
Reliable Con|puling 1 (1) (199-~), pp. 6 5 - 7 5

An informal introduction to a high level
language with applications to interval
mathematics
DANIEL E. COOXE

T h e main problem of interval colnputations is as fol lows: gh,e. sets o f possible Valtlt~5 ~ i fo r variables
�9 Ci. and an algorithin f : R" ~ R. to e~timale tile range f(Xz,... ,X,,) of the I~)ssibte vahies ol

f (x l , . . . ,X,). In many real-life sitnatitms, sets Xi ale not intervals. To handle snch prdolems, it is
desirable to add set data type and operations with sets to a programming langnage. It is well known
0m[the entire mathematics can he Ibrmt|lated in terms of sets. S/). if we already have a set as a data
type. why have anything else? The main reason is that expression in terms of sets is often chmlsy. To
avoid this clmnsiness, it has been Suggested t 0 USe not only sets. but also bags (m,ltiu4.~). in which an
element can have multiple occt|rrences. Bags are nsed in many areas of ('~)mp, ter Science. and recendy.
several languages have appeared thai use the hag as a hash: data type.

In this paper, we explain the main ideas behind hag languages, and we als) show:

�9 that bag languages are natnrally parallelizable, thns leading to a paraUelization of the ctwesl~)ndlng
generalized interval computati~ms;

�9 and that bag languages can be als) helpf|dly applied to traditional interval compntations (where
sets Xi arc intervals).

He opMaasaoe BBeaemie B aBSIK BI, COKOrO
ypoBI I C np 4AO KeHr MH K 4HTepBaabaOf
MaTeMaTI, IKe
A. E. KyK

Or ~a:taqa liXTepBa:lbHMX nNtlllC.leXllfi fl~li)My.'ln~yel'CH C:le:lyl)lllllM (Hpa3or*l: ;laHId MH(I~g,t=~:TBa

1~)3MO~I(.HI-JX 3HatlexnH X i nep~MeHHhlg X i Ii a.~rop~,TM f : R" -+ R: TI~VTCJl onenl lTh MHO;KeCTI~)

f (X l Xn) ~):lMoatrn,lx 'maqermlrl qbvmtnnn f(XX Z,) . Ha llpar.Tn~e MHoa~ecTea X/ ~tatro tie
HB,1HII)TC~ IIHTepaa,'laMn. t l T i~h l r C TalltnMn 3a,laqaMii. ate;lare,'lhHO ,'Ir MH(DKETBa

KaK T|II I ,laHHWX II Ol lepal l l l l l C MHO~4tL-%"TBaMII B ~3hlKII l l~}l~aMMIIp()l~aHIIH. 1131Se(:THO, qTO I~:~1

MaTeMaTnKa ,Mi~,eT 614Th 113.1()a~eHa i$ TepMnHaX MHO;KL-~TB. I~)'lHHKaer I~)IIt~)C: L-q~'IH V Ha(: ~ETh

Mno~cCTB(} KaK Tln l "lanHl4X, 3aLleM H V~KflO ~ITO-TO elite? LIClt()l~H()e Bo3~ ;K~nne 3aK31I)MaCIE~I B T(Ibl,

IITO MaTeM,~THLleCKile KOHCTpyKnxn II 't MHO~CCTB qaCTO OqeHb IpOMO3:tKIL t lT(~14 II:~')e~KaTh ~T()I'O,

IIp(%'lalo;KeHO tlCIIO.11~3OI~3Tb Fie TO,lbKO MHO~(.L"CTI~I, 140 n .tl~:lMIIILtfltlzM'l'rl l l l#l (bags), B l~oTOphle o,lnn~ I i TOT

;KC 3,1CMCXT Mt)~keT Bxo:nr rb no XEKO,lbKy p a y ~|yilbrnMilOiltL-~ETBa tlCIliUIb3ylnTCH BI) MIIOI31X (~,3aCTHX

II l~l) l)pMa~llKII . I I B ii(R;|e,,nlee BFMI~ IIO~lBIl,'lOs nEKOdlbKO ~I3MKOIt ni~il 'paMMIIpOBaHIt~l, I$ KOTODblX

M~';IhTilMHO;~v.ErM HB;I~IIOTCH OCHOI~IliilM TnnoM ,' laHnMx.

