Reliable Computing 1 (1) (1995), pp. 65-75

An informal introduction to a high level
language with applications to interval
mathematics

Danter E. Cooke

The main problem of interval computations is as follows: given sets of possible values X; for variables
xi, and an algorithm f : R™ —~ R, to edimate the trange f(Xi,...,X,) of the possible values of
flz1,....2,). In many reallife situations, sets X; are not intervals. To handle such problems, it is
desirable to add set data type and operations with sets to a programming language. It is well known
that the entive mathematics can be formulated in terms of sets. So, iff we already have a set as a data
type, why have anything eise? ‘The main reason.is that expression in terms of sets is often clumsy. o
avoid this clumsiness. it has been suggested to use not only sets, but also bags {multisets), in which an
element can have multiple occurrences. Bags are used in many areas of ('.omp\i(er Science, and recently,
several languages have appeared that use the bag as a basic data type.
In this paper. we explain the main ideas behind bag languages, and we also show:

e that bag languages are naturally parallelizable, thus leading to a parallelization of the coresponding
generalized interval computations:

e and that bag languages can be also helpfully applied to traditional interval computations (where
sets X; are intervals),

HedopmarbHOe BBeAeHME B SI3BIK BBICOKOTO
YPOBHSI C MPUAOXKEHUAMU K MHTEpBAABHOM

MaTeMaTUKe
A. E. Kw

OCHOBHAA 301242 SHTEPHAIHHMX BHYUNCIEHNT (DOPMY.IIPYE ICH CIETYIMNM OOPAIOM: [IAHH MROKECTHA
HOIMOKHEX 3Haventtii X; nepemenunx T; u aaroputm f 1 R® — R TpEGYTCA ONEHNTH MHOKECTBO
F(X1, ... Xn) sosmoxkumx snavenni dynkimn f(zy,...,T,). Ha upaktuke muokectsa X; wacro we
ABTAOTCH HHTEpHAIAMN. UUTofbl CHPaBHTECA € TAKUAMI 30124aMI, KEIATETRHO 00ABUTE MHOKCCTHA
KaK THN JaHHBIX §1 OHEPRNNN € MHOKCCTHAMH B SRINKI Uporpamsiposanist. HisecTHo, 4to ses
MATEMATHKA MOKET OMTh HIIOKEHD B TEPMIHAX MHOKECTS. BOJMHKACT BONPOC €I Y HAC eCTh
MHOKECTBO KaK THH CLAHHBIX, JA4€M HYKHO HTO-To eme? OCHORHOE BOIPAKEHHE 3AKTOYACTCA B TOM,
MTO MATEMATHUECKIE KOHCTPYKIMH 113 MHOXKECTS HacTO odeHb 1pomonikit Urodm wsdexats storo,
HPELIOKEHO HCHOTHIOKATE HE TOILKO MHOKECTHA, HO W Ay ibmutuowecmsd (bags), B KOTOpHE 0MH, 1 TOT
KE DTEMEHT MOKET BXOIHTD 110 HECKOILKY Pas. My:IhIIMHOKECTED HOHOIBIVIOTCH BO MHOIMX 00JACTAX
HEOPMATHRH, 11 B UOCICAHEE BPEMSA HOABILIOCH HECKOJIBRO A3BKOK NPOFPANMUPOBAHHN, B KOTOPHIX
MYIhTHMHOKECTHA SIBISIOTCH OCHOBHAIM THIIOM JTAHHBIX.

B nactosmein padoTe H3IAra0TCR OCHOBHBIE KOHHEHIIH SILIKOB, NCHOIBIYIOUMX MYJIbTHMHOKE-
CTHA, A TAKAKE HOKIILBACTCH, HTO!

