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An informal introduction to a high level 
language with applications to interval 
mathematics 
DANIEL E. COOXE 

T h e  main problem of interval colnputations is as fol lows: gh,e. sets o f  possible Valtlt~5 ~ i  fo r  variables 
�9 Ci. and  an  algorithin f : R" ~ R. to e~timale tile range f(Xz,... ,X,,) of the I~)ssibte vahies ol 

f ( x l , . . .  ,X,). In many real-life sitnatitms, sets Xi  ale not intervals. To handle snch prdolems, it is 
desirable to add set data type and operations with sets to a programming langnage. It is well known 
0m[ the entire mathematics can he Ibrmt|lated in terms of sets. S/). if we already have a set as a data 
type. why have anything else? The main reason is that expression in terms of sets is often chmlsy. To  
avoid this clmnsiness, it has been Suggested t 0 USe not only sets. but also bags (m,ltiu4.~). in which an 
element can have multiple occt|rrences. Bags are nsed in many areas of ('~)mp, ter Science. and recendy. 
several languages have appeared thai use the hag as a hash: data type. 

In this paper, we explain the main ideas behind hag languages, and we als) show: 

�9 that bag languages are natnrally parallelizable, thns leading to a paraUelization of the ctwesl~)ndlng 
generalized interval computati~ms; 

�9 and that bag languages can be als) helpf|dly applied to traditional interval compntations (where 
sets Xi arc intervals). 

He opMaasaoe BBeaemie B aBSIK BI, COKOrO 
ypoBI I C np 4AO KeHr MH K  4HTepBaabaOf  
MaTeMaTI, IKe 
A.  E. KyK 

Or ~a:taqa liXTepBa:lbHMX nNtlllC.leXllfi fl~li)My.'ln~yel'CH C:le:lyl)lllllM (Hpa3or*l: ;laHId MH(I~g,t=~:TBa 

1~)3MO~I(.HI-JX 3HatlexnH X i nep~MeHHhlg X i Ii a.~rop~,TM f : R" -+ R: TI~VTCJl onenl lTh MHO;KeCTI~) 

f ( X l  . . . . .  Xn) ~):lMoatrn,lx 'maqermlrl qbvmtnnn f(XX . . . . .  Z,) .  Ha llpar.Tn~e MHoa~ecTea X/ ~tatro tie 
HB,1HII)TC~ IIHTepaa,'laMn. t l T i~h l  r  C TalltnMn 3a,laqaMii. ate;lare,'lhHO ,'Ir MH(DKETBa 

KaK T|II I  ,laHHWX II Ol lepal l l l l l  C MHO~4tL-%"TBaMII B ~3hlKII l l~}l~aMMIIp()l~aHIIH. 1131Se(:THO, qTO I~:~1 

MaTeMaTnKa ,Mi~,eT 614Th 113.1()a~eHa i$ TepMnHaX MHO;KL-~TB. I~)'lHHKaer I~)IIt~)C: L-q~'IH V Ha(: ~ETh 

Mno~cCTB(} KaK Tln l  "lanHl4X, 3aLleM H V~KflO ~ITO-TO elite? LIClt()l~H()e Bo3~ ;K~nne  3aK31I)MaCIE~I B T(Ibl, 

IITO MaTeM,~THLleCKile KOHCTpyKnxn II 't MHO~CCTB qaCTO OqeHb IpOMO3:tKIL t lT(~14 II:~')e~KaTh ~T()I'O, 

IIp(%'lalo;KeHO tlCIIO.11~3OI~3Tb Fie TO,lbKO MHO~(.L"CTI~I, 140 n .tl~:lMIIILtfltlzM'l'rl l l l#l (bags), B l~oTOphle o,lnn~ I i  TOT 

;KC 3,1CMCXT Mt)~keT Bxo:nr rb  no  XEKO,lbKy p a y  ~|yilbrnMilOiltL-~ETBa tlCIliUIb3ylnTCH BI) MIIOI31X (~,3aCTHX 

II l~l) l )pMa~llKII .  I I  B ii(R;|e,,nlee BFMI~ IIO~lBIl,'lOs nEKOdlbKO ~I3MKOIt ni~il 'paMMIIpOBaHIt~l, I$ KOTODblX 

M~';IhTilMHO;~v.ErM HB;I~IIOTCH OCHOI~IliilM TnnoM ,' laHnMx. 

