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Detecting Outliers Is Important

e In many application areas, it is important to detect

outliers, i.e., unusual, abnormal values.
e In medicine, unusual values may indicate disease.

e In geophysics, abnormal values may indicate a min-

eral deposit (or an erroneous measurement result).

e In structural integrity testing, abnormal values may

indicate faults in a structure.
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Traditional Engineering Approach

to Outlier Detection

e First, we collect measurement results x, ..., x, cor-

responding to normal situations.

e Then, we compute the sample average

Edéf:cﬁ—...%—a:n

n
and the (sample) standard deviation o = v/V, where

Vdéf(:cl—E)Q—F...—k(xn—E)?

n

e A new measurement result x is classified as an outlier

if x & |L, U], where
LY¥YE koo, U¥ E+k-o,
and kg > 1 is pre-selected.

e Comment: most frequently, kg = 2, 3, or 6.
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Outlier Detection Under

Interval Uncertainty: A Problem

e In some practical situations, we only have intervals

X; = |Zi, Ti.

o Fixample: value x; measured by an instrument with

measurement error < A;; then z; € [T; — Ay, T+ A

e For different values x; € x;, we get different ky-sigma

intervals [L, U].

e A possible outlier is a value outside some kg-sigma

interval.
e Fxample: structural integrity — not to miss a fault.

e A guaranteed outlier is a value outside all ky-sigma

intervals.

e Fixample: before a surgery, we want to make sure that

there 1s a micro-calcification.
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Outlier Detection Reformulated

in Terms of Ranges

e Let [L, L] and [U, U] be ranges of L and U.

e A value x is not a possible outlier if x € N[L, U], i.e,,

if v € [L,U].
e Thus, a value x is a possible outlier if x & [L, U].

e A value x is not a guaranteed outlier if x € U[L, U],

ie, if x € [L,U].
e Thus, a value x is a guaranteed outlier if x & [L, U].
e In real life, we often have an interval x for . Then:

e 1 is a possible outlier if x  [L, U];

e 1 is a guaranteed outlier if x N [L, U] = 0.

e Conclusion: to detect outliers, we must know the

ranges of L, and U.
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What Was Known Before
and Why It Is Not Enough
e We need: to detect outliers, we must compute the
rangesof L=F —ky-cand U =F + ky- 0.

e We know: previously, we have shown how to compute

the ranges E and |o, 7] for F and o.

e Possibility: use interval computations to conclude

that Le E—ky-|o,0] and L € E+ ky - [0, 0]

e Problem: the resulting intervals for L and U are

wider than the actual ranges.

e Reason: E and o use the same inputs x4, ..., z, and

are hence not independent from each other.
e Practical consequence: we miss some outliers.
e Desirable: compute eract ranges for L and U.

o What we will do: exactly this.
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Detecting Possible Outliers: Idea

e To detect possible outliers, we need L and U.

e The minimum U of a smooth function U on an inter-

val |z;, T;] is attained:

e cither inside, when ngz = 0 —1i.e., when
zi=p Y E—a- o (where a ¥ 1/k);
e or at x; = x;, when ngZ > 0 —1ie., when pu < z;;
oU

<0 -1e., when z; < pu.

e or at x; = T;, when

8%2'

e Thus, once we know how p is located w.r.t. all the

intervals x;, we can find the optimal values of x;.
e Comment. the value p can be obtained from the
condition ¥ —a - 0 = .

e Hence, to find min U, we analyze how the endpoints

x; and T; divide the real line, consider all the resulting

sub-intervals, and take the smallest U.
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Computing U: Algorithm

e First, sort all 2n values z;, T; into a sequence () <

33(2) S < :C(Qn) take :IZ( ) — def —0Q, x(2n+1) dﬁf +00

e For each zone |z (;), T(1+1)], we compute the values

def

VT 2T (1) JTFST (k)
def 2 7. )2
my = X (z)°+ X (7))
VL 2T (1) JTjSE (k)

and n; = the total number of such ¢’s and j’s.

e Solve equation A — B -y + C - pu? = 0, where

A¥el (140 —a® -mp-n,

B % 9, - (1+a%)  n—a®-n); cYp.