B HaCT()HIn{I~I pa~H)Te H3,1aralOTClll (EIlOISHble KOnl le l l l |nn H3hlKOB. IICIIO,11~3VIOIlnlX My;IbTnMHO~4Ke-

CTBa, a TaK~4~.e noKa3~a~l~li_~rcH, tiT():

�9 ~3blKII C MydlbrHMHO~g.~CTBeHHMM TldlnoM ;IaHHMX L-~TL'~TBeHHO Ilapa.'Lle,]ll3ylOTCltl, I~ pe3y, ' lbTare

qefo C(H)TI~TCTBylIHllit~ (}~'xX')lneHHl~le HnTepBa.ll~HI,le BMHIIC.leHIIH TaK+~e Ilpll(~p~TalOT Ilal~'l;I-
,~e:~hHl~ii BH;I;

�9 .M% ,II, T|IMnO~ItETBa n HCIIO,II~'Iyll)IUX~ n x ~I31~KII BI~IO,111O II~IIM~14HTh II ,'|,'IH O~I~tlHI~IX I i nTep I ta , l~

XMX Bhltln~','leXIIH (B:ttOTOpMX Mn4~tec'raa Xi HI~'IHIOTC~I nxTepl~taJaMn).

(~) D. (~mke. 1995

6 6 D, COOKE

1. Interval computations are computations with sets, so
it is desirable to have set operations in the
programming tanguage

1.1 . Usually, intervals represent our uncertainty
In many real-life situations, we do not know the precise value of a physical quantity. Usually,
possible values form an interval. For example, if we measure vohage V with precision ~, and
the measurement result is equal to I~', this means that the actual voltage belongs to an interval

If we have several independent physical quantities :~:t,....:c,,, and we know an interval
.u of possible values of each of them, then the set of all possible values of the vector
5d = (x t , . . . , x,,) is just a set Xl x X2 x . - . x X . o f all possible tuples (zt xn) with :ri 6 Xi+

1.2. In some cases, n0n-interval sets are necessary
In some cases, the set X of possible values of a physical quantity x is not an interval. For
example, we may know that z takes only integer values, but we are not sure what the value
is, .so there are several possible values. Such situations occur in qnantnm physics, where many
quantities (spin. angular momentum, charges, etc) can take only the values from some discrete
set (that is called a ~pectrum of this qnantity). In this case, if we know the approximate value of
.r, and know the precision, then the possible values of x form a finite set (usually, an' ordered
finite ~ t) .

Another situation when intervals are not suficient is when we have several physical qnan-
titit~ .rl :c,, that are del~',dent in the sense that some apriori relation must be known (e.gi.
.vl _> .v2). In this case. the set of all possible values of :~" nmy be different from the Cartesian
product of intervals

1.3. Interval computations
Main problem. One of tile main objectives of interval mathematics is to analyze the following
situation:

Supl~)se that:

�9 IVe k,ow the sets of possible values X I , . . . , Xn fiJr several quantities x t , . . . , x ,~ ,

�9 and we know that .~)me other qnantity is related to :ri by a formula y = f (x l zn).

If we take different values .rl E Xi, we will end up with different values of y.

The problem: to descrihe the set Y of possible values of y.

Of course, for e~wr3' such ~it~uaion, we can write a .~'pe.ckd program that computes this set Y,
without im'enting any new formalism, h is desirable, however, to have a ~oflwa,v t~ml that. given
an i~xpression for f(~t'), and the description of X , would generate the set Y.

The idea of interval computations. Such a tool (m,h~e haer~,d co,,p,a,aio,~O exists for the case
when Xi are intervals, and is based on the following idea:

AN INFORMAL INTRODUCTION r o A I t iGH LEVEL LANGUAGE... 67

The algorithm that comptttes f(:r) can be represented as a sequence of elementary
arithmetic operations (+. - , , , / . etc). As results of these ~eps, we get the values rl, r 2 , . . , r,,
(where n is the total number of computational steps).

EvJu,qde. For f (x) = :L" - z 2 we have:

�9 r l = x * x ; a q d

�9 f (x) = r 2 : x - r l .

The idea of nah,e i,ten~d computaiiotL~ is to apply the mtne operations, in ~he same order, but
to sets. and no t to individual numbers. In order to do that, we must extend operations with
numbers to operations with sets:

X , Y = { z , y l : r ~.'r r Y}. It)

ErJ,,,ple. in the above example, if X = [0, 1], we have:

�9 R, = [0,11. [0,1 I = [0 . I] ;

�9 f (x) = n~ = X - R, = [0, t] - [0, ~1 = [-~. t].