B HaCT()HIn{I~I pa~H)Te H3,1aralOTClll (EIlOISHble KOnl le l l l |nn H3hlKOB. IICIIO,11~3VIOIlnlX My;IbTnMHO~4Ke- 

CTBa, a TaK~4~.e noKa3~a~l~li_~rcH, tiT(): 

�9 ~3blKII C MydlbrHMHO~g.~CTBeHHMM TldlnoM ;IaHHMX L-~TL'~TBeHHO Ilapa.'Lle,]ll3ylOTCltl, I~ pe3y, ' lbTare 

qefo  C(H)TI~TCTBylIHllit~ (}~'xX')lneHHl~le HnTepBa.ll~HI,le BMHIIC.leHIIH TaK+~e Ilpll(~p~TalOT Ilal~'l;I- 
,~e:~hHl~ii BH;I; 

�9 .M% ,II, T|IMnO~ItETBa n HCIIO,II~'Iyll)IUX~ n x  ~I31~KII BI~IO,111O II~IIM~14HTh II  ,'|,'IH O~I~tlHI~IX I i nTep I ta , l~  

XMX Bhltln~','leXIIH (B:ttOTOpMX Mn4~tec'raa Xi HI~'IHIOTC~I nxTepl~taJaMn). 

(~) D. (~mke. 1995 
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1. Interval computations are computations with sets, so 
it is desirable to have set operations in the 
programming tanguage 

1.1 .  Usually, intervals represent our uncertainty 
In many real-life situations, we do not know the precise value of a physical quantity. Usually, 
possible values form an interval. For example, if we measure vohage V with precision ~, and 
the measurement result is equal to I~', this means that the actual voltage belongs to an interval 

If  we have several independent physical quantities :~:t,....:c,,, and we know an interval 
.u of  possible values of each of them, then the set of all possible values of the vector 
5d = ( x t , . . . ,  x,,) is just a set Xl x X2 x . - .  x X .  o f  all possible tuples (zt . . . . .  xn) with :ri 6 Xi+ 

1.2. In some cases, n0n-interval sets are necessary 
In some cases, the set X of  possible values of  a physical quantity x is not an interval. For 
example, we may know that z takes only integer values, but we are not sure what the value 
is, .so there are several possible values. Such situations occur in qnantnm physics, where many 
quantities (spin. angular momentum, charges, etc) can take only the values from some discrete 
set (that is called a ~pectrum of this qnantity). In this case, if we know the approximate value of  
.r, and know the precision, then the possible values of  x form a finite set (usually, an' ordered 
finite ~ t ) .  

Another situation when intervals are not suficient is when we have several physical qnan- 
titit~ .rl . . . .  :c,, that are del~',dent in the sense that some apriori relation must be known (e.gi. 
.vl _> .v2). In this case. the set of all possible values of :~" nmy be different from the Cartesian 
product of intervals 

1.3. Interval computations 
Main problem. One of tile main objectives of interval mathematics is to analyze the following 
situation: 

Supl~)se that: 

�9 IVe k,ow the sets of possible values X I , . . .  , Xn fiJr several quantities x t , . . . , x ,~ ,  

�9 and we know that .~)me other qnantity is related to :ri by a formula y = f ( x l  . . . . .  zn). 

If  we take different values .rl E Xi, we will end up with different values of  y. 

The problem: to descrihe the set Y of  possible values of  y. 

Of  course, for e~wr3' such ~it~uaion, we can write a .~'pe.ckd program that computes this set Y, 
without im'enting any new formalism, h is desirable, however, to have a ~oflwa,v t~ml that. given 
an i~xpression for f(~t'), and the description of  X ,  would generate the set Y. 

