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If we are interested in the static and dynamic behavior of an industrial
mechanical structure, one has to consider Finite Element Modeling, which leads
to matrices (such as stiffness, mass, or damping matrix). Thus, linear systems of
equations are to be solved. If some of the mechanical parameters are uncertain
at design stage, or are variable such as the weight of a tank, they can be modeled
using the interval theory. The uncertain parameters can be geometrical ones
(length, thickness, ... ), or physical ones (Young’s Modulus, ... ). Then the
matrices given by the Finite Element theory are interval matrices, and the
problem is written as:

[Al{z} = {b} (1)

with [A] € [A] and {b} € {b}. Although several problems can be distinguished,
as done by Chen and Ward in [1] and by Shary in [8], we will focus exclusively
in this paper on the outer problem which is defined as Y33([A], {b}),where [A]
is an interval matrix and {b} an interval vector:

Ts3([A], {b}) = {z € R"[(3[4] € [A]), B{d} € {b})/[Al{z} = {b}}  (2)

In general this set is not an interval vector. It is a non convex polyhedra. The
Oettli and Prager theorem [5] give the exact solution set.

Nevertheless, this method is quite difficult to use with matrices correspond-
ing to real physical cases in a n-dimensional problem. Most of the time, we will
consider the smallest interval vector containing X33([A], {b}), which is defined
as OX33([A], {b}). In this case, this ensures that the true solution is included
in the numerical solution found OX35([A], {b}).

The existing algorithms used to solve Y33([A], {b}) have been formulated
for reliable computing on a numerical point of view. In an interval matrix for



instance, each term can vary independently of each other in its interval, which
is generally sharp.

If the interval formulation has to be adapted to mechanics, the dependence
between the parameters must be taken into account. Many of the terms of the
matrices are depending on the same parameters. For example if the Young’s
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modulus varies in E, the stiffness matrix can formally be written o [

Otkll Otklz
akyr ok
a1,Qa, 03,04 varying in a independently.

Moreover, the stiffness matrices are symmetric positive and definite. If all
the matrices [K] € [K] are considered, we must notice that many of them do
not physically correspond to stiffness matrices. We shall then consider several
problems. For a system with few independent degrees of freedom, general algo-
rithms can be used. Nevertheless, any information on the special form of the
matrices (symmetric positive and definite for a stiffness matrix, for instance)
is lost, and the solution set can be widely overestimated. The problem is then
formulated as:

which is not the same as [ ] , that is treated as [

[A] = [Ao] + ) _enldn] {0} = {00} +_Bp{by} 3)

p=1

N and P are the number of parameters to be taken into account when building
the matrix [A] and the vector {b}. €, and B, are independent centered intervals,
generally [—1,1]. [Ao] and {bg} correspond to the matrices and vector built from
the mean values of the parameters.

Nevertheless, a special algorithm is required, because the solution set is not
given by a combination of the bounds of the parameters. The following section
is devoted to the presentation of a novel algorithm which enables to obtain a
robust and including solution.

Our aim is obtaining an including solution by means of a new algorithm.

The algorithm that has been choosen is the Rump’s inclusion ([4]), which
relies on the fixed point theorem. In the general case, this algorithm converges
rapidly, with a good accuracy (see [6]), and the convergence conditions have
been studied by Rohn and Rex in [7].

In order to apply this algorithm to the mechanical formulation some adap-
tations are required, due to the specific differences of the mechanical problems
highlighted previously.

Let us consider a system in which only one parameter is an interval. The
general equation of this system is:

([Ao] + a[Ai]) {z} = {b} aca (4)
And the particular form of the matrix has to be taken into account (see [2]).

[A] = [Ao] + afAi] ()



A method to ensure the convergence of this algorithm is also proposed (the
algorithm is also based on the fixed point theorem, and the iteration matrix
must be contracting). The strategy proposed is to split the interval into a
partition of it, and then work on narrower intervals, on which the convergence
condition will be verified.
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Figure 1: Solution sets for the clamped free beam. EI is uncertain (+2%). Nu-

merical global problem, and reduced mechanical problem, and their respective
hulls.