Naive interval computations usually overestimate f (X) , so to make hetter estimates, we must
change the original algorithm (e.g., apply re,tiered form).

1.4. A natural generalization: operations wi th sets

In case our uncertainty about the values of :ri is represented by arbitrary sets (not necessarily
intervals), a reasonable idea- is to apply Ihe same method, but with operations (1) defined for
arbitrary sets.

Therefore, it is desirable to have a programming language that would:

* include sets as a data type;

�9 include operations with sets.

2. Sets are a natural specification language
We have argued that programming language must, among other data types, include sets. But
if we have such a powerful data type as sets, do we need anything else? To find that out, let's
consider the very idea of a specification lafiguage.

2.1. Specification languages: one of the main tools of Software
Engineer ing

One of tile main goals o f Software Engineering is to provide support "ill writing programs.
Before we can write a program, we must know what this program is supposed to do. In other
words, we Intlst know the specifictaim~ for this program. Customers who order these programs

68 D. COOKE

tornmlate these specifications ina natural language. The task of the programmer is to translate
these specitications into an actual program, written: in the required programming language.

Part of this translation task is more of an art (i.e., successful paraileli~,ation of an Mgorithm
is still mainly an art), but a large part of the programmer's work is more or less routine. One
of the main difficnhies which make the programmers" work non-trivial is that the gap between
natural language and the ntajority of programming languages is too widei

1) natural language is ambiguo,~,, while programming languages are very precise;

2) natttra-I language is often ,:m-ldgorithmic: we just sa~'. ~solve all equation" without specifying
ho~: to solve it. while the program mnst either contain a step-bystep description, or it
must at least lead to such a description.

To simplify a programmer's task, it is natural to try to cover this gap in two steps:

1) tO trmdale the informal (and sometimes ambiguous) natural-langnage description hao a

description in some #~rma! langtutge;

2) to t ra ,~rm Li~ formal de.w,.iption ima an actlml program.

This intermediate formal language is called a specificlaion bmguage, and the corresponding
formal description of the task is called a specific~aion for ~i :progrr
Remark. Since a spedfication language is formal, it becotnes possible to develop algorithms
that transform (some) specifications into actual programs., in ~ other words, for some classes of
specifications, it becomes possible to alao.uae programming. When such automation becomes
possible for the entire specification language, this language becomes a programming ,lang~utge.
hetause we can simply write a specification in this iangnage and let the compiler translate, it
into exe~thable code.

Being. so to say. "elevated" to the status df a programming language Mien: does not
prevent a language from being a usefid specification language as well.

Let's give two examples:

�9 P , u al is a good lx.dagogical lang~mge, but it is rarely used in real-life applications.
However. it is a very widely nsed. specification language: Pascal-style pseudocode is often
used in Computer Scienc e journals and books to describe algorithms.

�9 ProIog and its modifications are an excellent and a widely accepted way to describe
knowledge. Hoi~:ever. dmi to the fact that Proiog (at least in its existing implementations)
is not very fast, real knowledge-based systems Often use LISP or other faster languages.

2.2. Sets are a natural specification language
Crudely speaking, there are two tendencies in designing specification kmguages:

�9 some of these languages are closer to natural language (like Prolog);

�9 some of them are closer to tile existing programming languages.

AN INFORMAL INTRODUCTION TO A HIGH LEVEL LANGUAGE... 69

Langtmges of the second type are easier to write, easier to compile, btlt they are further
away from the ideal and thus, put an unnecessary burden on the specification-writer. The
more challenging task (but at the same time more rewarding) is to write specification languages
that are closer to the natural language.

The task of designing such a language may seem practically impossible (has not Artificial
Intelligence been trying to do that for several decades already?), if we do not recall that
mathematics has been doing exactly that for several millennia. All formalized models that
have been developed during that ,time are formulated in the language of mathematics. The
language of mathematics is based on the notion of a set (i.e., on the formalization of our usage
of the words ~beiongs to ~, ~is an element of", ,etc).

