0.3819660112] <1e-10

4 [0.9999999961, 1.0000000037] 7.60000007e-09
[0.9999999952, 1.0000000046] 9.40000011e-09
[-2.6180339951, -2.6180339823] 1.28000001e-08
[-0.3819660131, -0.3819660093] 3.79999998e-09

5 [0.9999999999, 1.0000000000] <1e-10
[1.0000000000, 1.0000000000] <1e-10
[-2.6180339887, -2.6180339887] <1e-10
[-0.3819660112, -0.3819660112] <1e-10

From Table 1 we observe that the existing interval Newton operator requires 5
iterations to bound the roots of the polynomial systems with the accuracy of 10−10.
The proposed Bernstein Newton operator algorithm computes the result in 3 iterations
within the same accuracy. The computational time required for the proposed Bern-
stein Newton method is 0.186 seconds, whereas the interval Newton operator method
requires a computational time 0.235 seconds.

Reliable Computing 15, 2011 117

5.2 Example 2

This example is taken from [7]. This is a problem in 3 variables. The system of
polynomial equations is

5x9
1 − 6x5

1x
2
2 + x1x

4
2 + 2x1x3 = 0

−2x6
1x2 + 2x2

1x
3
2 + 2x2x3 = 0

x2
1 + x2

2 − 0.265625 = 0

and the initial bound is x = ([0.45, 0.5], [0.2, 0.24], [0, 0.03]). We perform a few itera-
tions to contract the domain using Bernstein Newton contractor and Interval Newton
contractor. We perform the iterations until we obtain an accuracy of 10−8. The results
are tabulated in Table 2.

Table 2: Comparison Convergence of solution using Interval Newton contractor

and Bernstein Newton contractor

Iter Bounds Width Bounds Width
(Interval (Interval (Bernstein (Bernstein
Newton) Newton) Newton) Newton)

1 [0.44999999, 0.49054379] 0.04054380 [0.44999999, 0.47706957] 0.027069580
[0.20000000, 0.24000000] 0.04000000 [0.20000000, 0.24000000] 0.040000000
[0.00000000, 0.00912466] 0.00912466 [0.00000000, 0.00413040] 0.004130400

2 [0.45294658, 0.47072578] 0.01777920 [0.46553462, 0.46952652] 0.003991900
[0.20000000, 0.23705003] 0.03705003 [0.21314384, 0.22152842] 0.008384580
[0.00000000, 0.00185627] 0.00185627 [0.00000000, 0.00024456] 2.445600000e-04

3 [0.46548509, 0.46991059] 0.00442550 [0.46694462, 0.46701765] 7.302999999e-05
[0.21231032, 0.22291622] 0.01060590 [0.21799997, 0.21814033] 1.403600000e-04
[0.00000000, 0.00041399] 4.13990000e-04 [0.00000000, 0.00000450] 4.500000000e-06

4 [0.46690292, 0.46705687] 1.53949999e-04 [0.46698001, 0.46698001] <1e-08
[0.21792489, 0.21822869] 3.03799999e-04 [0.21807033, 0.21807033] <1e-08
[0.00000000, 0.00001413] 1.41300000e-05 [0.00000000, 0.00000000] <1e-08

5 [0.46697998, 0.46698003] 5.000000002e-08
[0.21807028, 0.21807038] 1.000000000e-07
[0.00000000, 0.00000000] <1e-08

6 [0.46698001, 0.46698001] <1e-08
[0.21807033, 0.21807033] <1e-08
[0.00000000, 0.00000000] <1e-08

¿From Table 2 we observe that the existing interval Newton operator requires 6
iterations to bound the roots of the polynomial systems with the accuracy of 10−08.
The proposed Bernstein Newton operator algorithm computes the result in 4 iterations
within the same accuracy. The computational time required for the proposed Bern-
stein Newton method is 0.171 seconds, whereas the interval Newton operator method
requires a computational time 0.296 seconds.

