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Abstract
Recently, Lin and Rokne [10] introduced the so-called Taylor-Bernstein

form as an inclusion function form for multidimensional functions. This
form was theoretically shown to have the super-convergence property.
Here, we present an improvement of Lin and Rokne’s Taylor-Bernstein
form to make it more effective in practice. We test and compare the
super-convergence behavior of the proposed form with that of Lin and
Rokne’s Taylor-Bernstein form and also with that of the Taylor model of
Berz et al. [3]. We obtain super-convergence of orders up to 9 with the
proposed form. Moreover, with the proposed form we quite easily obtain
such high orders of super-convergence for up to 5− dim problems.

We also investigate the use of higher order inclusion functions in the
Moore-Skelboe (MS) algorithm of interval analysis (IA) for unconstrained
global optimization. We use the improved TB form as an inclusion func-
tion in a prototype MS algorithm and also modify the cut-off test and
termination condition in the algorithm. We test and compare on several
examples the performances of the proposed algorithm, the MS algorithm,
and the MS algorithm with the Taylor model of Berz et al. [3] as inclu-
sion function. The results of these (preliminary) tests indicate that the
proposed algorithm with the improved TB form as inclusion function is
quite effective for low to medium dimension problems studied.

1 Introduction

An important problem in interval analysis is the construction of inclusion func-
tions having the property of so-called super-convergence (i.e., having a con-
vergence order that is greater than quadratic) for multidimensional functions.
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Such inclusion functions have applications in the solutions of equations, opti-
mization, quadrature, and others. The first paper in the literature concerning
super-convergence is that of Herzberger [6], who shows that super-convergence
can be obtained for a certain class of intervals. However, his requirement on the
function is unrealistically strong. Cornelius and Lohner [4] propose the inter-
polation and remainder forms for multidimensional functions that enable any
convergence order to be obtained in theory. However, in practice, convergence
order of at most 4 or 5 is recommended even for unidimensional functions, see
[4] and [15, pg. 9]. The same holds for the improved version of these forms for
unidimensional functions, as proposed by Neumaier in [14, sec. 2.4]. Alefeld
and Lohner [1] propose centered forms with super-convergence for unidimen-
sional functions. However, because of the strong condition on the functional
representation, these higher order centered forms have limited practical value
[1, pg. 8]. Lin and Rokne [10] propose super-convergent forms that combine
Taylor and Bernstein (or B-spline) forms for multidimensional functions. How-
ever, for small domains these forms become computationally very demanding,
even for unidimensional functions, see [10, pg. 108]. Berz et al. [3, 12] pro-
pose the so-called Taylor models for multidimensional functions. Although the
accuracy of the so-called remainder interval part of the Taylor model increases
in a super-convergent fashion, the Taylor model itself is known to exhibit only
quadratic convergence see Kearfott and Arazyan [9].

We propose in this work a new inclusion function form having the super-
convergence property for multidimensional functions. The proposed inclusion
function form uses Bernstein polynomials for bounding the range of the polyno-
mial obtained from the Taylor form of the function f . The Bernstein algorithm is
combined with the Taylor form to obtain the resulting so-called Taylor-Bernstein
form as an inclusion function form of f. The proposed Taylor-Bernstein form
has some important differences (in the practical way it is constructed) from the
Taylor-Bernstein form of Lin and Rokne [10].

We numerically investigate the super-convergence property of the above in-
clusion function forms on some benchmark examples. The selected examples are
of low to medium dimensions. For all our computations, we use a PC/Pentium
III 800 MHz 256 MB RAM machine with a FORTRAN 90 compiler, and version
8.1 of the COSY-INFINITY package of Berz et al. [2, 7]. We also investigate
the performance of the Taylor model as an inclusion function form in these
examples. With the proposed form, we quite easily obtain super-convergence
(of orders up to 9) for low to medium dimensional problems. To our knowl-
edge, it is perhaps for the first time that super-convergence of such high orders
has actually been demonstrated on multidimensional problems. Moreover, the
new super-convergent form can be constructed on a computer with the fully
automated algorithm presented, without any need for hand computations.