There are many notions in modern mathematics that are much more complicated than
the notion of a set, but they can all be described in terms of sets and their theory (.u't theoo')
(e.g.. a pairs

(:r,f(:r)) for all z G X. Anyone who has gone through a course of Discrete or Computer
Math remembers that such descriptions are indeed possible.
K ~

So, a natural idea is to use sets as a basic datatype for a specification language. This idea
has been implemented by J. Schwartz (see, e.g., [17]) in his Set Language (SETL for short).
Moreover, it has been proven that there exists an algorithm that transforms every specification
from SETL into working code. In this sense, SETL is also a programming language. It even
has some applications as a programming language, although not so many as it would seem
from our description of Set Language as a natural specification language. Why?

3 1 Drawbacks of set languages. Bags

3.1. The main drawback of sets
The main drawback of set languages is that although all mathematical practice can be expressed
in tentL~ of set~, even for the simplest notions, thi, exprex~ion it often clumsy and too complictaed
(again, anyone who has gone through a course on Discrete or Computer Math can confirm
that). For example, expressing the notion of a beg in terms of sets, is clumsy.

To understand what a bag is let us recall what a set is: a set is a collections of elements
(over some domain). So, a natural idea is to describe, e.g., collections of records in a database
as sets. For example, if we want to describe the last names of all the students from our
Department, it seems reasonable to use a set of names. This idea works only if all students
have different last names. If we have two students with the last name Johnson, we cannot
describe the last names as a set, because a set does not allow repetitions.

3.2. What is a bag?
If we allow repetitions, we arrive at the concept of a berg (m~dtiwt). Informally. a/rag is a collection
of elements over some domain. Unlike sets, bags allow m,ltiple occurrences of" elements. For
example {a, a, b} is a bag but not a set.

Comment. To save space on repetitions while describing a bag over some domain D, it is
sufficient to describe how many times each element of D enters this bag. E.g., a bag {a, a, b}
can be written as {a 12, b}. This idea helps to describe bags in set-theoretic terms [13]:

70 D. COOKE

I I ~ f i J t l o a 1. Let D be, a set. A big over D is a fimclion A : D --* N ti 'om D to the set N oF
non-negative integers.

s If D = {a; b, c ,d} , then a bag {a ,a ,b} is represented by the following fimction:
A(a) = 2, A(b) = 1, A(c) = A(d) = O. This sure is an awkward representation.

Comment. If this fimction A takes 0nly values 0 and 1, then it is a characteristic function of
some set (namely, the set of all elements d for which A(d) = 1). So, sets are examples of bags,
and bags are natural generalizations of'sets. But sets are a basic type, while bags (their closest
relatives) are treated in set languages as second-class citizens.

3.3. Solution: add bags to the language
When we write a specification, we do not want to reformulate bags into set language. It would
he nicer to add bags to the list of basic types. ~Add" may he the wrong word: if we alread~
have bag as a datatype, then we do not need to have sets as another datatype, because sets are
a particular case of bags.

So, the solution is to use bags. and not sets, as a basic datatype.

3.4. Bags are used in computer science:
In many sorting problems (e.g., in databases when we sort records), we start with a list
(or a set of lists) that may well have repetitions in it. Unless we specifically formulate the
task of avoiding these repetitions, we can just sort them. T h e main sorting algorithms
(see, .g.g, [14]) can actually he applied to sort lists with repetitions (i.e., bags), and not only
sets Of data.

Bags are , sed to describe Petri nets ([5, 15, 16]): uamely, a state of a Petri net at any
given moment of time is described by specifying how many tokens there are in each
location. So, a state is a bag of locations.

Bags are not only a g o ~ way to describe algorithms, but also a good way to describe
specifications (see, e.g., [12]), because an unsorted collection of elements with possible
repetitions is a frequent example of input.

3.5. More complicated data types can be easily simulated in terms
of bags

Let's just give two examples:

Exmnple I. An array (e.g., [1.3. 1.4, 8.5]) can be represented as bag whose components are pairs
(value, index)(in this example: {(1.3, 1), (1.4,2), (3.5, 2)}.

F.~,mple 2. A 2-dimen.siomd ar,ay can he represented as a bag whose components are pairs
(bag-of-values-of-a-row, row number).

For example, a matrix

with rows [1.3,1.5] and [2.4.2.6] is represented as a bag { (B t , 1) , (B2 ,2)} , where B~ =
{(1.3, 1), (1.5, 2)} and B2 = {(2.4, 1), (2.6, 2)}.

AN INFORMAL INTRODUCIION TO A I-ilGH LEVEL LANGUAGE... 71

3.6. Bags are natural in representing algorithms
Let's give two examples:

Ex, mp/e t.