@ RILIKN C MY.IbTHMHOKECTBEHHBIM THIIOM JAHHBIX CCTECTHCHHO HAPALICINIVIOTCS, B PelyawTare
HEfO COOTHETCTBYIOMIME OBODIMEHHBIC HHTEPHELIBHKE BHYHCICHIA TAKXKe LUPHOOPETAT napai-
JEIRHBIT B,

® MY THTHMHOXKECTBA $ HCHOIBIYIONIHE HX SA3bIKH B OTHO HIPHMEHSTE 51 [L1% OOWYHBIX IHTEPRATL-
HBIX BRIMHCICHIN (B KOTOPHX MHOXECTBA Xi ArasmwTcA uHTEpBA.IAMN).

© D. Cooke, 1995

66 D. COOKE

sk

Interval computations are computations with sets, so
it is desirable to have set operations in the
programming language

LL Usually, intervals represent our uncertainty

In many real-life situations, we do not know the precise value of a physical quantity. Usually.
possible values form an interval. For example, if we measure voltage V' with precision €, and
the measurcment result is equal to V', this means that the actual voltage belongs to an interval
W —e, V4

If we have several independent physical quantities xy.....z,, and we know an interval
X, of possible values of each of them, then the set of all possible values of the vector
= (x1,....Ta) is just a set X;x Xax---x X, of all possible tuples (zy,....x,) with z; € X,.
1.2. In some cases, non-interval sets are necessary

In some cases, the set X of possible values of a physical quantity x is not an interval. For
example, we may know that r takes only integer values, but we are not sure what the value
is, so there are several possible values. Such situations occur in quantum physics, where many
quantities (spin, angular momentum, charges, etc) can take only the values from some discrete
set (that is called a spectrim of this quantity). In this case, if we know the approximate value of
z, and know the precision, then the possible values of z form a finite set (usually, an ordered
finite set).

Another sitvation when intervals are not suficient is when we have several physical quan-
tities ry.. ..w, that are dependent in the sense that some apriori relation must be known (e.g,
Iy > r2). In this case. the set of all possible values of 7 may be different from the Cartesian
product of intervals

1.3. Interval computations

Main problem. One of the main objectives of interval mathematics is to analyze the following
situation:

Suppose that:
o We know the sets of possible values X, ..., X, for several quantities xy,. .., Z,,
o and we know that some other quantity is related to :r; by a formula y = f(xy,..., Za).

If we take different values r; € X;, we will end up with different values of y.
The probiem: 10 describe the set Y of possible values of y.

Of course, for every such situation, we can write a specinl program that computes this set Y,
without inventing any new formalism. It is desirable, however, 10 have a software tool that, given
an expression for f(x), and the description of X, would generate the set Y.

The idea of interval computations. Such a tool (naive interval comprdations) exists for the case
when X; are intervals, and is based on the following idea:

AN INFORMAL INTRODUCTION FO A HIGH LEVEL LANGUAGE... 67

The algorithm that compuwtes f(r) can be represented as a sequence of elementary
arithmetic operations (+. —, *, /. etc). As results of these steps, we get the values r, 7, .. 1y,
(where n is the total nunber of computational steps).

Example. For f(r) =1 — r? we have:

e 1y =r*I; and
o flx)y=ro=u-r.

The idea of naive interval computations is to apply the same operations, in the same order, but
to sets, and not’ to individual numnbers. In order to do that, we must extend operations with
numbers to operations with sets:

X*xY={cxylre X yeY} (1)
Example. In the above example, if X = [0, 1], we have:
o B =10,1]+[0,1] = [0.1];
o f(X)=R;=X-R =1[0.1-[0,1=[-1.1].

Naive interval computations usually overestimate f(X), so to make better estimates, we must
change the original algorithm (e.g.. apply centered form).

14. A natural generalization: operations with sets

In case our uncertainty about the values of ; is represented by arbitrary sets (not necessarily
intervals), a reasonable idea is to apply the same method, but with operations (1) defined for
arbitrary sets.

Therefore, it is desirable to have a programming language that would:

e include sets as a data type;

o include operations with sets.