The  idea of  interval computations. Such a tool (m,h~e haer~,d co,,p,a,aio,~O exists for the case 
when Xi are intervals, and is based on the following idea: 
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The  algorithm that comptttes f( :r)  can be represented as a sequence of  elementary 
arithmetic operations (+. - ,  , , / .  etc). As results of these ~eps, we get the values rl, r 2 , . . ,  r,, 
(where n is the total number of  computational steps). 

EvJu,qde. For f (x)  = :L" - z 2 we have: 

�9 r l = x * x ; a q d  

�9 f ( x ) = r 2 : x - r l .  

The idea of nah,e i,ten~d computaiiotL~ is to apply the mtne operations, in ~he same order, but 
to sets. and no t  to individual numbers. In order to do that, we must extend operations with 
numbers to operations with sets: 

X , Y  = { z , y l : r  ~.'r r Y}. It) 

ErJ,,,ple. in the above example, if X = [0, 1], we have: 

�9 R, = [0,11.  [0,1 I = [ 0 . I ] ;  

�9 f ( x )  = n~ = X - R, = [0, t] - [0, ~1 = [-~. t]. 

Naive interval computations usually overestimate f ( X ) ,  so to make hetter estimates, we must 
change the original algorithm (e.g., apply re,tiered form). 

1.4. A natural generalization: operations wi th  sets 

In case our uncertainty about the values of  :ri is represented by arbitrary sets (not necessarily 
intervals), a reasonable idea- is to apply Ihe same method, but with operations (1) defined for 
arbitrary sets. 

Therefore, it is desirable to have a programming language that would: 

* include sets as a data type; 

�9 include operations with sets. 

2. Sets are a natural specification language 
We have argued that programming language must, among other data types, include sets. But 
if we have such a powerful data type as sets, do we need anything else? To  find that out, let's 
consider the very idea of  a specification lafiguage. 

2.1. Specification languages:  one  of the main tools of Software 
Engineer ing  

One of  tile main goals o f  Software Engineering is to provide support "ill writing programs. 
Before we can write a program, we must know what this program is supposed to do. In other 
words, we Intlst know the specifictaim~ for this program. Customers who order these programs 
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tornmlate these specifications ina  natural language. The task of the programmer is to translate 
these specitications into an actual program, written: in the required programming language. 

Part of this translation task is more of an art (i.e., successful paraileli~,ation of an Mgorithm 
is still mainly an art), but a large part of the programmer's work is more or less routine. One 
of the main difficnhies which make the programmers" work non-trivial is that the gap between 
natural language and the ntajority of programming languages is too widei 

1) natural language is ambiguo,~,, while programming languages are very precise; 

2) natttra-I language is often ,:m-ldgorithmic: we just sa~'. ~solve all equation" without specifying 
ho~: to solve it. while the program mnst either contain a step-bystep description, or it 
must at least lead to such a description. 

To simplify a programmer's task, it is natural to try to cover this gap in two steps: 

1) tO trmdale the informal (and sometimes ambiguous) natural-langnage description hao a 

description in some #~rma! langtutge; 

2) to t ra ,~rm Li~ formal de.w,.iption ima an actlml program. 

This intermediate formal language is called a specificlaion bmguage, and the corresponding 
formal description of the task is called a specific~aion for ~i :progrr 
Remark. Since a spedfication language is formal, it becotnes possible to develop algorithms 
that transform (some) specifications into actual programs., in ~ other words, for some classes of 
specifications, it becomes possible to alao.uae programming. When such automation becomes 
possible for the entire specification language, this language becomes a programming ,lang~utge. 
hetause we can simply write a specification in this iangnage and let the compiler translate, it 
into exe~thable code. 

Being. so to say. "elevated" to the status df a programming language Mien: does not 
prevent a language from being a usefid specification language as well. 