6 Conclusions

In this paper we presented an algorithm for contracting the search domain using Bern-
stein Newton contractor. We used Bernstein approach to find the enclosures for the
derivatives of the polynomial functions. The evaluation of the values of the functions
is avoided by directly obtaining the values of the functions at corner points. We used
Bernstein coefficients contraction to avoid the repeated computation of Bernstein co-
efficients of polynomial functions. We presented two examples to show the superiority
of the Bernstein Newton contractor. It is found in these examples that the proposed

118 Nataraj et al, Interval Newton Method Based on the Bernstein Form

algorithm encloses the roots of the polynomial systems with the desired accuracy in
smaller number of iterations as compared to the interval Newton contractor

References

[1] J. Garloff, Convergent bounds for range of multivariate polynomials, Interval
Mathematics (K. Nickel, Ed.), Lecture Notes in Computer Science, Springer,
Berlin, vol. 212, pp. 37–56, 1985.

[2] J. Garloff, The Bernstein algorithm, Interval Computations, vol. 2, pp. 154–168,
1993.

[3] J. Garloff, Solving strict polynomial inequalities by Bernstein expansion, The Use
of Symbolic Methods in Control System Analysis and Design (N. Munro, Ed.), IEE
Contr. Engg. Ser., Springer, Berlin, vol. 56, pp. 339–352, 1999.

[4] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, Rigorous Global Search: Contin-
uous Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

[5] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, Numerical Toolbox for Verified
Computing I, Springer-Verlag, 1991.

[6] E. Hansen and G. W. Walster, Global Optimization using Interval Analysis, Mar-
cel Dekker, Inc., New York, 2004.

[7] C. Jager and D. Ratz, A combined method for enclosing all solutions of non-linear
systems of polynomial equations, Reliable Computing, vol. 1, pp. 41–64, 1995.

[8] L. Jaulin, M. Kieffer and O. Didrit, Applied Interval Analysis, Springer, London,
2001.

[9] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1996.

[10] L. Kolev, An interval method for global nonlinear analysis, IEEE Tran. Circuits
and Systems-I, vol. 45, no. 5, pp. 675–683, 2000.

[11] S. Malan, M. Milanese, M. Tarangna and J. Garloff, B3 algorithm for robust per-
formances analysis in presence of mixed parametric and dynamic perturbations,
Proc. 31st Conf. on Decision and Control., Tucson, Arizona, pp. 128–133, 1992.

[12] S. Malan, M. Milanese, M. Tarangna and J. Garloff, Robust analysis and design
of control system using interval arithmetic, Automatica, vol. 33, no. 7, pp. 1363–
1372, 1997.

[13] M. R. Guide, MATLAB version 6.1, The Mathworks Inc., Natick, MA, 2001.

[14] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia,
1979.

[15] P. S. V. Nataraj and M. Arounassalame, A new subdivision algorithm for Bern-
stein polynomial approach to global optimization, International Journal of Au-
tomation and Computing, vol. 4, no. 4, pp. 342–352, 2007.

[16] P. S. V. Nataraj and K. Kotecha, Global optimization with higher order inclusion
function forms part 1: A combined Taylor-Bernstein form, Reliable Computing,
vol. 10, no. 1, pp. 27–44, 2004.

[17] P. S. V. Nataraj and K. Kotecha, An improved interval global optimization algo-
rithm using higher order inclusion function forms, Journal of Global Optimization,
vol. 32, no. 1, pp. 35–63, 2005.

Reliable Computing 15, 2011 119

[18] A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclo-
sure for linear interval equations, Reliable Computing, vol. 5, pp. 131–136, 1999.

[19] A. K. Prakash, Vectorized interval analysis algorithms and their applications, Ph.
D. dissertation, IIT Bombay, Mumbai, India, 2003.

[20] S. M. Rump, INTLAB-Interval Laboratory, Developments in reliable computing,
Kluwer Academic Publishers, pp. 77-104, 1999.

[21] S. Shaswathi Ray, A new approach to range computation of polynomials using
the Bernstein form, Ph. D. dissertation, IIT Bombay, Mumbai, India, 2006.

[22] A. P. Smith, Fast construction of constant bound functions for sparse polynomials,
Journal of Global Optimization, vol. 43, no. 2-3, pp. 445-458, 2009.

[23] V. Stahl, Interval methods for bounding the range of polynomials and solving
systems of nonlinear equations, Ph. D. dissertation, University of Linz, Linz,
2006.

[24] J. Verschelde, The PHC pack, the database of polynomial systems, Technical
report, University of Illinois, Mathematics Department, Chicago, 2001.

[25] M. Zettler and J. Garloff, Robustness analysis of polynomials with polynomial
parameter dependency using Bernstein expansion, IEEE Trans. Autom. Contr.,
vol. 43, no. 5, pp. 425–431, 1998.

