Outlier Detection Under Interval Uncertainty: Algorithmic Solvability and Computational Complexity Vladik Kreinovich, Luc Longpré, and Praveen Patangay Computer Science Department University of Texas at El Paso El Paso, TX 79968, USA {vladik, longpre, praveen}@cs.utep.edu Scott Ferson and Lev Ginzburg Applied Biomathematics 100 North Country Road Setauket, NY 11733, USA {scott, lev}@ramas.com ## **Detecting Outliers Is Important** - In many application areas, it is important to detect outliers, i.e., unusual, abnormal values. - In *medicine*, unusual values may indicate disease. - In *geophysics*, abnormal values may indicate a mineral deposit (or an erroneous measurement result). - In *structural integrity* testing, abnormal values may indicate faults in a structure. # Traditional Engineering Approach to Outlier Detection - First, we collect measurement results x_1, \ldots, x_n corresponding to normal situations. - Then, we compute the sample average $$E \stackrel{\text{def}}{=} \frac{x_1 + \ldots + x_n}{n}$$ and the (sample) standard deviation $\sigma = \sqrt{V}$, where $$V \stackrel{\text{def}}{=} \frac{(x_1 - E)^2 + \ldots + (x_n - E)^2}{n};$$ • A new measurement result x is classified as an outlier if $x \notin [L, U]$, where $$L \stackrel{\text{def}}{=} E - k_0 \cdot \sigma, \quad U \stackrel{\text{def}}{=} E + k_0 \cdot \sigma,$$ and $k_0 > 1$ is pre-selected. • Comment: most frequently, $k_0 = 2, 3, \text{ or } 6.$ # Outlier Detection Under Interval Uncertainty: A Problem - In some practical situations, we only have intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i].$ - Example: value \tilde{x}_i measured by an instrument with measurement error $\leq \Delta_i$; then $x_i \in [\tilde{x}_i \Delta_i, \tilde{x}_i + \Delta_i]$. - For different values $x_i \in \mathbf{x}_i$, we get different k_0 -sigma intervals [L, U]. - A possible outlier is a value outside some k_0 -sigma interval. - Example: structural integrity not to miss a fault. - A guaranteed outlier is a value outside all k_0 -sigma intervals. - Example: before a surgery, we want to make sure that there is a micro-calcification. # Outlier Detection Reformulated in Terms of Ranges - Let $[\underline{L}, \overline{L}]$ and $[\underline{U}, \overline{U}]$ be ranges of L and U. - A value x is not a possible outlier if $x \in \cap [L, U]$, i.e., if $x \in [\overline{L}, \underline{U}]$. - Thus, a value x is a possible outlier if $x \notin [\overline{L}, \underline{U}]$. - A value x is *not* a guaranteed outlier if $x \in \cup [L, U]$, i.e., if $x \in [\underline{L}, \overline{U}]$. - Thus, a value x is a guaranteed outlier if $x \notin [\underline{L}, \overline{U}]$. - In real life, we often have an interval \mathbf{x} for x. Then: - x is a possible outlier if $\mathbf{x} \not\subseteq [\overline{L}, \underline{U}]$; - x is a guaranteed outlier if $\mathbf{x} \cap [\underline{L}, \overline{U}] = \emptyset$. - Conclusion: to detect outliers, we must know the ranges of L and U. # What Was Known Before and Why It Is Not Enough - We need: to detect outliers, we must compute the ranges of $L = E k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$. - We know: previously, we have shown how to compute the ranges \mathbf{E} and $[\underline{\sigma}, \overline{\sigma}]$ for E and σ . - Possibility: use interval computations to conclude that $L \in \mathbf{E} k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$ and $L \in \mathbf{E} + k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$. - Problem: the resulting intervals for L and U are wider than the actual ranges. - Reason: E and σ use the same inputs x_1, \ldots, x_n and are hence not independent from each other. - Practical consequence: we miss some outliers. - Desirable: compute exact ranges for L and U. - What we will do: exactly this. ## Detecting Possible Outliers: Idea - \bullet To detect possible outliers, we need \overline{L} and \underline{U} . - The minimum \underline{U} of a smooth function U on an interval $[\underline{x}_i, \overline{x}_i]$ is attained: - either inside, when $\frac{\partial U}{\partial x_i} = 0$ i.e., when $x_i = \mu \stackrel{\text{def}}{=} E \alpha \cdot \sigma$ (where $\alpha \stackrel{\text{def}}{=} 1/k_0$); - or at $x_i = \underline{x}_i$, when $\frac{\partial U}{\partial x_i} \ge 0$ i.e., when $\mu \le \underline{x}_i$; - or