We next use the new super-convergent form to solve the following optimiza-
tion problem. Let < be the set of reals, X ⊆ <l be a right parallelepiped parallel
to the axes (also called as a box), and f : X → < be a m+1 times differentiable
function for some positive integer m. Let f̄ (X) denote the set of all values
of f on X. We seek global optimization algorithms that are able to efficiently

2



determine arbitrarily good lower bounds for the minimum of f̄ (X).
Many algorithms based on interval analysis (IA) are available to solve this

global optimization problem, see for example, [5], [8], [16] and the references
cited therein. A basic branch and bound algorithm of IA is the so-called Moore-
Skelboe (MS) algorithm [16]. Although the MS algorithm is reliable, it is some-
what slow to converge in ‘difficult’ problems, when inclusion functions of first
and sometimes even second orders are used. Faster convergence could possibly
be obtained with higher order inclusion functions, and it is of interest in this
work to investigate their effectiveness in some such ‘difficult’ problems.

Our proposed algorithm for global optimization uses the new super-convergent
form having high order convergence, and we therefore expect to obtain faster
convergence with this form. The new form also allows us to make the cut-off
test and termination condition more effective, and we incorporate these mod-
ifications in the proposed algorithm. Since this global optimization algorithm
involves using the new Taylor - Bernstein form in Moore-Skelboe algorithm,
we call it as Algorithm TBMS.

We can also have the Taylor model of Berz et al. as an inclusion function
form in the MS algorithm as done, for instance, in the preliminary work in [9].
We call such an algorithm as Algorithm TMS.

We test and compare the performance of the proposed algorithm with that
of Algorithms TMS and MS on six ‘difficult’ examples. These preliminary tests
indicate that Algorithms TMS and TBMS are quite effective compared to Al-
gorithm MS, for lower accuracy problems. For higher accuracy problems, Al-
gorithm TBMS is the most effective one. The best overall choice, in terms of
the number of iterations, space-complexity, and speed seems to be Algorithm
TBMS with a medium Taylor order m = 4.

2 Numerical Results for super convergence

We numerically investigate the super-convergence property of the above inclu-
sion function forms on some benchmark examples.

In each example, we compute the intervals
FTM (X) – using Taylor model of Berz et al. [11], computed with the COSY-

INFINITY package.
FLR (X) – using Taylor-Bernstein form of Lin and Rokne, computed with

Algorithm LR.
FTB (X) – using the proposed Taylor-Bernstein form, computed with Algo-

rithm TB.
Finner(X) – using inner estimates of the range computed with the well-

known Moore-Skelboe optimization algorithm of interval analysis (see, for in-
stance, [16]).

Let X = [a, b] ,Y = [c, d] be any two intervals. Then, following [4], as a
measure of the overestimation we use the Hausdorff metric

H (X,Y) = |[a, b] , [c, d]| = max {|a− c| , |b− d|}
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Consider a sequence of nested intervals
{

X(i)
}

. We wish to find and compare
for each form, the reduction in overestimation with decrease in the domain
interval widths. Consider first the form FTM . Let

HTM

(

X(i−1)
)

:= H
(

f̄(X(i−1)), FTM

(

X(i−1)
))

(1)

As a measure of the reduction in overestimation obtained with form FTM over
successive nested intervals X(i−1) and X(i), we use the ratio

RTM

(

X(i−1),X(i)
)

:=
HTM

(

X(i−1)
)

HTM
(

X(i)
) =

H
(

f̄(X(i−1)), FTM
(

X(i−1)
))

H
(

f̄(X(i)), FTM
(

X(i)
))

Define

R∗
(

X(i−1),X(i)
)

