Outlier Detection Under Interval Uncertainty: Algorithmic Solvability and Computational Complexity

Vladik Kreinovich, Luc Longpré,
and Praveen Patangay
Computer Science Department
University of Texas at El Paso
El Paso, TX 79968, USA
{vladik, longpre, praveen}@cs.utep.edu

Scott Ferson and Lev Ginzburg
Applied Biomathematics
100 North Country Road
Setauket, NY 11733, USA
{scott, lev}@ramas.com

Detecting Outliers Is Important

- In many application areas, it is important to detect outliers, i.e., unusual, abnormal values.
- In *medicine*, unusual values may indicate disease.
- In *geophysics*, abnormal values may indicate a mineral deposit (or an erroneous measurement result).
- In *structural integrity* testing, abnormal values may indicate faults in a structure.

Traditional Engineering Approach to Outlier Detection

- First, we collect measurement results x_1, \ldots, x_n corresponding to normal situations.
- Then, we compute the sample average

$$E \stackrel{\text{def}}{=} \frac{x_1 + \ldots + x_n}{n}$$

and the (sample) standard deviation $\sigma = \sqrt{V}$, where

$$V \stackrel{\text{def}}{=} \frac{(x_1 - E)^2 + \ldots + (x_n - E)^2}{n};$$

• A new measurement result x is classified as an outlier if $x \notin [L, U]$, where

$$L \stackrel{\text{def}}{=} E - k_0 \cdot \sigma, \quad U \stackrel{\text{def}}{=} E + k_0 \cdot \sigma,$$

and $k_0 > 1$ is pre-selected.

• Comment: most frequently, $k_0 = 2, 3, \text{ or } 6.$

Outlier Detection Under Interval Uncertainty: A Problem

- In some practical situations, we only have intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i].$
- Example: value \tilde{x}_i measured by an instrument with measurement error $\leq \Delta_i$; then $x_i \in [\tilde{x}_i \Delta_i, \tilde{x}_i + \Delta_i]$.
- For different values $x_i \in \mathbf{x}_i$, we get different k_0 -sigma intervals [L, U].
- A possible outlier is a value outside some k_0 -sigma interval.
- Example: structural integrity not to miss a fault.
- A guaranteed outlier is a value outside all k_0 -sigma intervals.
- Example: before a surgery, we want to make sure that there is a micro-calcification.

Outlier Detection Reformulated in Terms of Ranges

- Let $[\underline{L}, \overline{L}]$ and $[\underline{U}, \overline{U}]$ be ranges of L and U.
- A value x is not a possible outlier if $x \in \cap [L, U]$, i.e., if $x \in [\overline{L}, \underline{U}]$.
- Thus, a value x is a possible outlier if $x \notin [\overline{L}, \underline{U}]$.
- A value x is *not* a guaranteed outlier if $x \in \cup [L, U]$, i.e., if $x \in [\underline{L}, \overline{U}]$.
- Thus, a value x is a guaranteed outlier if $x \notin [\underline{L}, \overline{U}]$.
- In real life, we often have an interval \mathbf{x} for x. Then:
 - x is a possible outlier if $\mathbf{x} \not\subseteq [\overline{L}, \underline{U}]$;
 - x is a guaranteed outlier if $\mathbf{x} \cap [\underline{L}, \overline{U}] = \emptyset$.
- Conclusion: to detect outliers, we must know the ranges of L and U.

What Was Known Before and Why It Is Not Enough

- We need: to detect outliers, we must compute the ranges of $L = E k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.
- We know: previously, we have shown how to compute the ranges \mathbf{E} and $[\underline{\sigma}, \overline{\sigma}]$ for E and σ .
- Possibility: use interval computations to conclude that $L \in \mathbf{E} k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$ and $L \in \mathbf{E} + k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$.
- Problem: the resulting intervals for L and U are wider than the actual ranges.
- Reason: E and σ use the same inputs x_1, \ldots, x_n and are hence not independent from each other.
- Practical consequence: we miss some outliers.
- Desirable: compute exact ranges for L and U.
- What we will do: exactly this.

Detecting Possible Outliers: Idea

- \bullet To detect possible outliers, we need \overline{L} and \underline{U} .
- The minimum \underline{U} of a smooth function U on an interval $[\underline{x}_i, \overline{x}_i]$ is attained:
 - either inside, when $\frac{\partial U}{\partial x_i} = 0$ i.e., when $x_i = \mu \stackrel{\text{def}}{=} E \alpha \cdot \sigma$ (where $\alpha \stackrel{\text{def}}{=} 1/k_0$);
 - or at $x_i = \underline{x}_i$, when $\frac{\partial U}{\partial x_i} \ge 0$ i.e., when $\mu \le \underline{x}_i$;
 - or at $x_i = \overline{x}_i$, when $\frac{\partial U}{\partial x_i} \le 0$ i.e., when $\overline{x}_i \le \mu$.
- Thus, once we know how μ is located w.r.t. all the intervals \mathbf{x}_i , we can find the optimal values of x_i .
- Comment. the value μ can be obtained from the condition $E \alpha \cdot \sigma = \mu$.
- Hence, to find min U, we analyze how the endpoints \underline{x}_i and \overline{x}_i divide the real line, consider all the resulting sub-intervals, and take the smallest U.

