Evaluation of Functions, Gradients and Jacobians

Louis B. Rall
Department of Mathematics
University of Wisconsin-Madison
Madison, Wisconsin 53706, U.S.A.
rall@math.wisc.edu

A function $f: D \subset \mathbf{R}^{d} \rightarrow \mathbf{R}$ is ordinarily evaluated by constructing a sequence $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where each x_{k} is obtained by evaluating an expression of the form $x_{k}=f_{k}\left(x_{1}, \ldots, x_{k-1}\right)$, and $x_{n}=f\left(x_{1}, \ldots, x_{d}\right)$. In realization of such algorithms by computer programs, the expressions f_{k} can be limited to assignments, arithmetic operations, and functions already programmed or built into the hardware, such as those belonging to a standard library of mathematical functions. The number of steps n of the algorithm to evaluate the function may depend on the given values of x_{1}, \ldots, x_{d}, but this dependence will be suppressed for simplicity of notation.

Instead of considering the evaluation process as a mapping from a point in \mathbf{R}^{d} to a point in \mathbf{R}, it will be viewed as a transformation in \mathbf{R}^{n} of the form $\mathbf{x}=\mathbf{F}(\mathbf{x})$, where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, that is, as a fixed point problem in \mathbf{R}^{n} or the equivalent equation $\mathbf{G}(\mathbf{x}) \equiv \mathbf{x}-\mathbf{F}(\mathbf{x})=0$. These formulations give the possibility of improvement of accuracy of the function evaluation and validation of the computed result.

In particular, if the expressions f_{k} are differentiable, then the Jacobian $J=$ $\mathbf{F}^{\prime}(\mathbf{x})=\left(\partial x_{i} / \partial x_{j}\right)$ exists and is strictly lower triangular. One has $\mathbf{G}^{\prime}(\mathbf{x})=I-J$ and $\mathbf{G}^{\prime}(\mathbf{x})^{-1}=(I-J)^{-1}=I+J+\cdots+J^{m}$ for some $m \leq n$. Thus, Newton's method can be applied to $\mathbf{G}(\mathbf{x})=0$ for improvement of computed values and their validation by interval inclusion.

Another use of the matrix J is the computation of the gradient ∇f, a process commonly referred to as automatic differentiation. The forward mode consists of computing the right eigenvectors of J by the power method, the reverse mode yields a left eigenvector, also by the power method. In either case, accurate matrix-vector multiplication with the aid of a long accumulator and interval validation of results are applicable.

The above results apply immediately to evaluation of functions $f: D \subset$ $\mathbf{R}^{\mathbf{p}} \rightarrow \mathbf{R}^{q}$ to obtain the corresponding Jacobian of the transformation. In the case $p=q$, the function being computed may be an inverse function, that is, one uses the computer to solve the equation $f(x)=y$ for $x=f^{-1}(y)=g(y)$. Since the program will contain a subroutine for $f(x)$, it is not necessary of find the Jacobian of $g(y)$ by differentiation of the entire routine. Once a satisfactory
value of x has been computed, one has $g^{\prime}(y)=\left[f^{\prime}(x)\right]^{-1}$, so only the subroutine for $f(x)$ has to be differentiated. In this sense, differentiation and inversion commute because of linearity.