at $x_i = \overline{x}_i$, when $\frac{\partial U}{\partial x_i} \le 0$ i.e., when $\overline{x}_i \le \mu$. - Thus, once we know how μ is located w.r.t. all the intervals \mathbf{x}_i , we can find the optimal values of x_i . - Comment. the value μ can be obtained from the condition $E \alpha \cdot \sigma = \mu$. - Hence, to find min U, we analyze how the endpoints \underline{x}_i and \overline{x}_i divide the real line, consider all the resulting sub-intervals, and take the smallest U. ## Computing \underline{U} : Algorithm - First, sort all 2n values \underline{x}_i , \overline{x}_i into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$; take $x_{(0)} \stackrel{\text{def}}{=} -\infty$, $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$. - For each zone $[x_{(k)}, x_{(k+1)}]$, we compute the values $$e_k \stackrel{\mathrm{def}}{=} \sum_{i: \underline{x}_i \geq x_{(k+1)}} \underline{x}_i + \sum_{j: \overline{x}_j \leq x_{(k)}} \overline{x}_j,$$ $m_i \stackrel{\mathrm{def}}{=} \sum_{i: \underline{x}_i \geq x_{(k+1)}} (\underline{x}_i)^2 + \sum_{j: \overline{x}_j \leq x_{(k)}} (\overline{x}_i)^2$ $$m_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \geq x_{(k+1)}} (\underline{x}_i)^2 + \sum_{j:\overline{x}_j \leq x_{(k)}} (\overline{x}_j)^2,$$ and n_k = the total number of such i's and j's. • Solve equation $A - B \cdot \mu + C \cdot \mu^2 = 0$, where $$A \stackrel{\text{def}}{=} e_k^2 \cdot (1 + \alpha^2) - \alpha^2 \cdot m_k \cdot n,$$ $$B \stackrel{\text{def}}{=} 2e_k \cdot ((1 + \alpha^2) \cdot n_k - \alpha^2 \cdot n); \quad C \stackrel{\text{def}}{=} B \cdot \frac{n_k}{2e_k};$$ select $\mu \in \text{zone for which } \mu \cdot n_k \leq e_k$. • $$E_k \stackrel{\text{def}}{=} \frac{e_k}{n} + \frac{n - n_k}{n} \cdot \mu$$, $M_k \stackrel{\text{def}}{=} \frac{m_k}{n} + \frac{n - n_k}{n} \cdot \mu^2$, $U_k \stackrel{\text{def}}{=} E_k + k_0 \cdot \sqrt{M_k - (E_k)^2}$. • \underline{U} is the smallest of these values U_k . # Computing \overline{L} : Algorithm - First, sort all 2n values \underline{x}_i , \overline{x}_i into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$; take $x_{(0)} \stackrel{\text{def}}{=} -\infty$, $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$. - For each zone $[x_{(k)}, x_{(k+1)}]$, we compute the values $$e_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \ge x_{(k+1)}} \underline{x}_i + \sum_{j:\overline{x}_j \le x_{(k)}} \overline{x}_j,$$ $$m_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \geq x_{(k+1)}} (\underline{x}_i)^2 + \sum_{j:\overline{x}_j \leq x_{(k)}} (\overline{x}_j)^2,$$ and n_k = the total number of such i's and j's. • Solve equation $A - B \cdot \mu + C \cdot \mu^2 = 0$, where $$A \stackrel{\text{def}}{=} e_k^2 \cdot (1 + \alpha^2) - \alpha^2 \cdot m_k \cdot n,$$ $$B \stackrel{\text{def}}{=} 2e_k \cdot ((1 + \alpha^2) \cdot n_k - \alpha^2 \cdot n); \quad C \stackrel{\text{def}}{=} B \cdot \frac{n_k}{2e_k};$$ select $\mu \in \text{zone for which } \mu \cdot n_k \geq e_k$. • $$E_k \stackrel{\text{def}}{=} \frac{e_k}{n} + \frac{n - n_k}{n} \cdot \mu$$, $M_k \stackrel{\text{def}}{=} \frac{m_k}{n} + \frac{n - n_k}{n} \cdot \mu^2$, $L_k \stackrel{\text{def}}{=} E_k - k_0 \cdot \sqrt{M_k - (E_k)^2}$. • \overline{L} is the largest of these values L_k . # Computational Complexity of Outlier Detection - Detecting possible outliers: The above algorithm $\underline{\mathcal{A}}_U$ always computes \underline{U} in quadratic time. - Detecting possible outliers: The above algorithm $\overline{\mathcal{A}}_L$ always computes \overline{L} in quadratic time. - Detecting guaranteed outliers: For every $k_0 > 1$, computing the upper endpoint \overline{U} of the interval $[\underline{U}, \overline{U}]$ of possible values of $U = E + k_0 \cdot \sigma$ is NP-hard. - Detecting guaranteed outliers: For every $k_0 > 1$, computing the lower endpoint \underline{L} of the interval $[\underline{L}, \overline{L}]$ of possible values of $L = E k_0 \cdot \sigma$ is NP-hard. - Comment. For interval data, the NP-hardness of computing the upper bound for σ was known before. # How Can We Actually Detect Guaranteed Outliers? - 1st result: if $1 + (1/k_0)^2 < n$, then max U and min L are attained at endpoints of \mathbf{x}_i . - $Example: k_0 > 1 \text{ and } n \geq 2.