Computing \underline{U} : Algorithm

- First, sort all 2n values \underline{x}_i , \overline{x}_i into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$; take $x_{(0)} \stackrel{\text{def}}{=} -\infty$, $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$.
- For each zone $[x_{(k)}, x_{(k+1)}]$, we compute the values

$$e_k \stackrel{\mathrm{def}}{=} \sum_{i: \underline{x}_i \geq x_{(k+1)}} \underline{x}_i + \sum_{j: \overline{x}_j \leq x_{(k)}} \overline{x}_j,$$
 $m_i \stackrel{\mathrm{def}}{=} \sum_{i: \underline{x}_i \geq x_{(k+1)}} (\underline{x}_i)^2 + \sum_{j: \overline{x}_j \leq x_{(k)}} (\overline{x}_i)^2$

$$m_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \geq x_{(k+1)}} (\underline{x}_i)^2 + \sum_{j:\overline{x}_j \leq x_{(k)}} (\overline{x}_j)^2,$$

and n_k = the total number of such i's and j's.

• Solve equation $A - B \cdot \mu + C \cdot \mu^2 = 0$, where

$$A \stackrel{\text{def}}{=} e_k^2 \cdot (1 + \alpha^2) - \alpha^2 \cdot m_k \cdot n,$$

$$B \stackrel{\text{def}}{=} 2e_k \cdot ((1 + \alpha^2) \cdot n_k - \alpha^2 \cdot n); \quad C \stackrel{\text{def}}{=} B \cdot \frac{n_k}{2e_k};$$

select $\mu \in \text{zone for which } \mu \cdot n_k \leq e_k$.

•
$$E_k \stackrel{\text{def}}{=} \frac{e_k}{n} + \frac{n - n_k}{n} \cdot \mu$$
, $M_k \stackrel{\text{def}}{=} \frac{m_k}{n} + \frac{n - n_k}{n} \cdot \mu^2$, $U_k \stackrel{\text{def}}{=} E_k + k_0 \cdot \sqrt{M_k - (E_k)^2}$.

• \underline{U} is the smallest of these values U_k .

Computing \overline{L} : Algorithm

- First, sort all 2n values \underline{x}_i , \overline{x}_i into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$; take $x_{(0)} \stackrel{\text{def}}{=} -\infty$, $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$.
- For each zone $[x_{(k)}, x_{(k+1)}]$, we compute the values

$$e_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \ge x_{(k+1)}} \underline{x}_i + \sum_{j:\overline{x}_j \le x_{(k)}} \overline{x}_j,$$

$$m_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \geq x_{(k+1)}} (\underline{x}_i)^2 + \sum_{j:\overline{x}_j \leq x_{(k)}} (\overline{x}_j)^2,$$

and n_k = the total number of such i's and j's.

• Solve equation $A - B \cdot \mu + C \cdot \mu^2 = 0$, where

$$A \stackrel{\text{def}}{=} e_k^2 \cdot (1 + \alpha^2) - \alpha^2 \cdot m_k \cdot n,$$

$$B \stackrel{\text{def}}{=} 2e_k \cdot ((1 + \alpha^2) \cdot n_k - \alpha^2 \cdot n); \quad C \stackrel{\text{def}}{=} B \cdot \frac{n_k}{2e_k};$$

select $\mu \in \text{zone for which } \mu \cdot n_k \geq e_k$.

•
$$E_k \stackrel{\text{def}}{=} \frac{e_k}{n} + \frac{n - n_k}{n} \cdot \mu$$
, $M_k \stackrel{\text{def}}{=} \frac{m_k}{n} + \frac{n - n_k}{n} \cdot \mu^2$, $L_k \stackrel{\text{def}}{=} E_k - k_0 \cdot \sqrt{M_k - (E_k)^2}$.

• \overline{L} is the largest of these values L_k .

Computational Complexity of Outlier Detection

- Detecting possible outliers: The above algorithm $\underline{\mathcal{A}}_U$ always computes \underline{U} in quadratic time.
- Detecting possible outliers: The above algorithm $\overline{\mathcal{A}}_L$ always computes \overline{L} in quadratic time.
- Detecting guaranteed outliers: For every $k_0 > 1$, computing the upper endpoint \overline{U} of the interval $[\underline{U}, \overline{U}]$ of possible values of $U = E + k_0 \cdot \sigma$ is NP-hard.
- Detecting guaranteed outliers: For every $k_0 > 1$, computing the lower endpoint \underline{L} of the interval $[\underline{L}, \overline{L}]$ of possible values of $L = E k_0 \cdot \sigma$ is NP-hard.
- Comment. For interval data, the NP-hardness of computing the upper bound for σ was known before.

How Can We Actually Detect Guaranteed Outliers?