�9 Pr~talem: Assume that we have a bag of numbers, and we want to find t& bigge.~t of them.

�9 Algorithm: The algorithm is simple: a processor picks a pair, compares the dements of
this pair, and deletes one that is smaller (or eqlml). Then it picks another pair, etc. At
the end, we are left with one dement only: the desired biggest number.

Erlmiple 2.

�9 Problem: to compUle the sum of all the elemenL~ of a give,1 Lvlg of numbers.

�9 Aigoridml: We let a processor pick a pair, add the two numbers from this pair, and replace
the two added numbers by their sum. At the end, when a single element remains, this
element is exactly equal to the sum of all the elements from the original bag.

Let us give a numerical example. Suppose that we start with a bag {3, 3, 5, 4}. Then, the
following is a possible trace of this algorithm:

�9 add dements 3 and 5 of the original bag; as a resuh, we get an updated bag {3, 8, 4}i

�9 add dements 3 and 8 of the current bag; as a resuh, we get a bag {11:4};

�9 add 11 and 4 of the current bag; as a resuh, we get a bag {15} that cousists of a single
element 15. Theretore, this element is eqnai to the desired sum.

3.7. Bag languages
l ~ m ~ awl r ~ ' t ' ~ Since more complicated data structures and algorithms can be naturally
expressed in bag terms, bags have been proposed as a basic data type for a new generation of
high-level programming languages:

�9 GAMMA [1-3];

�9 BagL (Bag Language) [6-11];

�9 Nesi (Nested Data-Parallel Language) [4].

What is a bag program? Main idea. Every "local" algorithm like the ones that we were talking
about consists of the rules of the following type: if in the bag, there are elements a , b,
then we replace them with dements p , . . . , q . For example, the algorithm that computes the
maximum replaces a pair a, b with a single element max(a; b). The algorithm that computes the
sum replaces a, b with a + b. Each of these replacements is of the type { a , . . . , b} ~ {p q},
where ~ stands for "replace".

Both lists a b and p , . . . , q can have repetitions, and therefore, they can be viewed as
bags (subbags of the big bag that we are processing). An ~dgorilhm can be formulated now as a
seqnence of such rules.

72 o. COOKE

Exttmp/e. If we know that the bag consists only of O's and 1% then an algorithm for finding
the maximum can be redt~ced to only 4 rules: {0 ,0 } ---* {0}. {0, 11 ---, {1}, {1 ,0} --, {1}, and
{1,1} --. {1}.
Simplest bag p r o g r a n u a formal definition. T he simplest bag programs can be described as
follows:

Definit ion 9-. Assume that a finite set D is given. This set will be called a domah~. By a ride R,
we mean an expression o f the type [--+ O, where] and O are bags over D. By a .~imple bag
program P, we mean a finite set o f rules RI R~ O.e., expressions Ii ~ Ot , I~ ,+ 0~).

Example: To compute the sum of all elements of a bag, we need the following rules: { 1.1 } --,
{2} , {1 ,2 } -~ {3}. {1 .3} - - {4}. {2,2} - * {4} {3 ,5 } - * { 8 } , . . . , {3 ,8} --* {11}
Remark. This is a very simplified version of the bag language program: programs can be much
more complicated. In this paper, however, we will consider only simple bag programs. So.
without risking confilsion, we will call them simply programs.

Deflnlt ioa 3. Assume that a bag B is given. We say ,that a rule [~ 0 is apflliadde to a..bag
B, i f [is a sltbbag o f B (i.e., if ! can be obtained from B by deleting sonic o f B 's elements).
B v a res~dt o f applying a nile [-.-, 0 to a bag B, we mean a bag (B -- [) O 0 (i.e., we delete
all elements o f I from B, and replace them with 0) .

F, xamp/e. A rule {3, 5} --, {8} is applicable to the bag {3.3, 4, 5}. and the resuh of this
application is a new bag {3.4, 8}.

l }d in i t ina 4. B,v a trace o f applying a program P to a bag B . we mean a sequence, (finite or
infinite) or pairs (R (i), Bti)). i = O, 1 N , N < or where:

�9 B (~ = B.

�9 For every i. R (i)E P is a rule from the program P, and B {i+l) is the result o fapp l v ing
ride R (i)" to a bag B (i). And

�9 �9 i f N is finite (N < oc). then no rule is applicable to B ('v) (i'.e., we f o p only i f none o f
the rules is applicable).