2. Sets are a natural specification language

We have argued that programming language must, among other data types, include sets. But
if we have such a powerful data type as sets, do we need anything else? To find that out, let’s
consider the very idea of a specification language.

2.1 Specification languages: one of the main tools of Software
Engineering
One of the main goals of Software Engineering is to provide support ‘in writing programs.

Before we can write a program, we must know what this program is supposed to do. In other
words, we must know the specification for this program. Customers who order these programs

68 D. COOKE

formulate these specifications in-a natral language. The sk of the programmer is to translate
these specifications into an acual program. written' in the required programming language.

Part of this translation task is more of an art {i.e., successful parallelization of an algorithm
is still mainly an art), but a large part of the programmer’s work is more or less routine. One
of the main difficulties which make the programmers’ work non-triviai is that the gap between
natural fanguage and the majority of programming languages is oo wide: ‘

1) natwural lfanguage is ambiguous. while programming lariguages are very precise;

2) natural language is often non-agorithmic: we just say. “solve an equation” without specifving
how 1o solve it, while thé program must either contain a step-by-step description, or it
must at least lead to such a deseription.

To simplify a programmer’s task, it is nawural to try to cover this gap in two steps:

1) to translate the informal (and sometitnes ambiguons) natural-language description ito «
description in some formal language;

2) o transform this formal descriplion into an acwaal program.

This intermediate formal language is called a specification lunguage, and the corresponding
formal description of the task is called a specification for i program.
Remark. Since a specification language is formal, it becomes possible 10 develop algorithms
that transform (soime) specifications into actual programs. In other words, for some classes of
specifications, it becomes possible to auomate programming. When such automation becomes
possible for the entire specification language, this language beécomes a programming language,
because we can simply write a specification in this language and let the compiler translate. it
into exeaitable code.

Being. so to sav. “elevated” to the status of a programming language often: does not
prevent a language from being a useful specification language as well.

Let’s give two examples:

® Pasenl is a good pedagogical language, but it is rarelv used in reallife applications.
However, it is a very widely used specification language: Pascal-style pseudocode is often
used in Computer Science journals and books to describe algorithms.

® Prolog and its modifications are an excellent and a widely accepted way 1o describe
knowledge. However, dué to the fact that Prolog (at least in its existing implementations)
is not very fast, real knowledge-baséd systems often use LISP or other faster languages.

22. Sets are a natural specification language
Crudely speaking, there are two tendencies in designing specification languages:
e some of these languages are closer to natural language (like Prolog);

e some of them are closer 10 the existing programming languages.

AN INFORMAL INTRODUCTION TO A HIGH LEVEL LANGUAGE... 69

Languages of the second type are easier fo write, easier to compile, but they are further
away from the ideal and thus, put an unnecessary burden on the specification-writer. The
more challenging task (but at the same time more rewarding) is to write specification languages
that are closer to the natural language.

The task of designing such a language may seem practically impossible (has not Artificial
Intelligence been trying to do that for several decades already?), if we do not recall that
mathematics has been doing exactly that for several millennia. All formalized models that
have been developed during that time are formulated in the language of mathematics. The
language of mathematics is based on the notion of a set (i.e., on the formalization of our usage
of the words “belongs t0”, “is an element of”, etc).

There are many notions in modern mathematics that are much more complicated than
the notion: of a set, but they can all be described in terms of sets and their theory (st theory)
(eg.. a fmction f : X — Y is defined in mathematics as a set {(:c, f(r)) lre X } of pairs

(x, ! (x)) for all r € X. Anyone who has gone through a course of Discrete or Computer
Math remembers that such descriptions are indeed possible.

So, a natural idea is to use sets as a basic datatype for a specification language. This idea
has been implemented by J. Schwartz (see, eg., [IT]) in his Set Language (SETL for short).
Moreover, it has been proven that there exists an algorithm that transforms every specification
from SETL into working code. In this sense, SETL is also a programming language. It even
has some applications as a programming language, although not so many as it would seem
from our description of Set Language as a natural specification langnage. Why?