:=

(

w
(

X(i−1)
)

w
(

X(i)
)

)m+1

If FTM is an inclusion function form having convergence order m + 1, then

RTM

(

X(i−1),X(i)
)

→ R∗
(

X(i−1),X(i)
)

(2)

(where the tending is from above) for “small” enough w
(

X(i−1)
)

, w
(

X(i)
)

.
In practice, the exact range f̄ is generally difficult to compute, so the over-

estimation can be generally found relative only to some inner estimate Finner
of the range. However, we can easily show that if the (m + 1)- th convergence
order property holds relative to Finner, then it implies that the same holds rela-
tive to the exact range f̄ . That is, it is sufficient if we can show the (m + 1)- th
convergence order property with Finner used in place of f̄ in above definitions.
To avoid introducing more notation, in the sequel we use the quantities given
in (1) through (2), with Finner replacing f̄ throughout.

Similarly, we can define HLR, HTB ,RLR,RTB for the forms FLR and FTB .
For brevity of notation, we drop the arguments X(i−1),X(i) of all H and R.

Example 1. Trigonometric function [13, problem 26]. The 4− dim function is

f(x) =
4

∑

i=1

fi(x)2, fi(x) = 4−
4

∑

j=1

cosxj + i(1− cos xi)− sinxi

The domain is X(i) =
[

1.75 + 2−i [−1, 1]
]4

.
For Taylor order m = 2:

i 0 1 2 3
w

(

X(i)
)

2 ∗ 2−0 2 ∗ 2−1 2 ∗ 2−2 2 ∗ 2−3

HTM 4E + 2 9E + 1 2E + 1 5E + 0
HLR 3E + 2 3E + 1 3E + 0 ∗
HTB 3E + 2 3E + 1 3E + 0 3E − 1
R∗ − 8 8 8
RTM − 4.9 4.5 4.2
RLR − 10.5 9.5 −
RTB − 10.5 9.5 8.8
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i 4 5 6 7
w

(

X(i)
)

2 ∗ 2−4 2 ∗ 2−5 2 ∗ 2−6 2 ∗ 2−7

HTM 1E + 0 3E − 1 7E − 2 2E − 2
HLR ∗ ∗ ∗ ∗
HTB 3E − 2 4E − 3 5E − 4 7E − 5
R∗ 8 8 8 8
RTM 4.1 4.1 4.0 4.0
RLR − − − −
RTB 8.4 8.2 8.1 8.1

For Taylor order m = 4:

i 0 1 2 3
w

(

X(i)
)

2 ∗ 2−0 2 ∗ 2−1 2 ∗ 2−2 2 ∗ 2−3

HTM 4E + 2 9E + 1 2E + 1 5E + 0
HLR 1E + 1 2E − 1 ∗ ∗
HTB 1E + 1 2E − 1 5E − 3 1E − 4
R∗ − 32 32 32
RTM − 4.9 4.4 4.2
RLR − 56.3 − −
RTB − 56.3 50.4 44.5

i 4 5 6 7
w

(

X(i)
)

2 ∗ 2−4 2 ∗ 2−5 2 ∗ 2−6 2 ∗ 2−7

HTM 1E + 0 3E − 1 7E − 2 2E − 2
HLR ∗ ∗ ∗ ∗
HTB 3E − 6 8E − 8 2E − 9 7E − 11
R∗ 32 32 32 32
RTM 4.1 4.1 4.0 4.0
RLR − − − −
RTB 39.8 36.5 34.3 30.6

For Taylor order m = 6 :

i 0 1 2 3
w

(

X(i)
)

2 ∗ 2−0 2 ∗ 2−1 2 ∗ 2−2 2 ∗ 2−3

HTM 4E + 2 9E + 1 2E + 1 5E + 0
HLR 2E + 0 9E − 3 ∗ ∗
HTB 2E + 0 9E − 3 6E − 5 4E − 7
R∗ − 128 128 128
RTM − 4.9 4.4 4.2
RLR − 189.0 − −
RTB − 189.0 167.6 151.3
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i 4 5 6 7
w

