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Introduction

e Problem: describe the response of engineering com-

plex systems to various damage mechanisms.
e Traditional approach:

— use number-valued utilities to describe possible re-

sults,

— use probabilities to describe frequencies.

o Assumption: an expert can always make a definite

preference (total order).
e In reality: preferences are partially ordered.
e Tank example: hitting an engine vs. hitting a gun.
e Objective: extend decision theory to partial orders.

e Important particular case: uncertainty description

(S. Markov et al.).
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Traditional Utility Theory: In Brief

o Alternatives: A= {aq,...,a,}.
e Lottery: p1-a1+ ...+ p,* a,, Where
p; > 0 and éjlpz- = 1.
o Complex lotteries: when £, ..., € L, we can define
p-l+...+p 0.

e Preference: preorder < s.t. when 0 < p < 1:

(=l pl+(1—p) L' Zp-l+(1—p)-L"
o Utility: u: L — Rst. {20 < u(l) <u(l), and

up-L+...49 - L)=p-ull)+...4+p -ull).

e Main result: total ordered preferences < are described

by utility functions w.

e Uniqueness: if u and u' describe the same <, then

uw'(€) = T'(u(f)) for some T'(z) = k -z + m.
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First Auxiliary Notion: Affine Space

o Affine space: =~ vector space with no fixed 0.
e Difference in more precise terms:
— a linear space is (V,+,-); we can define
ALV + .o+ Ay Uy,

where \; € R and v; € V;
—in affine space, we can only define 3 \; - v; when
>N =1

e Relationship:

— Affine—vector: if V is affine, we pick any vy € V

and make a vector space with vy = 0:

v+ E1o+10 —Tvg; Ao € Xv+(1-N)-,.

— Vector—affine: any hyperplane H in a linear space

is an affine space.
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Second Auxiliary Notion:

Ordered Space

e A vector space V with a strict order < is an ordered
vector space if for every v, v, 0" € V, and for every

real number A > 0, we have:
—if v </, then v +v" <o + 0"
—ifv <o, then A-v < A-0.

e Since < does not change under shift, it, in effect, de-

fines an ordering on the affine space.
e A vector utility functionisu: L — V s.t.
(<0 < ull) <u(l), and
ulp-L+...+p - )=p-ull)+...+p -ull).
e Isomorphism T : V — V' preserves:
— affine structure: T(X A; - v;) = X A - T'(vy);

—order: v < v > T(v) <T(V).
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Main Result:

Consistency and Existence

e Notations:

— let A be a set, and

— let L be the set of all lotteries over A.
e Consistency:

— for every convexity-preserving function v : L — V

from L to an ordered affine space,

— the relation u(€) < u(f') is a preference relation.
e Fxistence:

— for every preference relation =<,

— there exists a vector utility function which describes

this preference.
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Main Result: Uniqueness

e In brief: the utility function is determined uniquely

modulo an isomorphism.
e First part:
—Ifwu:L —Vandd : L — V' describe the same

preference =<,

— then there exists an isomorphism 7" : A(u(L)) —
A(u'(L)) (where A(S) is an affine hull),

— such that for every lottery £, u'(¢) = T (u(f)).
e Vice versa:
— it a vector utility function u : L — V describes a
preference relation,
—and T : A(u(L)) — V' is an isomorphism,

— then «/(£) ¥ T'(u(£)) is also a vector utility func-

tion, and it describes the same preference relation.
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Example

e Frample: tank.

e Description: it is natural to describe damage as a

vector-valued utility (uq,us), where:

— w7 describes the tank’s shooting abilities, and

— u9 the tank’s moving abilities.

e Towards realistic description: we also need to take

into consideration:

— communication capabilities us,

— possibility of damage repair uy4, etc.

e Resulting description: a higher-dimensional utility

vector (u, g, U, Ug, - - -)-
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How to Describe Degrees of Belief for

Partially Ordered Preferences?

e Problem: describe degree of belief (“subjective prob-

ability” ) ps(F) in a statement F.

e Traditional approach: pick ay and aq with utilities 0

and 1, and define ps(E) © w(E|a|ag), where
(Elai|ao) ©4f E then a; else ay’

e Motivation: if E is random w/probability p, then

ps(E) = u(FElai|ag) = p-ular) + (1 —p) - ulag) = p.
e Interpretation: We have

u(E|0) = ps(E) - u(l) + (1 — ps(E)) - u(l),
hence
u(E|l) = u(l') = ps(E) - (u(€) — u(l)).