3. Drawbacks of set languages. Bags

31 The main drawback of sets

The main drawback of set languages is that although all mathematical practice can be expressed
in terms of sels, even for the simplest notions, this expression is often clumsy and too complicated
(again, anyone who has gone through a course on Discrete or Computer Math can confirm
that). For example, expressing the notion of a bag in terms of sets, is clumsy.

To understand what a bag is let us recall what a set is: a set is a collections of elements
{over some domain). So, a natural idea is to describe, e.g., collections of records in a database
as sets. For example, if we want to describe the last names of all the students from our
Department, it seems reasonable to use a set of names. This idea works only if all students
have different last names. If we have two students with the last name Johnson, we cannot
describe the last names as a set, because a set does not allow repetitions.

3.2. What is a bag?

If we allow repetitions, we arrive at the concept of a bag (nndliset). Informally, a bag is a collection
of elements over some domain. Unlike sets; bags allow mudliple occurrences of elements. For
example {a,a.b} is a bag but not a set.

Comment. To save space on repetitions while describing a bag over some domain D, it is
sufficient to describe how many times each element of D enters this bag. Eg., a bag {a,a, b}
can be written as {a’?, b}. This idea helps to describe bags in set-theoretic terms [13];

70 D. COOKE

Definition 1. Let D be a set. A bag over D is a function A: D — N from D to the set N of
non-negative integers.

Example. 1f D = {a.b,c,d}, then a bag {a,a,b} is represented by the following function:
A(a) =2, A(b) =1, A(c) = A(d) = 0. This sure is an awkward representation.

Comment. If this function A takes only values 0 and 1, then it is a characteristic function of
some set (namely, the set of all elements d for which A(d) = 1). So, sets are examples of bags,
and bags are natural generalizations of sets. But sets are a basic type, while bags (their closest
relatives) are treated in set languages as second-class citizens.

33. Solution: add bags to the language

When we write a specification, we do not want to reformulate bags into set language. It would
be nicer to add bags to the list of basic types. “Add” may be the wrong word: if we already
have bag as a datatype. then we do not need to have sets as another datatype, because sets are
a particular case of bags.

So, the solution is to use bags. and not sets, as a basic datatype.

34. Bags are used in computer science:

o In many soriing problems (eg., in databases when we sort records), we start with a list
(or a set of lists) that may well have repetitions in it. Unless we specifically formulate the
task of avoiding these repetitions, we can just sort them. The main sorting algorithms
(see, eg. [14]) can actually be applied to sort lists with repetitions (i.e., bags), and not only
sets of data. :

e Bags are used 1o describe Petri nets ({5, 13, 16]): namely, a state of a Petri net at any
given moment of time is described by specifying how many tokens there are in each
location. So, a state is a bag of locations.

o Bags are not only a good way to describe algorithms, but also a good way to describe
specifications (sce, eg., [12]), because an unsorted collection of elements with possible
repetitions is a frequent example of input.

35. More complicated data types can be easily simulated in terms
of bags

Let’s just give two examples:
Example 1. An array (eg., [1.3. 14, 3.5]) can be represenied as bag whose components are pairs
(value, index) (in this example: {(1.3,1),(1.4,2),(3.5,2)}.
Example 2. A 2-dimensional array can be represented as a bag whose components are pairs
(bag-of-values-of-a-row, row number).
1.3 15
(2.4 2.6)

with rows [1.3,1.5] and [2.4.2.6] is represented as a bag {(Bi,1),(B2,2)}, where By =
{(1.3.1).(1.5,2)} and B; = {(2.4,1),(2.6,2)}.