$ - Resulting algorithm: test all 2^n combinations of values \underline{x}_i and \overline{x}_i . - Important case: often, measured values \tilde{x}_i are definitely different from each other, in the sense that the "narrowed" intervals $$\left[\widetilde{x}_i - \frac{1+\alpha^2}{n} \cdot \Delta_i, \widetilde{x}_i + \frac{1+\alpha^2}{n} \cdot \Delta_i\right]$$ do not intersect with each other. • Slightly more general case: for some C, no more than C "narrowed" intervals can have a common point. # Computing \overline{U} - Sort all endpoints of the narrowed intervals into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$, with $x_{(0)} \stackrel{\text{def}}{=} -\infty$, $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$. - For each zone $[x_{(i)}, x_{(i+1)}]$, for each j, pick x_j : - if $x_{(i+1)} < \overline{x}_j \frac{1+\alpha^2}{n} \cdot \Delta_j$, pick $x_j = \overline{x}_j$; - if $x_{(i+1)} > \widetilde{x}_j + \frac{1+\alpha^2}{n} \cdot \Delta_j$, pick $x_j = \underline{x}_j$; - for all other j, consider both $x_j = \overline{x}_j$ and $x_j = \underline{x}_j$. - We get $\leq 2^C$ sequences of x_j for each zone. - For each sequence x_j , check whether $E \alpha \cdot \sigma$ is within the zone. - If $E \alpha \cdot \sigma \in \text{zone}$, compute $U \stackrel{\text{def}}{=} E + k_0 \cdot \sigma$. - Finally, we return the largest of the computed values U as \overline{U} . ## Computing \underline{L} - Sort all endpoints of the narrowed intervals into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$, with $x_{(0)} \stackrel{\text{def}}{=} -\infty$, $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$. - For each zone $[x_{(i)}, x_{(i+1)}]$, for each j, pick x_j : - if $x_{(i+1)} < \widetilde{x}_j \frac{1+\alpha^2}{n} \cdot \Delta_j$, pick $x_j = \overline{x}_j$; - if $x_{(i+1)} > \widetilde{x}_j + \frac{1+\alpha^2}{n} \cdot \Delta_j$, pick $x_j = \underline{x}_j$; - for all other j, consider both $x_j = \overline{x}_j$ and $x_j = \underline{x}_j$. - We get $\leq 2^C$ sequences of x_j for each zone. - For each sequence x_j , check whether $E + \alpha \cdot \sigma$ is within the zone. - If $E + \alpha \cdot \sigma \in \text{zone}$, compute $L \stackrel{\text{def}}{=} E k_0 \cdot \sigma$. - Finally, we return the smallest of the computed values L as \underline{L} . ## Computational Complexity - 1st result: for the case when $\leq C$ narrowed intervals can have a common point, the above algorithm $\overline{\mathcal{A}}_U$ always computes \overline{U} in quadratic time. - 2nd result: for the case when $\leq C$ narrowed intervals can have a common point, the above algorithm A_L always computes \underline{L} in quadratic time. - Comment: the corresponding computation times are quadratic in n but grow exponentially with C. - Corollary: when C grows, this algorithm requires more and more computation time. - Comment: in the examples on which we prove NP-hardness, n/2 out of n narrowed intervals have a common point. #### Conclusions - In many applications, it's important to detect outliers. - Traditional idea: $x \notin [E k_0 \cdot \sigma, E + k_0 \cdot \sigma]$. - We often have only interval ranges $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$. - For different values $x_i \in \mathbf{x}_i$, we get different k_0 -sigma intervals [L, U]. - $x ext{ a } guaranteed ext{ outlier if outside } all k_0$ -sigma intervals. - x a possible outlier if outside $some k_0$ -sigma interval. - To detect guaranteed and possible outliers, we must thus be able to compute the $ranges \mathbf{L} = [\underline{L}, \overline{L}]$ and $\mathbf{U} = [\underline{U}, \overline{U}]$. - We show that computing these ranges is, in general, NP-hard. - We also provide efficient algorithms that compute these ranges under reasonable conditions. ### Acknowledgments This work was supported in part: - by NASA grant NCC5-209 and NCC2-1232, - by Air Force Office of Scientific Research grant F49620-00-1-0365, - by NSF grants EAR-0112968 and EAR-0225670, - by a grant from the Army Research Lab, - by IEEE/ACM SC2001 and SC2002 Minority Serving Institutions Participation Grants, - by grant 9R44CA81741 to Applied Biomathematics from the National Cancer Institute (NCI), a component of the National Institutes of Health (NIH), and - by a research grant from Sandia National Laboratories as part of the Department of Energy Accelerated Strategic Computing Initiative (ASCI).