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One of the important fields in validated methods is solving initial value prob-
lems in ordinary differential equations (ODEs). The typical problem of overes-
timation in interval arithmetic is mostly caused by the lack of information of
functional dependency. The dependency problem that is related to cancellation
is one issue to be overcome. Besides, in the case of solving a system of multidi-
mensional ODEs, there arises the so-called wrapping effect, which is caused by
the inflation of the size of the geometric set enclosing the validated solution set
at each time step. The wrapping effect is a particular form of the dependency
problem based on the connection of current dynamical values on initial condi-
tions, which often is more dramatic than the other sources of overestimation.
The history of development of new schemes for verified integration of ODEs
illustrates the struggle with those two challenging questions [13, 6, 14, 7, 15].

The Taylor model method [10, 9] combines interval method for validation
and high order automatic differentiation for local functional behavior. The
method models a function f in the domain D by a high order multivariate
Taylor polynomial P and the remainder error interval I :
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where Ty is the reference point of the Taylor expansion. The nth order Tay-
lor polynomial P is expressed with floating point number coefficients, and it
captures the bulk of functional dependency, hence the major source of inter-
val overestimation is removed. The Taylor remainder and any numerical errors
arisen in the domain D are kept in an interval, namely the remainder error in-
terval I, and the size of I is proportional to \5 —Zo|™*1, which can be very small
in practice by choosing the size of D sufficiently small. The standard binary



operations and intrinsic functions on Taylor models were implemented in the
code COSY Infinity [9, 2]. It is of particular significance that an antiderivation
operation 0~ ! is treated as an intrinsic function in the Taylor model structure
[9], and this formally removes the difference between the solution of ODEs and
merely algebraic equations based on fixed point methods.
We applied the Taylor models to verified integrations of ODEs,
W = (T (6 Tini) 1) with  Z(tini; Tini) = Tini,

and the basic algorithm is discussed in [3, 9]. The Taylor approach is applied
to expand not only in the independent variable ¢, but also in the initial value
Zini, which is possible with our Taylor model implementation with high order
multivariate Taylor polynomials, and several advantages have been observed.

e The direct availability of the antiderivation on Taylor models allows us
to treat the Picard operator like any other function, avoiding the need to
explicitly bound error terms of integration formulas.

e The inclusion requirement asserting existence of a solution reduces to a
mere inclusion of the remainder intervals.

e The explicit dependency on initial variables can be carried through the
whole integration process. This controls the dependency problem opti-
mally, and, most importantly, there is no need to re-package the momen-
tary solution set at each time step, and hence there is no wrapping effect.
Thus, it allows for a much larger domain of initial condition and longer
integration times.

We have shown how the Taylor models control the dependency problems
efficiently for non “single use expression” (SUI) problems [11, 12], and the same
efficiency applies to complicated ODEs like the near earth asteroid problem
[4, 5]. When the ODEs have SUI expressions, i.e. the right hand side of the
equations do not have a source of overestimation of arithmetic nature, the over-
estimation mostly comes from the pure wrapping effect. Such ODEs are suitable
to study the difficulties unique to ODE initial value problems. In this paper, we
study SUI ODEs, and by doing that, we want to show the essence of why and
how the Taylor model based verified integrator is successful for the near earth
asteroid problem.

We use the Volterra equations

dLL'Q
dt
to illustrate how the method works. The Volterra equations have been histor-

ically used as a test case of validated initial value problems [1, 14]. For the
purpose of illustration, we take a large interval box for the initial condition

d
ﬂ = 2%1(1 — .’Ez),

dt = —1'2(1 —.’El)

Tiimi € 1+ [—0.05, 005], Toini € 3+ [—0.05, 005]



We used our Taylor model based integrator VI coded in COSY Infinity [2]
and AWA by Lohner [8, 7] to study the performance. AWA represents the
conventional methods, since it is one of the most successful codes based on
conventional methods and it is widely spread. Despite of the large size of the
initial condition, the total error is easily kept around 107'° for the whole one
cycle with COSY-VI, while AWA cannot complete the cycle. Both codes take
about the same CPU time. The extensive study on the problem addresses why
the conventional approach [13, 6, 14, 7, 15] could not handle the problem.

The Lorenz system is another good example to illustrate how the Taylor
model based verified integrator works.
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Similar to the Volterra equations, the right hand side is SUIL. Since the system
exhibits a chaotic motion, it is particularly challenging to validating methods.
Even for a large initial condition box

Tiin; € 15+ [—0.017 0.01], Toin; € 15+ [—0.01, 0.01], T3ini € 36 + [—0.017 0.01],

the Taylor model approach can integrate beyond the time 5 easily, while AWA
breaks down around the time 1.5, indicating that the Taylor model method can
be used for validation of various ODE initial value problems for a larger domain
and longer times.
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