(

X(i)
)

2 ∗ 2−4 2 ∗ 2−5 2 ∗ 2−6 2 ∗ 2−7

HTM 1E + 0 3E − 1 7E − 2 2E − 2
HLR ∗ ∗ ∗ ∗
HTB 3E − 9 3E − 11 7E − 12 7E − 12
R∗ 128 128 128 128
RTM 4.1 4.1 4.0 4.0
RLR − − − −
RTB 140.5 99.2 3.6 1.0

For Taylor order m = 8:

i 0 1 2 3
w

(

X(i)
)

2 ∗ 2−0 2 ∗ 2−1 2 ∗ 2−2 2 ∗ 2−3

HTM 4E + 2 9E + 1 2E + 1 5E + 0
HLR 5E − 1 6E − 5 ∗ ∗
HTB 5E − 1 6E − 5 8E − 8 1E − 10
R∗ − 512 512 512
RTM − 4.9 4.4 4.2
RLR − 828.6 − −
RTB − 828.6 734.6 623.2

i 4 5 6 7
w

(

X(i)
)

2 ∗ 2−4 2 ∗ 2−5 2 ∗ 2−6 2 ∗ 2−7

HTM 1E + 0 3E − 1 7E − 2 2E − 2
HLR ∗ ∗ ∗ ∗
HTB 8E − 12 7E − 12 7E − 12 7E − 12
R∗ 512 512 512 512
RTM 4.1 4.1 4.0 4.0
RLR − − − −
RTB 17.2 1.1 1.0 0.9

3 Numerical Tests for Global Optimization

We test and compare the performances of Algorithms TBMS, TMS, and MS on
various examples. Here we present one 3-dim example.

Example 2. Bard function [13, problem 8]. The three dimensional function is

f(x) =
15
∑

i=1

fi(x)2, fi(x) = yi −
(

x1 +
ui

vix2 + wix3

)

,

ui = i, vi = 16− i, wi = min(ui, vi)

where,
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i 1 2 3 4 5 6 7 8
yi 0.14 0.18 0.22 0.25 0.29 0.32 0.35 0.39
i 9 10 11 12 13 14 15
yi 0.37 0.58 0.73 0.96 1.34 2.10 4.39

We take the initial domain as ([−0.25, 0.25], [0.01, 2.5], [0.01, 2.5]) .The per-
formances of the various Algorithms are as under.

TBMS
Order, m Accuracy Iterations Time, s Max. LL Final LL

2 10−3 406 16.64 74 45
10−5 520 32.13 74 7

4 10−3 191 35.00 38 7
10−5 202 60.65 38 1

6 10−3 162 67.80 38 2
10−5 165 90.22 38 1

8 10−3 157 79.90 38 2
10−5 159 92.03 38 1

TMS
Order, m Accuracy Iterations Time, s Max. LL Final LL

2 10−3 3145 76.13 822 772
10−5 ∗ > 3600 ∗ ∗

4 10−3 3124 86.13 818 772
10−05 ∗ > 3600 ∗ ∗

6 10−3 3123 122.81 818 772
10−05 ∗ > 3600

8 10−3 3122 181.05 818 772
10−5 ∗ > 3600 ∗ ∗

MS
Accuracy Iterations Time, s Max. LL Final LL

10−03 6122 466.56 1643 1622
10−05 ∗ > 3600 ∗ ∗

The global minima found using each of the algorithms is 8.21487....E − 03.

4 Summary

We proposed a new super-convergent inclusion form for multidimensional func-
tions form and quite easily obtained super-convergence (of order up to 9) for
low to medium dimensional problems. We also tested and found the new form
to be quite effective in all six global optimization problems that were selected
for the tested, in terms of number of iterations, space-complexity and speed.
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