Computer Algebra Style
(Multiprecision) Interval and Complex Arithmetic

Franky Backeljauw!, Annie Cuyt!,
Brigitte Verdonk!, and Johan Vervloet!?

'Dept of Mathematics and Computer Science
University of Antwerp (UIA)
Universiteitsplein 1, B2610 Antwerp, Belgium
{backelj,cuyt,verdonk,jvvloet }Quia.ua.ac.be
2Research Assistant FWO-Vlaanderen

1 DMotivation

Using the approach in [2, 4, 5], interval bounds for values in R or RU[—o00, +00],
which is what one is interested in in most industrial applications, can be com-
puted. These approaches, however, do not in all cases reflect all that is known
about the interval valued expressions, as is required during prototyping or in a
computer algebra environment.

A similar remark holds for the complex arithmetic guidelines proposed in
Annex G of the latest C programming language standard [1]. The approach is
sufficiently correct when some additional background information is available
about the evaluated expression. The lack of such information, however, may
lead to the ambiguous interpretation of results.

In the authors’ implementation, a more theoretical point of view on interval
and complex arithmetic is proposed to tackle the above issue. It is natural,
when taking a computer algebra style viewpoint, to deal not only with double
precision, but also consider true higher precisions.

2 Interval Arithmetic:
Theory versus Implementation

In both [2] and [4], the authors review the implementation of the basic operations
in interval arithmetic, and in particular discuss the different approaches given
in the literature for interval division when the divisor interval contains zero.
Division by an interval containing zero is a special case of an interval function
for which the interval arguments contain points outside the domain of the un-



derlying point function. In [5] a general approach is presented to deal with such
situations and to remove any restrictions on the domain of interval functions.
This approach fully exploits the availability of the underlying IEEE hardware
and has been efficiently implemented in [3].

While interval division is defined differently in [2] and [5] when the divisor
contains zero, part of the difference can be traced back to the following. Un-
derlying any implementation of interval arithmetic are two sets, a number set S
and a set I(S) of intervals, which is a subset of 25. In [2]

S =R
1(S) ={[a,b] | a,b € S,a < b} U{] — 00,8] | b € S}
U{[a,+oo[ | a € S}U{] — o0, +00[} U {0}

while in [5]

S=RU {00,400}
IS = {[a,b] | a,b € S,a < b}

In both cases, an interval can be easily represented by a pair of (properly
rounded) IEEE floating-point numbers. This ease of representation comes at
a price, however, because the choice of the set S has crucial implications for
the definition of interval functions. Even though an interval function satisfies
the containment principle, it can only contain the range of the underlying point
function in S. If the range of the point function is a subset of S, there is no
problem. But if the underlying point function is undefined or complex-valued
for some values of the interval arguments, returning an element of I(S) may
lead to unintuitive results, as we shall illustrate. This also explains why in [2]

[1,2]/[0,0] =0
while according to [5]
[1,2]/[0,0] = {oo} N (RU {—00,4+00}) C [—00, +00]

In this presentation we give an alternative, computer algebra style approach
to remove restrictions on the domain of interval functions. To achieve this, we
allow for the efficient representation of non-real results. We indicate some im-
portant properties and advantages of this approach and show how the presented
ideas can be implemented in a multiprecision interval arithmetic library without
performance overhead.

3 Complex Arithmetic:
Theory versus Implementation

In the same way that the approach in [3] is designed to offer interval arithmetic in
a way that seamlessly blends in with IEEE floating-point arithmetic, the Annex



G of the latest C programming language standard [1] lists recommendations for
implementations of complex arithmetic which fully respect the underlying IEEE
floating-point arithmetic.

We explained how in interval arithmetic this leads to discussions about ex-
pressions where the result is either undefined or not exclusively real. In complex
arithmetic conflicting results also come from the difficulty of representing and
computing with the Riemann infinity. Support for projective infinity has mostly
been dropped in floating-point implementations and hence implementations of
complex arithmetic struggle in situations which require correct infinity arith-
metic.

In order to salvage possibly incorrect complex results, the Annex G suggests
to assign a double meaning to the IEEE NaN (Not-a-Number) when it occurs in
complex expressions involving infinities: a NaN real or imaginary part indicates
either an undefined value or an unknown value. This, however, does not fully
take care of all problems, as the following example illustrates.

double z,y
complex 2z

T =2

y=(z%~4)/(x~2)
y = 21024 _ 10340i

z=2zx (y+xi)

The correct mathematical result is z = undefined. The Annex G proposal
however returns z = oo + coi because it fails to recognize y as mathematically
undefined. When trying to rectify the result of z X (y + x1i) involving an infinite
z, it jumps to the other interpretation of the NaN value y.

We shall indicate how this type of problems can be overcome by the intro-
duction of yet additional special values. Our alternative approach gives rise to
an efficient implementation which is fully compliant with the theory of complex
analysis, as would be required in a proper computer algebra style implementa-
tion.

References

[1] ANSI/ISO/IEC 9899-1999. International C Standard, Annex G: IEC 60599
— compatible complex arithmetic (informative), ANSI, 1999.

[2] T. Hickey, J. Qun, and M. Van Emden. “Interval arithmetic: from principles
to implementation”, Journal of the ACM, 2001, Vol. 48, No. 5, pp. 1038-
1068.

[3] Sun Microsystems, Interval arithmetic in the Forte[tm] C++ compiler; avail-
able at http://www.sun.com/forte/cplusplus/interval.



[4] D. Ratz, On extended interval arithmetic and inclusion isotonicity, Technical
Report, Institut fir Angewandte Mathematik, Universitat Karlsruhe, 1996.

[5] G. W. Walster, The extended real interval system, Technical Report, 1998,
available at http://www.mscs.mu.edu/ globsol/readings.html.