For example, a matrix

AN INFORMAL INTRODUCTION TO A HIGH LEVEL LANGUAGE... 71

36. Bags are natural in representing algorithms

Let's give two examples:
Example 1.

o Problem: Assume that we have a bag of numbers, and we want o find the biggest of them.

o Algorithm: The algorithm is simple: a processor picks a pair, compares the elements of
this pair, and deletes one that is smaller (or equal). Then it picks another pair, etc. At
the end, we are left with one element only: the desired biggest number.

Example 2.
® Problem: to compute the sum of all the dements of a given bag of numbers.

o Algorithm: We let a processor pick a pair, add the two numbers from this pair, and replace
the two added numbers by their sum. At the end, when a single element remains, this
element is exactly equal to the sum of all the elements from the original bag.

Let us give a numerical example. Suppose that we start with a bag {3,3,5,4}. Then, the
following is a possible trace of this algorithm:

® add elements 3 and 5 of the original bag; as a result, we get an updated bag {3,8.4};
o add elements 3 and 8 of the current bag; as a result, we get a bag {11.4};

e add 11 and 4 of the current bag; as a result, we get a bag {15} that consists of a single
element 15. Therefore, this element is egual to the desired sum.

37. Bag languages

Names and references. Since more complicated data structures and algorithms can be naturally
expressed in bag terms, bags have been proposed as a basic data type for a new generation of
high-level programming languages:

e GAMMA [1-3];
o Bagl (Bag Language) (6—11};
e Nesl (Nested Data-Parallel Language) {4].

What is a bag program? Main idea. Every “local” algorithm like the ones that we were talking
about consists of the rules of the following type: if in the bag, there are elements a,....b,
then we replace them with elements p,...,q. For example, the algorithm that computes the
maximum replaces a pair a, b with a single element max(a, b). The algorithm that computes the
sum replaces a,b with @+ b. Each of these replacements is of the type {a....,b} — {p.....q},
where — stands for “replace”.

Both lists a,....b and p, ..., ¢ can have repetitions, and therefore, they can be viewed as
bags (subbags of the big bag that we are processing). An algorithm can be formulated now as a
sequence of such rules.

72 D. COOKE

Example. 1f we know that the bag consists only of 0's and 1's, then an algorithm for finding
the maximum can be reduced to only 4 rules: {0,0} — {0}. {0.1} — {1}, {1,0} — {1}, and
{11} - {1}.

Simplest bag programs: a formal definition. The simplest bag programs can be described as
follows:

Definition 2. Assume that a finite set D is given. This set will be called a domain. By a rule R,
we mean an expression of the type I — O, where I and O are bags over D. By a simple bag
program P, we mean a finite set of rules Ry, ..., R, (ie., expressions I} = Oy,..:, I, — O,).
Example: To compute the sum of all elements of a bag, we need the following rules: {1,1} —
{2}, {1,2} = {3}, {1.3} — {4}. {2.2} — {4}, {3,5} — {8}..... {3,8} — {11}, ...
Remark. This is a very simplified version of the bag language program; programs can be much
more complicated. In this paper, however, we will consider only simple bag programs. So,
without risking confusion, we will call them simply programs.

Definition 3. Assume that a bag B is given. We say that a rule I — O is applicable to a-.bag
B, if I is a subbag of B (i, if I can be obtained from B by deleting some of B’s elements).
By a resudt of applying a rule I — O to a bag B, we mean a bag (B —I) U O (ie, we delete
all elements of I from B, and replace them with O).

Example. A rule {3,5} — {8} is applicable to the bag {3.3.4.5}, and the result of this
application is a new bag {3.4.8}.

Definition 4. By a trace of applying a program P to a bag B. we mean a sequence (finite or
infinite) or pairs (R, B%), i=0,1,...,N, N < o0, where:

e B9 =B

e For every i, RY) € P is a rule from the program P, and B'*Y is the result of applying
rule R to a bag B"). And

® o If N is finite (N < oc), then no rule is applicable to B'Y) (ice, we stop only if none of
the rules is applicable).

When N < 0, the bag B'™Y) is called a resull (or, & possible result) of applying P to B.