Let's give two examples: 

�9 P ,  u al is a good lx.dagogical lang~mge, but it is rarely used in real-life applications. 
However. it is a very widely nsed. specification language: Pascal-style pseudocode is often 
used in Computer Scienc e journals and books to describe algorithms. 

�9 ProIog and its modifications are an excellent and a widely accepted way to describe 
knowledge. Hoi~:ever. dmi to the fact that Proiog (at least in its existing implementations) 
is not very fast, real knowledge-based systems Often use LISP or other faster languages. 

2.2. Sets are a natural specification language 
Crudely speaking, there are two tendencies in designing specification kmguages: 

�9 some of these languages are closer to natural language (like Prolog); 

�9 some of them are closer to tile existing programming languages. 
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Langtmges of  the second type are easier to write, easier to compile, btlt they are further 
away from the ideal and thus, put an unnecessary burden on the specification-writer. The  
more challenging task (but at the same time more rewarding) is to write specification languages 
that are closer to the natural language. 

The task of  designing such a language may seem practically impossible (has not Artificial 
Intelligence been trying to do that for several decades already?), if we do not recall that 
mathematics has been doing exactly that for several millennia. All formalized models that 
have been developed during that ,time are formulated in the language of  mathematics. The  
language of  mathematics is based on the notion of a set (i.e., on the formalization of  our usage 
of the words ~beiongs to ~, ~is an element of", ,etc). 

There  are many notions in modern mathematics that are much more complicated than 
the notion of  a set, but they can all be described in terms of sets and their theory (.u't theoo' ) 
(e.g.. a pairs 

(:r,f(:r)) for all z G X. Anyone who has gone through a course of Discrete or Computer  
Math remembers that such descriptions are indeed possible. 
K ~ 

So, a natural idea is to use sets as a basic datatype for a specification language. This idea 
has been implemented by J. Schwartz (see, e.g., [17]) in his Set Language (SETL for short). 
Moreover, it has been proven that there exists an algorithm that transforms every specification 
from SETL into working code. In this sense, SETL is also a programming language. It even 
has some applications as a programming language, although not so many as it would seem 
from our  description of  Set Language as a natural specification language. Why? 

3 1  Drawbacks of set languages. Bags 

3.1. The main drawback of sets 
The main drawback of set languages is that although all mathematical practice can be expressed 
in tentL~ of set~, even for the simplest notions, thi, exprex~ion it often clumsy and too complictaed 
(again, anyone who has gone through a course on Discrete or Computer Math can confirm 
that). For example, expressing the notion of  a beg in terms of sets, is clumsy. 

To  understand what a bag is let us recall what a set is: a set is a collections of elements 
(over some domain). So, a natural idea is to describe, e.g., collections of records in a database 
as sets. For example, if we want to describe the last names of all the students from our 
Department, it seems reasonable to use a set of  names. This idea works only if all students 
have different last names. If  we have two students with the last name Johnson, we cannot 
describe the last names as a set, because a set does not allow repetitions. 

3.2. What is a bag? 
If we allow repetitions, we arrive at the concept of  a berg (m~dtiwt). Informally. a/rag is a collection 
of elements over some domain. Unlike sets, bags allow m,ltiple occurrences of" elements. For 
example {a, a, b} is a bag but not a set. 

Comment. To  save space on repetitions while describing a bag over some domain D, it is 
sufficient to describe how many times each element of  D enters this bag. E.g., a bag {a, a, b} 
can be written as {a 12, b}. This idea helps to describe bags in set-theoretic terms [13]: 
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I I ~ f i J t l o a  1. Let D be, a set. A big over D is a fimclion A : D --* N ti 'om D to the set N oF 
non-negative integers. 

s If D = {a; b, c ,d} ,  then a bag {a ,a ,b}  is represented by the following fimction: 
A(a)  = 2, A(b) = 1, A(c)  = A(d)  = O. This sure is an awkward representation. 

