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We have been devoted for years to studying the numerical verifications of
solutions to elliptic partial differential equations. Our approach is based on the
combination of fixed point theorems in functional spaces and the constractive
error estimations of finite element (or spectral) method. In our verification
process, the interval method for finite-dimensional linear equations plays an
essential role.

In this talk, we first briefly describe the basic idea of our verification method
for nonlinear elliptic problems. Next, we apply the method to two important
problems appeared in fluid dynamics, i.e., Rayleigh-Bénard and Kolmogorov
problems. In both cases, the existence of exact solutions is verified and the
usefulness of our approach have been shown.

1 The Basic Idea ([4, 5])

Suppose that the concerned elliptic problem is reformulated as the following
fixed point problem of a nonlinear compact operator F in some appropriate
infinite-dimensional function space X:

u = F (u). (1)

Suppose also that we find a nonempty, bounded, convex, and closed subset
U ⊂ X, which is referred to as a candidate set of solutions, satisfying

F (U) = {F (u)|u ∈ U} ⊂ U. (2)

Then by the Schauder fixed point theorem, an infinite-dimensional version of
Brouwer’s theorem, there exists an element u ∈ F (U) such that u = F (u).

Let Sh be a finite-dimensional subspace of X dependent on h (0 < h < 1).
Let Ph : X −→ Sh be the orthogonal projection operator, where the parameter
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h corresponds to the degree of approximation. For example, it means the mesh
size in the finite element methods or the reciprocal of the term number in the
spectral approximations. We usually choose a candidate set U of the form
U = Uh⊕U⊥, where Uh ⊂ Sh and U⊥ ⊂ S⊥h . Here, S⊥h stands for the orthogonal
complement subspace of Sh in X. Then, the verification condition (2) can be
decomposed into the two parts as follows:







PhF (U) ⊂ Uh

(I − Ph)F (U) ⊂ U⊥.
(3)

Since the first inclusion is in the finite-dimensional space Sh, it may be verified
on computer using interval arithmetic. The second inclusion is in the infinite-
dimensional space S⊥h , and will be verified by constructive error analysis of the
numerical method in use. Combining verifications of both inclusions in (3) we
may conclude the inclusion (2) is verified.

The set Uh consists of linear combinations of base functions in Sh with
interval coefficients, and the set U⊥ is constructed as a ball in S⊥h with radius
α ≥ 0. Namely, we represent Uh and U⊥ by

Uh =
M
∑

j=1

[Aj , Aj ]φj and U⊥ = {φ ∈ S⊥h | ||φ||H1
0
≤ α},

respectively, where {φj}M
j=1 is a basis of Sh. Here,

M
∑

j=1

[Aj , Aj ]φj is interepreted

as the set of functions in which each element is a linear combinaion of {φj}M
j=1

whose coefficient of φj belongs to the corresponding interval [Aj , Aj ] for each
1 ≤ j ≤ M .

Then, it can be easily seen that PhF (U) is directly computed or enclosed of
the form

PhF (U) ⊂
M
∑

j=1

[Bj , Bj ]φj

by solving a linear system of equations with interval right-hand side which is
determined from Uh and U⊥ using interval computations. Thus, the first con-
dition in (3) is validated as the inclusion relations of corresponding coefficient
intervals, that is, [Bj , Bj ] ⊂ [Aj , Aj ]. On the other hand, (I − Ph)F (U) is not
directly computable but can be numerically evaluated by the effective use of
constructive a priori error estimates of the projection Ph. Hence, the second
condition can be verified by a simple comparison of two nonnegative real num-
bers which correspond to the radii of balls. In the actual computation, we use
some iterative methods for both part of PhF (U) and (I − Ph)F (U).

In order to apply the verification method to more general problems, we usu-
ally utilize a version of Newton-like method (see e.g., [5], [6] for details) which
is also considered as an extension of the interval Newton method (e.g., [1]) to
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the infinite-dimensional cases. We also note that, in our verification, we esti-
mate rigorously not only the rounding error of floating point computations, but
also the truncation error due to the approximation of the infinite-dimensional
operator. Therefore, our method can also be applied to the guaranteed a poste-
riori error analysis for the various kinds of approximation methods for elliptic
problems.

2 Heat Convection Problems Governed by the
Navier-Stokes Equation

The two-dimensional (x-z) Oberbeck-Boussinesque approximations for the
Rayleigh-Bénard convection are described as follows [7]:















ut + uux + wuz = px + P∆u,
wt + uwx + wwz = pz − PRθ + P∆w,

ux + wz = 0,
θt + w + uθx + wθz = ∆θ,

(4)

where (u, w), p and θ denote the velocity field, pressure and temperature from a
linear profile while P and R denote Prandtl and Rayleigh numbers, respectively.
We consider the steady-state solution branches of (4). By using the stream
function Ψ for the velocity and setting Θ ≡

√
PRθ, we have the following

system of equations on the domain {−∞ < x < ∞, 0 < z < π}.














P∆2Ψ =
√
PRΘx −Ψz∆Ψx + Ψx∆Ψz

−∆Θ = −
√
PRΨx + ΨzΘx −ΨxΘz

Ψ = 0 , Ψzz = 0, Θ = 0 on z = 0, π

(5)

We suppose the periodic boundary condition in x and the stress free boundary
condition on z = 0 and z = π. We have numerically verified several solution
branches from the trivial solution of (5) by using the spectral approximations
and the constructive error estimates. Several new results which would be diffi-
cult to derive by theoretical approaches are obtained.

3 Kolmogorov’s Problem of Viscous Incom-
pressible Fluid

This is a non-selfadjoint eigenvalue problem of the linearlized stationary Navier-
Stokes equation in two dimension of the following form [3]:

Find a stream function φ, periodic in x and y, and a number σ ∈ R1 such
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that


















1
R

∆2φ− sin y(∆ + I)
∂φ
∂x

= σ∆φ, (x, y) ∈ Tα

∫

Tα

φ2dxdy = 1,

(6)

where R is the Reynolds number, Tα ≡ [−π/α, π/α]× [−π, π] (α: aspect ratio).
The final purpose of the computer assisted proof is the validation of a sta-

bility condition of the flow. This can be carried out by showing that a certain
inequality holds for the numerically verified eigenpair (σ, φ). Using the Fourier-
Galerkin method with explicit error estimates as in the previous problem, we
have actually succeeded to verify stability results related to the aspect ratio
α. Proving this result would also be very difficult by any kind of theoretical
analysis up to now.

In the presentation, we will show some numerical examples of the above
topics. In both examples we use the spectral method. Note that it is also pos-
sible to use the finite element approximation with constructive error estimates
in stead of the spectral method.
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