We can first compare the results of the general algorithm and the adapted
one, to show the importance of the factorization.

The results found with the modified Rump’s algorithm are often much
sharper than the ones found with the classical formulation, which will be shown
on a simple structure: a clamped free beam.

To test our algorithm, we have computed the result of the modified Rump’s
algorithm. It is illustrated on Figure 1. As we can see, it is overestimating the
exact solution, but it gives a good idea of the size of the solution.

As it had been noticed in [1], a large overestimation is obtained when includ-
ing the parameters in the elements of the matrices. For finite element matrices,
this overestimation can become critical, and often leads to an insolvable prob-
lem. As we have shown above, even on 2 x 2 matrices, the overestimation can
reach 10 times or more. Such an adaptation of this algorithm enables its use
for industrial problems involving huge size matrices.

If static problems can be solved, which means finding solutions for linear
interval systems, the algorithm can also be applied to the calculation of transfer
functions.

We consider some kind of realistic structure. It is a two dimensional frame



structure (Figure 2). It can model for instance the structure of a building, as
in [3].

It is a 18 elements structure, with 12 degrees of freedom. Only a concentrated
load on the beams is considered, applied on the DOFF 3, the torque F =
103 Nm. The parameters of the model are the lengths of the beams L1 = L2 =
1 m, the inertia I = 7 1078 /4 m* and their area S = 7 10~* m?2. We assume
that the bending rigidity F is uncertain (E = 210 + 10% G Pa).

We will study the two-dimensional frame structure from a dynamical point
of view. In the Finite Element Model, we use a Euler Bernoulli Beam model,
leading to a stiffness and a mass matrix. We suppose that there is hysteretic
damping (7 = 2%) in the model. Because all of the beams are identical, some of
the modes are relatively close to each other. This means that when the bending
rigidity is varying, the eigenmodes can overlap each others. This behavior is
illustrated in the Figure 3, where a harmonic torque is applied on node 3 of
the truss. The collocated transfer function H(3,3) is computed thanks to the
proposed algorithm, and compared to deterministic transfer functions calculated
for various values of the Young’s modulus.
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Figure 2: Two dimensional frame structure with 12 DOFF. A torque F'is applied
on node 3.

As we can see in Figure 3, the proposed algorithm can take overlapping
eigenfrequencies into account. It leads to an envelope of the modulus of the
transfer function. Some of the deterministic transfer function have been plotted,
to show that the envelope found does not overestimate the real solution too
much.

We will also consider a three blades wheel that is modeled with a 7 DOFF
system (see Figure 4). As the 3 blades are identical in the deterministic model,
the eigenfrequencies are found as multiple eigenvalues of a matrix system. If
one of the blades is mistuned, then the eigenvalues are no more multiple ones,
and new resonances can appear.

On Figure 5 the transfer function H(1,3) is shown. Blue line represent the
deterministic case for which all of the three blades are identical, and magenta
lines the envelope of that transfer function, when the blade one has an uncertain
Young’s modulus (E = Ey + 10%). The envelope shows four resonance zones
This is due to the mistuning phenomenon.
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Figure 3: Modulus of the collocated transfer function H (3, 3) for the frame. The
bending rigidity is uncertain (E = 210 + 10% GPa). The min and max values
calculated with the modified algorithm are represented, wrapping the transfer
function for several values of E.
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Figure 4: 3 blades wheel, and the 7 DOFF.

The modified algorithm gives accurate results, once again with the advan-
tage of getting a robust envelope. This method can improve considerably the
accuracy of prediction of the dynamic behavior of mechanical systems.
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Figure 5: Modulus of the transfer function H(1,3). The Young’s modulus of
the first blade is uncertain (E = Eg + 10%).
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