When N < ~ , the bag B (S) is called a rex~dt (or, t~ flai~ible re.~ult) o f applying P to B.

(~ommatl.~.

. According to our definitions, the total mnnber of rules in a program is always finite.
However, one and the same rule can be applied many times: for example, when we find
the biggest element in a bag that contains all l's, then every time we apply a rule," it is
the rule {l, 1} ~ {1}. in this particular exainple, the total "length ~ N of the trace is still
finite. But in general, one can imagine cases when. e.g.. one and the same rule can be
applied infinitely many times (e.g., if a program consisting of 0nly one rule { l } ~ { 1, 1 }
is applied to a bag {1}, it will add l's forever). In such cases, the trace can be infinite.

2. in general, the resuh can depend on the trace.

AN INFORMAL INTRODUCTION TO A HIGH LEVEL LANGUAGE... 73

4. Concurrency naturally appears in bag-processing
algorithms

For the detailed description, see, e.g., [3]. We will illustrate this idea on the above two examples:
Exam~de I. Assume that we have a bag of numbers, and we want to jind the biggest of them. If
we have several processors that can access the bag, then the algorithm is simple: each processor
picks a pair, compares the elements of this pair, and deletes one that is smaller (or equal).
Then they pick another pair, etc. At the end, we are left with one eleme~at only: the desired
biggest number.

Exmaple 2. Similarly, if we want to comtnae the sum of a given &,g of numbers, we let each
processor pick a pair. add the two numbers from this pair, and replace the two added numbers
by their sum. At the end, when a single element remains, this element is exactly equal to the
sum of all the elements from the original bag.

Let us give a numerical example: Suppose that we start with a bag {3, 3, 5, 4}, and that
we have several processors that can run in parallel. Then, the following is a possible trace of
this algorithm:

First processor picks elements 3 and 5 from the original bag and substitutes the sum 8
of these two elements instead of them. Simultaneously, the second processor picks the
remaining two elements 3 and 4, and instead of them, substitutes their sum 7. As a
result, we get an updated bag {7, 8};

One of the processors adds elements 7 and 8 of the current bag. as a resuh, we get a
bag {15} that consists of a single element 15. Therefore, this element is equal to the
desired sum.

(~Ottl I,II~IIIS.

.

8.

The general feature of such parallelizations is that each processor performs some loctd
operations that involve only a few elements of the original bag. The reason for preferring
local operations is that the initial bag (e.g., a bag of records) may be physically located in
different places, and it will be very complicated and time-consuming to let each processor
retrieve the records from all these places. Besides, if we restrict each processor's access to
a few elements from the bag, we thus diminish the number of hard-to.deal cases when
several processors try to process the same element.

Several other algorithms can be similarly parailelized [11.

Let tis now give an interval-like example:

Example 3.

�9 x = {1, 3, s } , Y = {2, 7}.

�9 To to,,ptae: X + Y .

74 D . COOKE

�9 Algoritlrm:

- First, we form the bag of all pairs; in our case,

X x Y = {(1,2) , (3 ,2) , (5 ,2) , (1 ,7) , (3 ,7) , (5:7)}.

-- Then, if a processor sees a pair. it can replace it by its sum. If we have 6 processors
that can work in parallel, then each processor can grab and process its own pair.
As a resnh, we get the desired bag X + Y = {3, 5, ?, 8, 10, 12}.

@ Bag languages can be lso applied to normal interval
computations

In the computer, an interval [a, b] is a pair of real numbers. In terms of bags, it is a bag
{a, b} consisting of these two numbers. All four arithmetic operations �9 with intervals'can be
reformulated as follows: if an interval X = [x-,x"] is represented as a bag b(X) - : '{x-,z '+},
and an interval Y = [V-, g-] is represented as a hag b(Y) = {9-, U~}, then a bag b(X * Y)
that represents an interval X * Y can he obtained if we do the following:

�9 form a hag of pairs b(X) x b(Y) with elements {(x- , V-), (x- , !/+), (x +, V-), (x+, Y+)};

�9 snbstitute each pair (.e, g) from the bag b(X) x b(Y) with the resuh x * 9 of applying
the operation * to x and g: as a resuh, we get a hag consisting of four elements
{z-*V ,x *y+,~r+ *y-,x+ *v+}:

�9 in this resuhing bag, leave only the biggest and the smallest elements,

[:o,,nem. Actually, this procedure leads to a correct interval resuh:

�9 for addition (+), subtraction (-), and muhiplication (x): in all cases;

�9 for division (/): in all cases in which the result is an interval (i.e., when 0 r Y).

