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1 Summary

When random variables possessing arbitrary distribution functions must be com-
bined via +, −, *, /, min(), max(), etc., Monte Carlo simulation is commonly
employed. However, Monte Carlo simulation assumes either independence or
(less commonly) some other specific dependency relationship, among other lim-
itations (Ferson 1996). Discretization of the distribution function followed by a
numerical method is an alternative. Numerical methods can relax the require-
ment of Monte Carlo that the distributions have a known dependency relation-
ship, in which case the results are typically envelope curves within which the
cumulative distribution of the result must lie regardless of the dependency rela-
tionship between the operands. The operands themselves can also be expressed
with envelopes in order to bound the effects of discretization of the input dis-
tributions (Berleant 1993; Williamson and Downs 1990). This paper describes
Statool, a software tool that implements Distribution Envelope Determination
(DEnv), a numerical algorithm for performing arithmetic on distribution func-
tion operands (Berleant and Goodman-Strauss 1998). Our previously reported
tool was limited to independent random variables (Berleant and Cheng 1998),
a significant limitation. Improvements to Statool are currently being driven
by the needs of applications in accordance with our research strategy, which is
to identify such applications and then to modify Statool as needed to support
them. However, identifying good applications is itself a research topic. We
are currently exploring applications to the electric power industry (Sheblé and
Berleant 2002; Berleant et al. 2002), and have obtained recent results on time
to completion of multiple tasks and time to failure of two components [7,8].
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2 Introduction

Random variables may be combined using standard operations such as +,-,*,
/, min(), and max(). When the random variable operands are assumed inde-
pendent, results may be calculated using a discretized convolution approach
(Ingram et al. 1968; Colombo and Jaarsma 1980; Kaplan 1981). Discretization
error may be bounded by an interval based extension (Berleant 1993). We have
described a tool implementing this (Berleant and Cheng 1998), however it is
desirable though non-trivial to extend that work by eliminating the assumption
that the random variables are independent, thereby handling the case where
their dependency relationship is unknown and unspecified. In this case of un-
specified dependency, obtaining bounded results requires that the entire range
of possible dependency relationships be accounted for, including independence
as one of the infinite number of possible dependencies. While the traditional
approach of Monte Carlo simulation does not bound the range of results that
are possible when dependency is unspecified (Ferson 1996), the desired bounds
can be obtained with other techniques. A copula-based approach (Frank et
al. 1987) which was significantly extended by Williamson and Downs (1990)
and termed Probabilistic Arithmetic, has been implemented in a commercially
available software system, RiskCalc (Ferson et al. 1998). DEnv (Distribu-
tion Envelope Determination) is described by Berleant and Goodman-Strauss
(1998). A comparison of DEnv and Probabilistic Arithmetic reveals underly-
ing similarities (Regan et al., submitted), as well as differences (Berleant and
Goodman-Strauss 1998) that motivate its software implementation as well as
continued development in other ways.

This paper reports a software implementation of DEnv (see Figures 1 and 2).
This tool represents an advance over our previously developed tool, as described
next.

• Calculation of z = f(x, y) when x and y are not assumed independent
(Berleant and Goodman-Strauss 1998) is now supported. The previously
described tool assumes random variables are independent. The current
tool bounds the range of results that are plausible when independence is
not assumed. Figure 1 shows an example.

• Calculation of max(x, y) and min(x, y) for random variables x and y is
now supported. This can be useful in problems like determining the time
to complete two concurrent tasks, because the completion time of both is
the same as the completion time of the task that finishes second, i.e., the
maximum of the two individual completion times.

• Calculation of z = f(x, y) in some instances where the interval expression
for f(x, y) leads to excess width is now supported. Although in DEnv
x and y are probability distributions, DEnv reduces operations on distri-
butions to operations on intervals, and the net effect of excess width in
the interval calculated for f(x, y), x and y intervals, is excessively wide
envelopes derived for f(x, y), where x and y are distributions. The tool
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handles such expressions under the severe restriction that the function is
monotonic over the box defined by the range over which distributions x
and y are non-zero. While it would be desirable to incorporate more ad-
vanced techniques for reducing excess width for non-monotonic functions,
even the current capability extends the state of the art for performing
operations on distributions of unknown dependency, allowing evaluation
of expressions such as that which produced Figure 2 without excess width
in the envelopes because excess width is removed from the underlying
interval evaluations of the expression.

• Calculation of cascaded operations is now supported. These are cases in
which the result of one operation is used as an input to the next operation.
The distributions used as inputs to an operation are discretized density
functions, while the output of an operation consists of bounding envelopes
which are cumulative distributions. Thus to use the output of an operation
as the input to another operations requires converting a pair of bounding
CDF envelopes into a discretized density function. We have done this by
generalizing the histogram representation of an input to allow overlapping
bars. This in turn enables conversion of the envelopes to the generalized
histogram form, as will be described in the full paper. The generalized
histogram form can then be used as an input to an operation the same
way an ordinary histogram discretization of a density function can.

3 Algorithmic Issues

Calculation of results in the case of unspecified dependency between operands
is based on a joint distribution tableau in which discretizations of each operand
into intervals and associated probability masses form the marginals, and the
interior cells are subject to constraints imposed by the marginals. Linear pro-
gramming is called subject to these constraints, as a subroutine to find each
desired point on the left and right envelopes. Only a limited number of points
need to be found this way, because the discrete nature of the problem allows
connecting the points safely to produce staircase-like envelopes in which each
point is a bend in the staircase. While many details were covered in Berleant
and Goodman-Strauss (1998), the linear programming aspects were not. There-
fore we will review the DEnv algorithm in the full paper, emphasizing the linear
programming aspects. Details on the algorithm as it applies to particular prob-
lems, including its linear programming aspects, may also be found in other works
under review and available from the authors.
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Figure 1: Two normal distributions each with µ = 1 and σ = 1 were tail-
trimmed to within [−3, 5] (because the tool is currently limited to numerically
valued bounds). These distributions were used as input variables. Given no as-
sumptions about their dependency relationship, staircase-shaped left and right
envelopes were computed which enclose the space within which the distribu-
tion of (a sufficiently large number of) products of samples of the inputs must
travel regardless of their dependency relationship. There are also three smoother
curves showing the product distributions for three particular dependency rela-
tionships that allow the curves to be computed relatively easily. One of these
is for independent inputs, and was computed using the Monte Carlo-generated
products of 100,000 samples of the inputs. The other two are analytically de-
rived distributions of the product assuming Pearson correlations of 1 and −1.

Figure 1:

Figure 2 follows on next page: X and Y are inputs. Z constitutes envelopes
around the result when the dependency relationship between X and Y is un-
specified, and Z = (38∗Y −8∗X)/(0.08∗Y +0.048∗X). The cumulative forms
of histogram discretizations of PDFs (X and Y ) are pairs of CDF bounds that
each look like two staircases in which the top bends of the lower curve touch
the bottom bends of the upper curve. The cumulative form of the result does
not in general obey that constraint, and hence cannot in general be displayed
correctly as a histogram. It can be displayed correctly in cumulative form, as
shown in the lower subwindow.
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Figure 2:
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