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Abstract

We extend the main formulas of interval arithmetic for different arith-
metic operations x1 ⊕ x2 to the case when, for each input xi, in addition
to the interval xi = [xi, xi] of possible values, we also know its mean Ei

(or an interval Ei of possible values of the mean), and we want to find the
corresponding bounds for x1 ⊕ x2 and its mean.

Error estimation for indirect measurements: an important practical
problem. A practically important class of statistical problems is related to data
processing (indirect measurements). Some physical quantities y – such as the
distance to a star or the amount of oil in a given well – are impossible or difficult
to measure directly. To estimate these quantities, we use indirect measurements,
i.e., we measure some easier-to-measure quantities x1, . . . , xn which are related
to y by a known relation y = f(x1, . . . , xn), and then use the measurement
results x̃i (1 ≤ i ≤ n) to compute an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n).
For example, to find the resistance R, we measure current I and voltage V , and
then use the known relation R = V/I to estimate resistance as ˜R = ˜V /˜I.

Measurement are never 100% accurate, so in reality, the actual value xi of
i-th measured quantity can differ from the measurement result x̃i. In proba-
bilistic terms, xi is a random variable; its probability distribution describes the
probabilities of different possible value of measurement error ∆xi

def= x̃i− xi. It
is desirable to describe the error ỹ − y of the result of data processing.

Often, we know (or assume) that the measurement error ∆xi of each direct
measurement is normally distributed with a known standard deviation σi, and
that measurement errors corresponding to different measurements are indepen-
dent. These assumptions – justified by the central limit theorem, according to
which sums of independent identically distributed random variables with finite
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moments tend quickly toward the Gaussian distribution – underly the tradi-
tional engineering approach to estimating measurement errors.

In some situations, the error distributions are not Gaussian, but we know
their exact shape (e.g., lognormal). In many practical measurement situations,
however, we only have partial information about the probability distributions.

The need for robust statistics. Traditional statistical techniques deal with
the situations when we know the exact shape of the probability distributions.
To deal with practical situations in which we only have a partial information
about the distributions, special techniques have to be invented. Such techniques
are called methods of robust statistics. They are called robust because they are
usually designed to provide guaranteed estimates, i.e., estimates which are valid
for all possible distributions from a given class.

Interval computations as a particular case of robust statistics. An
important case of partial information about a random variable x is when we
know (with probability 1) that x is within a given interval x = [x, x], but
we have no information about the probability distribution within this interval.
In other words, x may be uniformly distributed on this interval, it may be
deterministic (i.e., distributed in a single value with probability 1), distributed
according to a truncated Gaussian, bimodal distribution – we do not know.

So, we arrive at the following problem: for each of n random variables
x1, . . . , xn, we know that it is located (with probability 1) within a given interval
xi = [xi, xi]. We do not know the distributions within the intervals, and we do
not know whether the random variables xi are independent or not. What can
we then conclude about the probability distribution of y = f(x1, . . . , xn)?

Since the only information we have about each variable xi consists of its
lower bound xi and upper bound xi, it is natural to ask for similar bounds
y = [y, y] for y. As a result, we arrive at the following problem:

GIVEN: an algorithm computing a function f(x1, . . . , xn) from Rn to R and
n intervals x1, . . . ,xn,

TAKE: all possible joint probability distributions on Rn for which, for each
i, xi ∈ xi with probability 1;

FIND: the set Y of all possible values of a random variable y = f(x1, . . . , xn)
for all such distributions.

One can easily prove that Y is equal to the range f(x1, . . . ,xn) of the given
function f on given intervals, i.e., to {f(x1, . . . , xn) |x1 ∈ x1, . . . ,xn}.

This is exactly the problem solved by interval computations. The main inter-
val computations approach to solving this problem is to take into consideration
that inside the computer, every algorithm consists of elementary operations
(arithmetic operations, min, max, etc.). For each elementary operation f(x, y),
if we know the intervals x and y for x and y, we can compute the exact range
f(x,y); the corresponding formulas form the so-called interval arithmetic. We
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can therefore repeat the computations forming the program f step-by-step, re-
placing each operation with real numbers by the corresponding operation of
interval arithmetic. It is known that, as a result, we get an enclosure for the
desired range.

Comment. In the above text, we considered the case when we have no infor-
mation about the correlation between the random variables. We have proven
that in the above problem, if we assume independence, we still get the same
range.

For functions of two variables, we can consider two additional cases: when
x1 and x2 are highly positively correlated (i.e., crudely speaking, that x1 is
(non-strictly) increasing in x2, and when xi is highly negatively correlated (i.e.,
when x1 is decreasing in x2). In both cases, we get the same range Y as in the
above case of no information about the correlation.

New problem. In some practical situations, in addition to the lower and upper
bounds on each random variable xi, we know the bounds Ei = [Ei, Ei] on its
mean Ei. In such situations, we arrive at the following problem:

GIVEN: an algorithm computing a function f(x1, . . . , xn) from Rn to R; n
intervals x1, . . . ,xn, and n intervals E1, . . . ,En,

TAKE: all possible joint probability distributions on Rn for which, for each
i, xi ∈ xi with probability 1 and the mean Ei belongs to Ei;

FIND: the set Y of all possible values of a random variable y = f(x1, . . . , xn)
and the set E of all possible values of E[y] for all such distributions.

A similar problem can be formulated for the case when xi are known to be
independent, and for the cases when n = 2 and the values xi are highly positively
or highly negatively correlated.

If we can find the range for degenerate intervals Ei = [Ei, Ei], then we can
use interval computation to extend these formulas to arbitrary intervals Ei.

Similarly to interval computations, our main idea is to find the corresponding
formulas for the cases when n = 2 and f = ⊕ is one of the basic arithmetic op-
erations (+, −, ·, min, max). For example, if we know two “triples” (xi, Ei, xi),
(i = 1, 2), what are the possible triples (y,E, y) for y = x1 · x2?
Main results. For all basic operations, the interval part (y, y) of the result is
the same as for interval arithmetic.

We provide explicit formulas for the interval E of possible values of E = E[y].
For example, for multiplication, when we know nothing about the correlation,

E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2 + max(p2 − p1, 0) · x1 · x2+

min(1− p1, 1− p2) · x1 · x2,

where pi
def= (Ei − xi)/(xi − xi).
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