Comments.

1. According to our definitions, the total number of rules in a program is always finite.
However, one and the same rule can be applied many times: for example, when we find
the biggest element in a bag that contains all 1, then every time we apply a rule, it is
the rule {1,1} — {1}. In this particular example, the total “length” N of the trace is still
finite. But in general. one can imagine cases when, eg.. one and the same rule can be
applied infinitely many times (e.g., if a program consisting of only one rule {1} — {1,1}
is applied to a bag {1}, it will add 1's forever). In such cases, the trace can be infinite.

2. In general, the result can depend on the trace.

AN INFORMAL INTRODUCTION TO A HIGH LEVEL LANGUAGE... 73

4, Concurrency naturally appears in bag-processing
algorithms

For the detailed description, see, e.g., [3]. We will illustrate this idea on the above two examples:
Example 1. Assume that we have a bag of numbers, and we want to find the biggest of them. If
we have several processors that can access the bag, then the algorithm is simple: each processor
picks a pair, compares the elements of this pair, and deletes one that is smaller {or equal).
Then they pick another pair, etc. At the end, we are left with one element only: the desired
biggest number.
Example 2. Similarly, if we want to compuie the sum of o given bag of numbers, we let each
processor pick a pair, add the two numbers from this pair, and replace the two added numbers
by their sum. At the end, when a single element remains, this element is exactly equal to the
sum of all the elements from the original bag.

Let us give a numerical example: Suppose that we start with a bag {3,3,5,4}, and that
we have several processors that can run in parallel. Then, the following is a possible trace of
this algorithm:

o First processor picks elements 3 and 5 from the original bag and substitutes the sum 8
of these two elements instead of them. Simultaneously, the second processor picks the
remaining two elements 3 and 4, and instead of them, substitutes their sum 7. As a
result, we get an updated bag {7, 8};

e One of the processors adds elements 7 and 8 of the current bag. as a result, we get a
bag {15} that consists of a single element 15. Therefore, this element is equal to the
desired sum,

Comments.

1. The general feature of such parallelizations is that each processor performs some locul
operations that involve only a few elements of the original bag. The reason for preferring
local operations is that the initial bag (e.g., a bag of records) may be physically located in
different places, and it will be very complicated and time-consuming to let each processor
retrieve the records from all these places. Besides, if we restrict each processor’s access to
a few elements from the bag, we thus diminish the number of hard-to-deal cases when
several processors try to process the same element.

2. Several other algorithms can be similarly parallelized (1]
3. Let us now give an interval-like example:
Example 3.
o Gien: X = {1,3,5},Y ={2,7}.
o To compule: X +Y.

74 D. COOKE
o Algoritlom:
— First, we form the bag of all pairs; in our case,

X xY ={(12),(3.2).(5.2),(1,7),(3.7),(5.7)}.

= Then, if a processor sees a pair. it can replace it by its sum. If we have 6 processors
that can work in parallel, then each processor can grab and process its own pair.
As a result, we get the desired bag X +Y = {3,5,7, 8,10, 12}.

5. Bag languages can be also applied to normal interval
computations

In the computer, an interval [a.b] is a pair of real numbers. In terms of bags, it is a bag
{a.b} consisting of these two numbers. All four arithmetic operations * with intervals'can be
reformulated as follows: if an interval X = [z™,z7] is represented as a bag b(X) ={z~,z*},
and an interval Y = [y~,y7] is represented as a bag &(Y) = {y~,y "}, then a bag (X »Y)
that represents an interval X *Y can be obtained if we do the following:

o form a bag of pairs (X) x d(Y) with elements {(z~,y~), (z7,y"), (=%, vy), (z*.vy")};

e substitute each pair (r,y) from the bag 5(X) x b(Y) with the result z +y of applying
the operation * to z and y; as a result, we get a bag consisting of four elements
{z7 sy a7 xy* 2t xy" x gtk

o in this resulting hag, leave only the higgest and the smallest elements.
Comment. Actually, this procedure leads to a correct interval result:
e for addition (+), subtraction (~), and muhiplication (x): in all cases;
o for division (/): in all cases in which the result is an interval (i.e, when 0 ¢ Y).