- 1st result: if $1 + (1/k_0)^2 < n$, then max U and min L are attained at endpoints of \mathbf{x}_i .
- $Example: k_0 > 1 \text{ and } n \geq 2.$
- Resulting algorithm: test all 2^n combinations of values \underline{x}_i and \overline{x}_i .
- Important case: often, measured values \tilde{x}_i are definitely different from each other, in the sense that the "narrowed" intervals

$$\left[\widetilde{x}_i - \frac{1+\alpha^2}{n} \cdot \Delta_i, \widetilde{x}_i + \frac{1+\alpha^2}{n} \cdot \Delta_i\right]$$

do not intersect with each other.

• Slightly more general case: for some C, no more than C "narrowed" intervals can have a common point.

Computing \overline{U}

- Sort all endpoints of the narrowed intervals into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$, with $x_{(0)} \stackrel{\text{def}}{=} -\infty$, $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$.
- For each zone $[x_{(i)}, x_{(i+1)}]$, for each j, pick x_j :
 - if $x_{(i+1)} < \overline{x}_j \frac{1+\alpha^2}{n} \cdot \Delta_j$, pick $x_j = \overline{x}_j$;
 - if $x_{(i+1)} > \widetilde{x}_j + \frac{1+\alpha^2}{n} \cdot \Delta_j$, pick $x_j = \underline{x}_j$;
 - for all other j, consider both $x_j = \overline{x}_j$ and $x_j = \underline{x}_j$.
- We get $\leq 2^C$ sequences of x_j for each zone.
- For each sequence x_j , check whether $E \alpha \cdot \sigma$ is within the zone.
- If $E \alpha \cdot \sigma \in \text{zone}$, compute $U \stackrel{\text{def}}{=} E + k_0 \cdot \sigma$.
- Finally, we return the largest of the computed values U as \overline{U} .

Computing \underline{L}

- Sort all endpoints of the narrowed intervals into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$, with $x_{(0)} \stackrel{\text{def}}{=} -\infty$, $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$.
- For each zone $[x_{(i)}, x_{(i+1)}]$, for each j, pick x_j :
 - if $x_{(i+1)} < \widetilde{x}_j \frac{1+\alpha^2}{n} \cdot \Delta_j$, pick $x_j = \overline{x}_j$;
 - if $x_{(i+1)} > \widetilde{x}_j + \frac{1+\alpha^2}{n} \cdot \Delta_j$, pick $x_j = \underline{x}_j$;
 - for all other j, consider both $x_j = \overline{x}_j$ and $x_j = \underline{x}_j$.
- We get $\leq 2^C$ sequences of x_j for each zone.
- For each sequence x_j , check whether $E + \alpha \cdot \sigma$ is within the zone.
- If $E + \alpha \cdot \sigma \in \text{zone}$, compute $L \stackrel{\text{def}}{=} E k_0 \cdot \sigma$.
- Finally, we return the smallest of the computed values L as \underline{L} .

Computational Complexity

- 1st result: for the case when $\leq C$ narrowed intervals can have a common point, the above algorithm $\overline{\mathcal{A}}_U$ always computes \overline{U} in quadratic time.
- 2nd result: for the case when $\leq C$ narrowed intervals can have a common point, the above algorithm A_L always computes \underline{L} in quadratic time.
- Comment: the corresponding computation times are quadratic in n but grow exponentially with C.
- Corollary: when C grows, this algorithm requires more and more computation time.
- Comment: in the examples on which we prove NP-hardness, n/2 out of n narrowed intervals have a common point.

Conclusions

- In many applications, it's important to detect outliers.
- Traditional idea: $x \notin [E k_0 \cdot \sigma, E + k_0 \cdot \sigma]$.
- We often have only interval ranges $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$.
- For different values $x_i \in \mathbf{x}_i$, we get different k_0 -sigma intervals [L, U].
- $x ext{ a } guaranteed ext{ outlier if outside } all k_0$ -sigma intervals.
- x a possible outlier if outside $some k_0$ -sigma interval.
- To detect guaranteed and possible outliers, we must thus be able to compute the $ranges \mathbf{L} = [\underline{L}, \overline{L}]$ and $\mathbf{U} = [\underline{U}, \overline{U}]$.
- We show that computing these ranges is, in general, NP-hard.
- We also provide efficient algorithms that compute these ranges under reasonable conditions.

Acknowledgments

This work was supported in part:

- by NASA grant NCC5-209 and NCC2-1232,
- by Air Force Office of Scientific Research grant F49620-00-1-0365,
- by NSF grants EAR-0112968 and EAR-0225670,
- by a grant from the Army Research Lab,
- by IEEE/ACM SC2001 and SC2002 Minority Serving Institutions Participation Grants,
- by grant 9R44CA81741 to Applied Biomathematics from the National Cancer Institute (NCI), a component of the National Institutes of Health (NIH), and
- by a research grant from Sandia National Laboratories as part of the Department of Energy Accelerated Strategic Computing Initiative (ASCI).