26k
select u € zone for which u - ni < eg.
ek n —mng my n—mng
o B, ¢ = 4 g, M€ =4 Y
n n n n

Uy det B+ k- \/Mk — (Ek)2

e U is the smallest of these values Uj.
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Computing L: Algorithm

e First, sort all 2n values z;, T; into a sequence () <
def def
To) < .o S Tiop); take T() = = —00, T (2n+1) = 400

e For each zone |z (1), T(+1)], we compute the values

i3£i25’7(1€+1) j:I?]SZE(k)
def 2 — \2
mp= X (z)+ X (7)
Z:Qizx(k—kl) ]ZEJSZU(]C)

and nj; = the total number of such ¢’s and j’s.

e Solve equation A — B - u+ C - u? = 0, where
A¥ el (14a% - -mi-n,

Bdeerk ((1+a2).nk_a2.n>; CdefB

26k
select p € zone for which p - ng > ey.

def ek def Tk n — Ng 9
® b = —+ py, My = —+ B
n n n n

Ly ¥ E, — ko /My — (Ep)2

n —mng

e [ is the largest of these values L.
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Computational Complexity

of Outlier Detection

e Detecting possible outliers: The above algorithm Ay

always computes U in quadratic time.

e Detecting possible outliers: The above algorithm Ay,

always computes L in quadratic time.

e Detecting guaranteed outliers: For every kg > 1,
computing the upper endpoint U of the interval [U, U]
of possible values of U = E + kg - 0 is NP-hard.

e Detecting guaranteed outliers: For every ky > 1,

computing the lower endpoint L of the interval [L, L]
of possible values of L = E — ky - 0 is NP-hard.

e Comment. For interval data, the NP-hardness of

computing the upper bound for ¢ was known before.

10
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How Can We Actually Detect

Guaranteed Outliers?

o Ist result: if 1+ (1/ky)* < m, then max U and min L

are attained at endpoints of x;.
e Frample: ky > 1 and n > 2.

e Resulting algorithm: test all 2" combinations of val-

ues x; and T;.

e /mportant case: often, measured values T; are defi-
nitely different from each other, in the sense that the

“narrowed” ntervals

1+ a? 1+ a?
n n

A,

Ti —
do not intersect with each other.

e Shightly more general case: for some C', no more

than C' “narrowed” intervals can have a common point.
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Computing U

e Sort all endpoints of the narrowed intervals into a se-

quence (1) < Ty < ... < Tgp), with Z (0) def —0Q,

def
Z(2n+1) — TO0.

e For each zone [z, z(;41)}, for each j, pick x;:

. 1+ o :

o if T (i4+1) < fj — " : Aj; ple Tj = Ty,
_ 1+ o .

o if x('é—i—l) > fj + T : Aj; ple Tj— Ly,

e for all other 7, consider both z; = 7; and z; = z;.
o We get < 2¢ sequences of z; for each zone.

e [or each sequence z, check whether £ —a:-0 1s within

the zone.
olf £ — a0 € zone, computeUdéfE%—ko-a.

e Finally, we return the largest of the computed values

U as U.

12
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Computing L

e Sort all endpoints of the narrowed intervals into a se-

quence Ty < ZTig) < ... < Tiay), With (g def —00,

def
Z(2n+1) — T0O0.

e For each zone [z (;), z(;11)], for each j, pick z;:

. 1+ a? .

o if x(Hl) < fﬁj — n : Aj, ple T = Tj;
_ 1+ o :

[ lf x(z'_|_1) > fj —|’ n . A]) ple x] — $,77

e for all other j, consider both z; = z; and z; = z;.
o We get < 2¢ sequences of x; for each zone.

e [or each sequence z;, check whether E+a-o 1s within

the zone.
o If 4+ a0 € zone, ComputeLdéfE—ko-a.

e Finally, we return the smallest of the computed values

L as L
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Computational Complexity

o Ist result: for the case when < C' narrowed intervals
can have a common point, the above algorithm Ay

always computes U in quadratic time.

e 2nd result: for the case when < ' narrowed intervals
can have a common point, the above algorithm Ay,

always computes L in quadratic time.

e Comment: the corresponding computation times are

quadratic in n but grow exponentially with C.

e Corollary: when C' grows, this algorithm requires

more and more computation time.

e Comment: in the examples on which we prove NP-
hardness, n/2 out of n narrowed intervals have a com-

mon point.

14
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Conclusions

e In many applications, it’s important to detect outliers.
e Traditional idea: x € [F — ky- 0, E + ko - 0.
e We often have only interval ranges x; = [z;, T;].

e For different values x; € x;, we get different ky-sigma

intervals [L, U].
e 1 a guaranteed outlier if outside all ky-sigma intervals.
e 1 a possible outlier if outside some ky-sigma interval.

e To detect guaranteed and possible outliers, we must

thus be able to compute the ranges L = [L, L] and
U=[U,U|

e We show that computing these ranges is, in general,

NP-hard.

e We also provide efficient algorithms that compute these

ranges under reasonable conditions.
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