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Abstract

We provide a feasible (quadratic time) algorithm for computing the
lower bound V on the sample variance of interval data. The problem of
computing the upper bound V is, in general, NP-hard. We provide a
feasible algorithm that computes V for many reasonable situations.

Formulation of the problem. When we have n results x4, ..., z, of repeated
measurement of the same quantity, traditional statistical approach usually starts
with computing their sample average

E:x1+...+xn

and their sample variance

(r17—E)?+...+ (v, — E)?
n—1

V:

(or, equivalently, the sample standard deviation o = V/V); see, e.g., [1].

Sample variance is an unbiased estimator of the variance of the distribution
from which observations are assumed to be randomly sampled. For Gaussian
distribution, this estimator is a maximum likelihood estimator of the distribu-
tion variance.

In some practical situations, we only have intervals x; = [z;, T;] of possible
values of x;. This happens, for example, if instead of observing the actual value
x; of the random variable, we observe the value ; measured by an instrument
with a known upper bound A; on the measurement error; then, the actual
(unknown) value is within the interval x; = [Z; — A;, Z; + A].



As a result, the sets of possible values of E and V are also intervals. The
interval E for the sample average can be obtained by using straightforward in-
terval computations, i.e., by replacing each elementary operation with numbers
by the corresponding operation of interval arithmetic:

X1+ ... +X,
—

E =
What is the interval [V, V] of possible values for sample variance V?

When the intervals x; intersect, then it is possible that all the actual (un-
known) values x; € x; are the same and hence, that the sample variance is
0. In other words, if the intervals have a non-empty intersection, then V = 0.
Conversely, if the intersection of x; is empty, then V' cannot be 0, hence V > 0.
The question is (see, e.g., [2]): What is the total set of possible values of V'
when the above intersection is empty?

For this problem, straightforward interval computations sometimes overes-
timate: E.g., for x; = x3 = [0, 1], the actual V = (x; — 72)?/2 and hence, the
actual range V = [0,0.5]. On the other hand, E = [0, 1], hence

(x1 —E)? + (x2 — E)* =[0,2] 2 [0,0.5].

Three intervals x; equal to [0, 1] show that a centered form also does not always
lead to the exact range.

The problem reformulated in statistical terms. The traditional sample
variance is an unbiased estimator for the following problem: observation points
x; satisfy the equation x; = u — ¢;, where v is an unknown fixed constant and
the ¢; are independently and identically distributed random variables with zero
expectation and unknown variance o2.

In our paper, we want to handle a situation in which each observation point
Z; satisfies the condition Z; — u —¢; € A; - [—1,1], where the values A; are
assumed to be known. From this model, we can conclude that each u + ¢; is
contained in the corresponding interval Z; + A, - [—1,1] = x;. As a solution to
this problem, we take the interval consisting of all the results of applying the
estimator V to different values z1 € x1,...,2, € X,.

Our first result: computing V. First, we design a feasible algorithm for
computing the exact lower bound V of the sample variance. Specifically, our
algorithm is quadratic-time, i.e., it requires O(n?) computational steps for n
interval data points x; = [z;,Z;]. We have implemented this algorithm in C++,
it works really fast. The algorithm is as follows (the proof that this algorithm
is correct will be provided in the full paper):

e First, we sort all 2n values z;, T; into a sequence z(1) < x(2) < ... < ().
This sorting requires O(n - log(n)) steps.

e Second, we compute E and E and select all “small intervals” [;v(k), T k+1)]

that intersect with [E, E].



e For each of selected small intervals x4, Z(x+1)], we compute the ratio
Tk = Sk/Nk, where

def _
Sk = E x; + E zj,
LT 2T (k1) J%5<T (k)

and Ny is the total number of such i’s and j’s. If rp & [2(1), T(k41)], We
go to the next small interval, else we compute

def 1 —
e Y @t Y @

BT, >T (1) 3T < ()

(if N =0, we take V o ).

e Finally, we return the smallest of the values V/ as V.

Second result: computingf is NP-hard. Our second result is that the
general problem of computing V' from given intervals x; is NP-hard.

Third result: a feasible algorithm that computes V in many practical
situations. NP-hard means, crudely speaking, that there are no general ways
for solving all particular cases of this problem (i.e., computing V') in reasonable
time.

However, we show that there are algorithms for computing V for many
reasonable situations. For example, we propose an efficient algorithm A that
computes V for the case when the “narrowed” intervals [T; — A;/n, T; + A; /n]
— where Z; = (z; + T;)/2 is the interval’s midpoint and A; = (z; — T;)/2 is
its half-width — do not intersect with each other. We also propose, for each
positive integer k, an efficient algorithm A, that works whenever no more than
k “narrowed” intervals can have a common point.
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