Comment. If this fimction A takes 0nly values 0 and 1, then it is a characteristic function of 
some set (namely, the set of  all elements d for which A(d)  = 1). So, sets are examples of  bags, 
and bags are natural generalizations of'sets. But sets are  a basic type, while bags (their closest 
relatives) are treated in set languages as second-class citizens. 

3.3. Solution: add bags to the language 
When we write a specification, we do not want to reformulate bags into set language. It would 
he nicer to add bags to the list of basic types. ~Add" may he the wrong word: if we alread~ 
have bag as a datatype, then we do not need to have sets as another  datatype, because sets are 
a particular case of  bags. 

So, the solution is to use bags. and not sets, as a basic datatype. 

3.4. Bags are used in computer science: 
In many sorting problems (e.g., in databases when we sort records), we start with a list 
(or a set of  lists) that may well have repetitions in it. Unless we specifically formulate the 
task of  avoiding these repetitions, we can just sort them. T h e  main sorting algorithms 
(see, .g.g, [14]) can actually he applied to sort lists with repetitions (i.e., bags), and not only 
sets Of data. 

Bags are , sed  to describe Petri nets ([5, 15, 16]): uamely, a state of  a Petri net at any 
given moment  of  time is described by specifying how many tokens there are in each 
location. So, a state is a bag of locations. 

Bags are not only a g o ~  way to describe algorithms, but also a good way to describe 
specifications (see, e.g., [12]), because an unsorted collection of elements with possible 
repetitions is a frequent example of  input. 

3.5. More complicated data types can be easily simulated in terms 
of bags 

Let's just give two examples: 

Exmnple I. An array (e.g., [1.3. 1.4, 8.5]) can be represented as bag whose components  are pairs 
(value, index)( in  this example: {(1.3, 1), (1.4,2), (3.5, 2)}. 

F.~,mple 2. A 2-dimen.siomd ar,ay can he represented as a bag whose components are pairs 
(bag-of-values-of-a-row, row number). 

For example,  a matrix 

with rows [1.3,1.5] and [2.4.2.6] is represented as a bag { (B t , 1 ) , (B2 ,2 )} ,  where B~ = 
{(1.3, 1), (1.5, 2)} and B2 = {(2.4, 1), (2.6, 2)}. 
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3.6. Bags are natural in representing algorithms 
Let's give two examples: 

Ex, mp/e t. 

�9 Pr~talem: Assume that we have a bag of numbers, and we want to find t& bigge.~t of them. 

�9 Algorithm: The algorithm is simple: a processor picks a pair, compares the dements of 
this pair, and deletes one that is smaller (or eqlml). Then it picks another pair, etc. At 
the end, we are left with one dement  only: the desired biggest number. 

Erlmiple 2. 

�9 Problem: to compUle the sum of all the elemenL~ of a give,1 Lvlg of numbers. 

�9 Aigoridml: We let a processor pick a pair, add the two numbers from this pair, and replace 
the two added numbers by their sum. At the end, when a single element remains, this 
element is exactly equal to the sum of all the elements from the original bag. 

Let us give a numerical example.  Suppose that we start with a bag {3, 3, 5, 4}. Then, the 
following is a possible trace of this algorithm: 

�9 add dements 3 and 5 of the original bag; as a resuh, we get an updated bag {3, 8, 4}i 

�9 add dements 3 and 8 of the current bag; as a resuh, we get a bag {11:4}; 

�9 add 11 and 4 of the current bag; as a resuh, we get a bag {15} that cousists of a single 
element 15. Theretore, this element is eqnai to the desired sum. 

3.7. Bag languages 
l ~ m ~  awl r ~ ' t ' ~  Since more complicated data structures and algorithms can be naturally 
expressed in bag terms, bags have been proposed as a basic data type for a new generation of 
high-level programming languages: 

�9 GAMMA [1-3]; 

�9 BagL (Bag Language) [6-11]; 

�9 Nesi (Nested Data-Parallel Language) [4]. 

