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Let M ∈ Rn×n and q ∈ Rn. Then the linear complementarity problem is
defined as follows: Determine (or conclude that there is no) z ∈ Rn with

q + Mz ≥ 0, z ≥ 0, (q + Mz)T z = 0. (1)

(Here, matrix inequalities are understood componentwise, [2].) Linear comple-
mentarity problems model many important mathematical problems. The article
[3] gave an extensive documentation of complementarity problems in engineering
and equilibrium modeling.

Meanwhile, verification methods have been found to give guaranteed bounds
on the distance between the numerical solution and the exact solution of the
linear complementarity problem (see e.g. [1]).

In this talk we extend this idea to the case where the input data itself are
not known exactly but can only be enclosed in intervals. This situation arises
for example from the following application.

Let f : [0,∞) × R × R → R be a function and y0 > 0. Then the free
boundary problem is defined as follows:

Find c ∈ R and y(·) : [0,∞) → R with

y′′(x) = f(x, y(x), y′(x)) if x ∈ [0, c],

y(x) > 0 if x ∈ [0, c),

y(x) = 0 if x ∈ [c,∞),

y′(c) = 0, y(0) = y0.
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Theorem 1. ([4]) The free boundary problem (2) is considered. It is assumed

that (2) has a unique solution
(

c̃, ỹ(·)
)

and it is assumed that an a ∈ R with

c̃ ≤ a is known. n + 2 points are determined by x0 := 0, h := a/(n + 1),
xi+1 := xi + h, i = 0, ..., n. Let f fulfill the following conditions:

• f(x, s, t) : [0,∞)×R×R → R is continuously differentiable.
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• There exists an interval [F ] = [F , F ] with
{µ ∈ R : µ = f(x, ỹ(x), ỹ′(x)), x ∈ [0, a]} ⊆ [F ] and F ≥ 0.

• There exists D ∈ R with
|fx(x, ỹ(x), ỹ′(x)) + fs(x, ỹ(x), ỹ′(x))ỹ′(x) + ft(x, ỹ(x), ỹ′(x))ỹ′′(x)| ≤ D,
x ∈ [0, c̃].

Then there exists a vector q ∈ Rn contained in the interval vector
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1
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and the vector
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is the unique solution of the linear complementarity problem defined by that q
and
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∈ Rn×n.

The proof uses Taylor’s formula with remainder where one has to take into
account that it is not necessary that ỹ(x) : [0,∞) → R is twice differentiable
at x = c̃. In addition, we want to emphasize that it is not possible to prove
Theorem 1 with M ∈ Rn×n and [q] = q ∈ Rn (even if f ≡ 1).

In order to verify that a given interval vector [z] includes ỹ of Theorem 1 we
have to consider a family of linear complementarity problems. The presented
verification methods are based on the following equivalence

(1) ⇔ H(z) := min(z, q + Mz) = 0

and the knowledge of a slope matrix G(x, y) satisfying

H(x)−H(y) = G(x, y)(x− y) for all x, y ∈ [z].

For the matrix M and the interval vector [q] of Theorem 1 we define H(z; [q])
componentwise by

(H(z; [q]))i =







zi if zi < qi + (Mz)i,
[qi] + (Mz)i if zi > qi + (Mz)i,

[q
i
+ (Mz)i, zi] if zi ∈ [qi] + (Mz)i,


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

i = 1, .., n,
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and we present an algorithm that calculates an interval matrix G(x, [z], [q]) with
arbitrary x ∈ [z] satisfying

G(x, y) ∈ G(x, [z], [q]) for all y ∈ [z] and for all q ∈ [q].

Then we define the operator

N(x, [z], [q]) := x− IGA(G(x, [z], [q]),H(x; [q]))

(IGA means interval Gaussian algorithm) and the operator

L(x, A, [z], [q]) := x−A ·H(x; [q]) +
(

I −A ·G(x, [z], [q])
)

([z]− x)

with arbitrary x ∈ [z] and an arbitrary nonsingular matrix A. Using the Brouwer
fixed point theorem we include ỹ of Theorem 1. We present some examples.
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