So, ps(F) is a linear operator.
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Conditional Lotteries

e Definition: X p; - b; + X qr, - (E|€,|L0}),
where ¥ p; +X g = 1, and ¢;, £}, and £} are lotteries.

e Preference relation on the set L(F) of all conditional

lotteries satisfies additional properties:
1if £ ~ £, then (E|€|0") ~ (E|0']¢"):
2. if £/ ~ £ then (E|4|0) ~ (E|€]¢"):
3. (E|l|L) ~ ¢;
4. (Elp-L+(1—p)- L") ~
p- (E|C|L") + (1 —p)- (E|C]E");
5. (Elllp- € + (1 —p) - £") ~
p- (El) + (1 —p)- (ELL7);
6. (Elp- £+ (1 —p)-l'lp-+(1—p)-L')~
p- (E|l)+ (1 —p)- "
7.if € < ¢, then £ < (E||¢') < ¢
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Degrees of Belief: First Result

e Definitions:
— A linear operator T': V — V' is non-negative
(denoted T'> 0) iff z >0 — Tz > 0.
— T is called a probability operator if both T and
1 — 7" are non-negative.

e First result:

— Let uw : L — V be a vector utility function and
—let T': V — V be a strict probability operator.
— Then,

u' (;pz- it 2k (EI%IKZ)) =
2 pi - ulli) + X g - w(EG[G),
with u*(E[£)¢") ¥ Tu(0)+(1—=T)u(f'), is a vector

utility function which describes a preterence rela-

tion on L(F).
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Degrees of Belief: Second Result

e Let < be a preference relation on L(FE).

o Let u: L(FE) — V be a vector utility function which

describes this preference.

e Then, there exists a probability operator
T:Au(L) =V
for which
w(Ell|l) =Tu(l) 4+ (1 — T)u(l)
for all £ and ¢, and
u(Tpi b+ za (BIEIE) =

- u(l) + X qr - u(EIG|).
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Degrees of Belief: Third Result

e Reminder: a degree of belief is described by an oper-

ator, i.e., by a matrix.

e General case: in general, we need n? components to

describe an n X n matrix.

e Theorem: the set of all probability operators is at

most n-dimensional.
e Proof:

— < is described by a convex cone P {v]v>0};

— P is a convex hull of (extreme) generators;

— let generators ey, . .., e, form a base for V;

— T is uniquely determined by values T'(e;);

—0 < T(e;) < e; hence T'(e;) belongs to the same
generator, i.e., T'(e;) = \; - €;;

— 80, to describe T', it is enough to know n values ;.
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Degrees of Belief: Final Results

e Definitions:

— Clartesian product Vi x V5 is the set of all pairs

(v1,v9) with vy € V} and vy € V5 for which
(v1,v9) > 0 if and only if v; > 0 and vy > 0.

— Lattice order when in some coordinate system,
(x1,...,x,) > 0iff 1 > 0, and o > 0, ...,

and x,, > 0.

— P(V) is the set of all probability operators on V.
e Result 4: dim(P(V)) > 1 iff
V = Vi x V5 for non-degenerate V; and V5.

o Result 5: dim(P(V)) = n iff V is a lattice order.

e Concluston: for most ordered vector spaces, we need

< n parameters.
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Proof of Result 4
o If V=1V, x V3, then (vy,v3) = (A1 v, Ao vg) iS &
probability operator; thus dim(P(V)) > 2.

o Let dim(P(V)) > l;eachT € P(V)isT(e;) = A;i-e;;
so, for some T" € P(V), \; # \;.

e Thus, V =V} x ... x V,,, where V; corr. to dift. A;.

e On V; wedefinev; >0 < (0,...,0,v;,0,...,0) > 0.

elfvi>0,...,v, >0, then

(v1, .y Um) = (v1,0,...,0)+...4+(0,...,0,v,) > 0.

e Vice versa, if v = (vq,...,0,) € P (ie., v > 0), then

v is a convex combination of extreme generators.
e Fach generator e is an eigenvector of 7' thus, dte € V.
e Groupinge € V;, we get v = v} + ...+ v, , vl > 0.

e Due to uniqueness, v, = v; and v; > 0.
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Proof of Result 5

Lattice order — dim(P(V)) = n:

e For a lattice order, for every n values A\1,..., A\, €
0, 1], the mapping (x1, ..., Tn) = (A1-z1, ..., Ap-p)
is a probability operator.

e So, dim(P(V)) > n; we know that dim(P(V)) < n,
hence dim(P(V)) = n.

dim(P(V)) = n — lattice order:

e Vice versa, the only case when we have an n-dimensional
set of probability operators is when we have n differ-

ent elgenspaces.
e All eingespaces have thus to be 1-dimensional.

e In this case, V' is a Cartesian order of n real lines, i.e.,

a lattice order.
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Conclusions

e Describing possible damage is important.

e Traditional probability-based approach assumes that

preference is a total order.

e In real life, an expert may not be able to always com-

pare two different alternatives.
e We describe decision making under partial order.

e The “utility” is now an element of a (partially) or-

dered vector space.
e The “probability” is now a matrix.

e At first glance, the necessity to use multi-dimensional
“probabilities” leads to an increase in computational

complexity.

e In reality, however, for most partial orders, the corre-

sponding “probabilities” are actually 1-dimensional.
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