What is a bag program? Main idea. Every "local" algorithm like the ones that we were talking 
about consists of the rules of the following type: if in the bag, there are elements a . . . .  , b, 
then we replace them with dements p , . . . , q .  For example, the algorithm that computes the 
maximum replaces a pair a, b with a single element max(a; b). The algorithm that computes the 
sum replaces a, b with a + b. Each of these replacements is of the type { a , . . . ,  b} ~ {p . . . . .  q}, 
where ~ stands for "replace". 

Both lists a . . . . .  b and p , . . . ,  q can have repetitions, and therefore, they can be viewed as 
bags (subbags of the big bag that we are processing). An ~dgorilhm can be formulated now as a 
seqnence of such rules. 
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Exttmp/e. If we know that the bag consists only of  O's and 1% then an algorithm for finding 
the maximum can be redt~ced to only 4 rules: {0 ,0 }  ---* {0}. {0, 11 ---, {1},  {1 ,0}  --, {1},  and 
{1,1} --. {1}. 
Simplest bag p r o g r a n u  a formal definition. T he  simplest bag programs can be described as 
follows: 

Definit ion 9-. Assume that a finite set D is given. This set will be called a domah~. By a ride R,  
we mean an expression o f  the type [ --+ O, where ] and O are bags over D. By a .~imple bag 
program P,  we mean a finite set o f  rules RI . . . . .  R~ O.e., expressions Ii ~ Ot . . . .  , I~ ,+ 0~ ). 

Example: To  compute the sum of all elements of  a bag, we need the following rules: { 1.1 } --, 
{2} ,  {1 ,2 }  -~ {3}.  {1 .3}  - -  {4}.  {2,2}  - *  {4} . . . . .  {3 ,5 }  - *  { 8 } , . . . ,  {3 ,8}  --* {11} . . . .  
Remark. This is a very simplified version of the bag language program: programs can be much 
more complicated. In this paper, however, we will consider only simple bag programs. So. 
without risking confilsion, we will call them simply programs. 

Deflnlt ioa 3. Assume that a bag B is given. We say ,that a rule [ ~ 0 is apflliadde to a..bag 
B,  i f  [ is a sltbbag o f  B (i.e., if  ! can be obtained from B by deleting sonic o f  B 's  elements). 
B v a res~dt o f  applying a nile [ -.-, 0 to a bag B,  we mean a bag (B  -- [ )  O 0 (i.e., we delete 
all elements o f  I from B,  and replace them with 0) .  

F, xamp/e. A rule {3, 5} --, {8} is applicable to the bag {3.3, 4, 5}. and the resuh of  this 
application is a new bag {3.4, 8}. 

l }d in i t ina  4. B,v a trace o f  applying a program P to a bag B .  we mean a sequence, (finite or 
infinite) or pairs (R (i), Bti)). i = O, 1 . . . . .  N ,  N < or where: 

�9 B (~ = B. 

�9 For every i. R (i)E P is a rule from the program P,  and B {i+l) is the result o fapp l v ing  
ride R (i)" to a bag B (i). And  

�9 �9 i f  N is finite (N < oc). then no rule is applicable to B ('v) (i'.e., we f o p  only i f  none o f  
the rules is applicable). 

When N < ~ ,  the bag B (S) is called a rex~dt (or, t~ flai~ible re.~ult) o f  applying P to B.  

(~ommatl.~. 

. According to our definitions, the total mnnber  of rules in a program is always finite. 
However, one and the same rule can be applied many times: for example, when we find 
the biggest element in a bag that contains all l's, then every time we apply a rule," it is 
the rule {l, 1} ~ {1}. in this particular exainple, the total "length ~ N of  the trace is still 
finite. But in general, one can imagine cases when. e.g.. one and the same rule can be 
applied infinitely many times (e.g., if a program consisting of 0nly one rule { l } ~ { 1, 1 } 
is applied to a bag {1}, it will add l's forever). In such cases, the trace can be infinite. 