Acknowledgments. This work was sponsored by the Air Force Office of Scientific Rescarch
(AFSC), under contracts F19620—89—C-0074 and F19620—93—1—-0152, by NSF Grant No.
CDA-9015006, and NASA Research Grant No. NAG 2-670 Supplement No. 2.

References

{1] Banatre, J-P., Courant, A, and Méayer, D. Le A parallel machine for wdtiset transformation
and its programming style. Future Generation Computer Systems 4 (1988), pp. 133-1H.

[2] Banawre,]-P. and Métayer, D. Le The GAMMA model and its discipline of programming. Sci.
Comput. Program. 15 (1990), pp. 55-77.

[3] Banawe, j-P. and Métayer, D. Le Programming by mulliset transformation. Communications of
the ACM 36 (1) (1993), pp. 98—-111.

AN INFORMAL INTRODUCTION TO A HIGH LEVEL LANGUAGE... 75

[4] Blelloch, G. E. and Sabot, G. W. Compiling collection-oriented languages onto massively paraliel
comprders. Journal of Parallel and Distributed Computing 8 (2) (1990), pp. 119—134.

{3] Cerf, V., Fernandez, E.. Gostelow, K., and Volansky, S. Formal control flow properties as a model
of computation. Report ENG—7178, Computer Science Department, University of California
at Los Angeles, 1971

[6] Cooke, D. E. and Gutierrez, A. An introduction to Bagl. In: “IEEE Fourth International
Conference on Software Engineering and Knowledge Engineering”. Capri, haly, 1992,
pp. 179—186.

{7] Cooke. D. E. Arithmetic over mullisels leading to a high level language. In: “Proceedings of the
Computers in Engineering Symposium”, Houston, TX, 1993, pp. 31-36.

(8] Cooke, D. E. Possible effects of the next generalion programming language on the software process
model. International Journal of Software Engineering and Knowledge Engineering 3 (3)
(1993), pp. 383—399.

[9] Cooke, D. E. A high level computer language based upon ordered multisets. In: “Proceedings
of the IEEE Fifth International Conference on Software Engineering and Knowledge
Engineering”, San Francisco, 1993, pp. 117-124.

[10] Cooke, D. E. An executable high level language based on multisets. Submitted to IEEE Transactions
on Software Engineering, to appear.

{11} Cooke, D. E., Duran, R., Gates, A., and Kreinovich, V. Bug languages, concurrency, Horn logic
programs, and linear logic. In: “Proceedings of the Sixth International Conference on Software
Engineering and Knowlegde Engineering SEKE'94, June 21-23 1994, Jurmala, Latvia”,
IEEE Computer Society and Knowledge Systems Institute, Skokie, IL. 1994, pp. 289-297.

{12] Dromey, G. Program derivation. The development of programs from specifications. Addison-Wesley,
Sydney, 1989.

{13} Gries, D. and Schneider, F. B. A logical approach to discrete math. Springer-Verlag, N.Y., 1993,

[14] Knuth, D. The art of computer programming. Seminumerical algorithms. Addison-Wesley, Reading,
MA, 1969.

{15] Petersen, J. L. Computation sequence seis. Journal of Computer and System Sciences 13 (1)
(1976), pp. 1-24.

{16] Peterson, J. L. Peiri net theory and the modeling of systems. Prentice-Hall, 1981.

{17} Schwartz, J. Programming with sels: an introaduction to SETL. Springer-Verlag, N.Y., 1986.

Received: November 20, 1993 [)epar(men(of Computer Science
Revised version: June 2, 1994 University of Texas El Paso
El Paso, TX 79968

USA

E-mail: dcooke@cs.utep.edu