.~ktmo~l~llpnt~ts. This work was sponsored by the Air Force Office of Scientific Research
(AFSC), under contracts F19620-89-C-0074 and F49620-93-1-0152, by NSF Grant No.
CDA-9015006, and NASA Research (;rant No. NAG 2-670 Supplement No. 2.

References
[1] Ban:$tre, J.-P., Courant. A., and M6tayer, D. Le A parMlei machine for ,,dlisel tn, t~form,aio,

aml iLs programming .~yle. Future Generation Computer Systems 4 (1988), pp. 138-144.

[2] Bamitre, J.-P. and Mdtayer, D. Le The GAMMA model and ils discipline of programming. Sci.
Comput. Program. 15 (1990), pp. ~5-77.

[3] Ban:~tre, J.-P. and M~tayer, D. Le Programming In.. lmdti~et tramfor,nlaion. Communications of
the ACM 3{$ (I) (1993). pp. 98-111.

AN I N F O R M A L LN'TRODUCI ' ION I'O A I t l G H LEVEl. L A N G U A G E . . . 75

[41 Blelloch, G. E. and Sabot, G. W. Compiling colleclion-orietaed kmg~ulge.~ onto ma~6;r paralld
comp,aers. Journal of Parallel and Distributed Computing 8 (2) (1990), pp. 119-134.

[5] CerL V., Fernandez, E., Gostelow, K., and Volansky, S. Foolud comrolflow p~operties ,Ls a model
of cmnpla~aion. Report ENG-7178, Computer Science Department, University of California
at Los Angeles, 1971.

[6] Ctmke, D. E. and Gutierrez, A. An haroductio, to PatgL. In: "IEEE Fourth International
Conference on Software Engineering and Knowledge EngineeringL Capri, Italy, 1992,
pp. -179-186.

[7] Cooke. D. E. Arithlnetic o~r m,dtisets legating to a high level lang, u~ge. In: ~Proceedings of the
Computers in Engineering Symposium", Houston, TX, 1993, pp. 31-36.

[8] Cta,ke. D. E: Pox~ible effects of llu" tu, xt genertaion programming langw~ge ,,~ the software procexs
mode/. International Journal of Software Engineering and Knowledge Engineering 3 (3)
(1993), pp. 383-399.

[9] Cooke, D. E. A high lex~i comlnaer lang,ulge b, wd uIzm ordered multiwLs. In: ~Proceedings
of the IEEE Fifth International Conference on Software Engineering and Knowledge
Engineering", San Francisco, 1993, pp. 117-124.

[10] Cooke, D. E. An execzaable high lex~l iangtuige &t~ed on m~dtiwts. Submitted to IEEE Transactions
on Software Engineering, to appear.

[I1] Cooke, D. E., Duran, R., Gates, A., and Kreinovich, V. B,g langtu, ges, concu,'rep~', Horn logic
progrmt~, and linear logic. In: "Proceedings of the Sixth International Conference on Software
Engineering and Knowlegde Efigineering SEKE'94, June 21-23 1994, Jurmala, Latvia",
IEEE Computer Society and Knowledge Systems Institute, Skokie, IL. 199-1, pp. 289-297.

r .) t l.] Dromey, G. Program .deriir The development of program.s from .~pecificatio,.~. Addison-Wesley,
Sydney, 1989.

[13] Gries, D. and Schneider, F. B. A iogicqd approach to rli~crete ,nah. Springer-Verlag, N.Y., 1993.

[14] Knuth, D. The. art of comlnaer progrmmni,g. ,%minmneriad algorith,t,. Addison-Wesley. Reading,
MA, 1969.

[15] Petersen. J. L. Co,nputation .segwwce .wts. Journal of Computer and System Sciences 13 (1)
(1976). pp. 1-24.

[16] Peterson, J. L. Pelri net themy and the modeling of .~):s*ems. Prentice-Hall, 1981.

[17] Schwartz, J. Programming with .vL~" an imroduaion to SETL. Springer-Verlag, N.Y., 1986.

Received: November 20, 1993
Rcvi~d versi,,n: June 2, 1994

Department of Computer Science
University of Texas [] Paso

El Paso, TX 79968
USA

E-maih dcooke@cs.utep, edu