2. in general, the resuh can depend on the trace. 
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4. Concurrency naturally appears in bag-processing 
algorithms 

For the detailed description, see, e.g., [3]. We will illustrate this idea on the above two examples: 
Exam~de I. Assume that we have a bag of numbers, and we want to jind the biggest of them. If 
we have several processors that can access the bag, then the algorithm is simple: each processor 
picks a pair, compares the elements of this pair, and deletes one that is smaller (or equal). 
Then they pick another pair, etc. At the end, we are left with one eleme~at only: the desired 
biggest number. 

Exmaple 2. Similarly, if we want to comtnae the sum of a given &,g of numbers, we let each 
processor pick a pair. add the two numbers from this pair, and replace the two added numbers 
by their sum. At the end, when a single element remains, this element is exactly equal to the 
sum of all the elements from the original bag. 

Let us give a numerical example: Suppose that we start with a bag {3, 3, 5, 4}, and that 
we have several processors that can run in parallel. Then, the following is a possible trace of 
this algorithm: 

First processor picks elements 3 and 5 from the original bag and substitutes the sum 8 
of these two elements instead of them. Simultaneously, the second processor picks the 
remaining two elements 3 and 4, and instead of them, substitutes their sum 7. As a 
result, we get an updated bag {7, 8}; 

One of the processors adds elements 7 and 8 of the current bag. as a resuh, we get a 
bag {15} that consists of a single element 15. Therefore, this element is equal to the 
desired sum. 

(~Ottl I,II~IIIS. 

. 

8. 

The general feature of such parallelizations is that each processor performs some loctd 
operations that involve only a few elements of the original bag. The reason for preferring 
local operations is that the initial bag (e.g., a bag of records) may be physically located in 
different places, and it will be very complicated and time-consuming to let each processor 
retrieve the records from all these places. Besides, if we restrict each processor's access to 
a few elements from the bag, we thus diminish the number of hard-to.deal cases when 
several processors try to process the same element. 

Several other algorithms can be similarly parailelized [11. 

Let tis now give an interval-like example: 

Example 3. 

�9 x = {1, 3, s } ,  Y = {2, 7}. 

�9 To to,,ptae: X + Y .  
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�9 Algoritlrm: 

- First, we form the bag of all pairs; in our case, 

X x Y = {(1,2) , (3 ,2) , (5 ,2) , (1 ,7) , (3 ,7) ,  (5:7)}. 

-- Then, if a processor sees a pair. it can replace it by its sum. If we have 6 processors 
that can work in parallel, then each processor can grab and process its own pair. 
As a resnh, we get the desired bag X + Y = {3, 5, ?, 8, 10, 12}. 

@ Bag languages can be  lso applied to normal interval 
computations 

In the computer, an interval [a, b] is a pair of real numbers. In terms of bags, it is a bag 
{a, b} consisting of these two numbers. All four arithmetic operations �9 with intervals'can be 
reformulated as follows: if an interval X = [x-,x"] is represented as a bag b(X) - : '{x-,z '+},  
and an interval Y = [V-, g-] is represented as a hag b(Y) = {9-, U~}, then a bag b(X * Y) 
that represents an interval X * Y can he obtained if we do the following: 

�9 form a hag of  pairs b(X) x b(Y) with elements {(x- ,  V-), (x- ,  !/+), (x +, V-), ( x+, Y+)}; 

�9 snbstitute each pair (.e, g) from the bag b(X) x b(Y) with the resuh x * 9 of applying 
the operation * to x and  g: as a resuh, we get a hag consisting of four elements 
{z-*V ,x *y+,~r+ *y-,x+ *v+}: 

�9 in this resuhing bag, leave only the biggest and the smallest elements, 

[:o,,nem. Actually, this procedure leads to a correct interval resuh: 

�9 for addition (+), subtraction (-),  and muhiplication (x): in all cases; 

�9 for division (/): in all cases in which the result is an interval (i.e., when 0 r Y). 
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