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The use of interval arithmetic for global optimization over an n-dimensional
interval X was first described by Ramon Moore in a technical report from Stan-
ford University in 1962. The knowledge of the technique became widespread in
1966 through the classical book of Moore, “Interval Analysis” [1].

Section 6.4, “Determination and use of extreme values of rational functions”,
has all the essentials needed for global optimization: reduction by monotonicity
if possible, stationary point reduction by interval Newton if possible, and the
use of a splitting strategy if none of the above is applicable.

The splitting strategy is described in Chapter 4 in [1]. It is expressed as
a general formula for the computation of an arbitrarily good approximation of
the united extension,

f̄(X1, X2, . . . , Xn) = {f(x1, x2, . . . , xn)|xi ∈ Xi, i = 1, 2, . . . , n}

Define

X(N)
i,j = ai + [j − 1, j](bi − ai)/N, j = 1, 2, . . . , N where Xi = [ai, bi], ai ≤ bi

Using the natural interval extension of f denoted F (X1, X2, . . . , Xn), Theorem
4.4 in [1] states,

F (N)(X1, X2, . . . , Xn) =
N
⋃

j1=1

N
⋃

j2=1

. . .
N
⋃

jn=1

F (X(N)
1,j1 , X(N)

2,j2 , . . . , X(N)
n,jn

) = f̄(X1, X2, . . . , Xn) + EN (1)

where the width of EN fulfils w(EN ) ≤ (K/N)maxi(w(Xi)) for some K > 0
and 0 ∈ EN .

The computational cost of (1) is Nn interval function evaluations. If the
interval EN is too wide, it may be reduced by a factor of 2 by computing (1) using
2N for N . The cost is now (2N)n = 2nNn. A straightforward computation of
(1) is therefore mainly of theoretical interest.
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In his 1974 paper “Computation of rational interval functions” [2], Skelboe
suggested an efficient algorithm for the evaluation of (1). Consider a sequence of
computations, F (1)(X1, X2, . . . , Xn), F (2)(X1, X2, . . . , Xn), F (4)(X1, X2, . . . , Xn),
. . . In the computing of F (2N) from F (N), the aim is only to compute those val-
ues F (X(2N)

1,j1 , X(2N)
2,j2 , . . . , X(2N)

n,jn
) that affect the interval end values of F (2N). It

was also noted that w(EN ) ≤ (K/N2)maxi(w(Xi)) when (1) is based on the
centered form in stead of the natural interval extension.

The algorithm is closely related to a branch-and-bound algorithm and it is
described in [2] both informally and as an Algol program. Today it is often
referred to as the Moore-Skelboe algorithm.

The straightforward computation of (1) for F (1), F (2), F (4), . . . can be struc-
tured as a tree, and for most functions it is obvious that the branch-and-bound
algorithm only uses the same interval computations for the minimum and max-
imum interval values during the first few levels of computation of the tree.
Therefore the algorithm in [2] first searched for the the minimum and then for
the maximum. Some interval function computations are performed twice result-
ing in a minor waste. Originally the main purpose was to save space, but the
strategy also leads to a simpler algorithm.

Moore found interest in this efficient algorithm, and we had an exciting
visit of him in Copenhagen in 1975 where we discussed these matters. In his
1976 paper “On computing the range of a rational function of n variables over
a bounded region” [3], Moore combined Skelboe’s strategy with monotonicity
tests, the centered form, and Krawzyk’s version of Newton’s method into a
method for global optimization.

A key observation in [3] is that during the computation of the minimum (or
maximum), just one interval function value F (X(N)

1,j1 , X(N)
2,j2 , . . . , X(N)

n,jn
) defines

the minimum (or maximum). Therefore it is of interest to compute this interval
value as accurately as possible, and this can be done using the appropriate
method or combination of methods among the above-mentioned.

The total computational cost in interval function evaluations for (1) using
the centered form with a resulting accuracy of w(EN ) ≈ ε is given in [3] as:
(K1/ε)n/2. The branch-and-bound algorithm in [2] requires K22n log2(K1/ε)
interval function evaluations assuming only a finite number of isolated extrema.

The phrase “Global Optimization” was not used in the early papers. The
first time we have seen it is in Eldon Hansen’s paper “Global optimization using
interval analysis: The one-dimensional case” [4] and in the paper “True worst-
case analysis of linear electrical circuits by interval arithmetic” [5] by Skelboe,
both published in 1979.

In [5] the algorithm from [2] – augmented with check for monotonicity – is
used for the solution of a more realistic problem, namely worst-case analysis
of the frequency response of two simple filters with 3 and 4 interval variables,
respectively. The interval extension is computed using the mean-value form.
This gives the same convergence properties as the centered form, but the mean-
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value form has two advantages over the centered form: it is straightforward to
derive and with the partial derivatives readily available, monotone intervals are
identified for free.

In the talk we describe these early attempts, seen from our side. Highlights
were visits of Ramon Moore as well as Eldon Hansen, and some years later –
in 1980 – a full year’s visit of Louis Rall. They all gave us new insight and
inspiration through our many discussions and their excellent lectures.
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