Static Analysis-based Validation
of Floating-Point Computations

Sylvie Putot,
joint work with Eric Goubault and Matthieu Martel

CEA Saclay
Software Safety Laboratory
Sylvie.Putot@cea.fr

Dagstuhl Seminar “Numerical Software with Result Verification” 19-24.01.03



Introduction

e Validation of critical embedded systems
— Programs of large size, up to 100000 lines or more

— Numerically simple

e Necessity of having well-suited tools to verify the programs
— No instrumentation of the source code
— Guaranteed bounds on errors for classes of executions
— Identify the operations responsible for the main losses of
precision
e The aim is not to compute an estimation of the real result for
given inputs.

Wish to go towards verification of more numerical programs

-2



Static Analysis

Program analysis : proof that a software computes what it is
intended to. Based on

e a semantics of the program

e a definition of the properties to compute (e.g. value of variables
on the nodes of a control flow graph of the program)

Program = functional f. Static analysis : computation of a fixpoint
by monotone iterations for all possible inputs

ifpf = £(L)

1€IN

Functional formulation P = f(P) — use of classical methods for
such equations : iteration strategies, convergence acceleration, etc.

-3-



Example (functional formulation)

Consider

1: while (x >= 1000)
{

2: X = X + a;
3: } 4.

Translated into equations (relations between predicates) :

Pl = (513 = f)
P, = (1000 < ) A (P V P3)
P; = Py(r—a)

P4 = (33 < 1000) A\ (P1 V P3)



What is a correct program, when there are
floating-point computations ?

Could be for example the proof that a program corresponds to a
given function or algorithm, or a stability proof

Our approach :

e Specification = real number semantics (what is expected)

e Implementation = IEEE 754 floating-point number semantics
We want to :

e Prove that the result of the computation in finite precision does
not grow too far away from the result got with real numbers.

e Give an idea of how control points contribute to the imprecision



Link between idealized and f.p. computation

Chosen approach : abstract interpretation, relies on a difference
semantics :

r=f+ E wlé‘f} —|—whogho
lel

o f c Fisthe f.p. number used by the computer instead of »r € R

e w!is the contribution of point (or set of points ; C lines in our
implementation) [ to the first order error on f

e errors of order more than 1 are agglomerated in w"° (just a
check : often negligible)

e ¢; is a label corresponding to point [ (not like A.A. )

Abstract semantics : f and w are approximated using intervals



Arithmetic Operations

1+ Bte (i + f2)E+ Y (W + wh)Eut Lo (f1 + f2)
uEZ
r1x iy dﬁfTo (f1f2 6—|—Z fiws + fow?)éw+ Z w1 wa Ehot o ([f1f2)EL,
ueLl ueL,veEL

with £ = L U {ho}.



Arithmetic Operations : an Example

621.38 + 0.05&%,
x ‘3 1.287 + 0.0005¢%,,
= 799.6131¢
+ 0.06435¢%,
+ 0.31065¢%,
4+ 0.000025%, 7,
= 799.6¢
+ 0.06435¢%,
+ 0.31065¢%,
+ 0.000025€%0
+ 0.0131&,,

Result

Error due to 3

Error due to 752

Second order error term
Machine result =1, (r1 X r2)
Error due to 7

Error due to 752

Second order error term

Error introduced by x“ =,

(?“1 X ’1“2)



Abstract Interpretation : principle

A A
) S e
® @ | Post fixed—point
° — > ; | = N
° ® o ® o - \ :
,,,,,,,,,,,,,, // , Narrowing
- — // }/
_ - ] = ! Post fixed—point
Class of executions Abstraction Widening
@ Pre fixed—point

Concrete domain Abstract domain

The abstract computation gives an upper approximation of the concrete least

fixpoint.



Abstract interpretation : example

y
Sets of integers < Intervals of integers
(87

x=0;
whi | e (x<100)
X=xX+1;

o [teration1: z; =[1,1]

r = |[2,2]
ro =21 Ux = [1,2]

e [teration 2 :

o Iteration3: z3 = [1, 3]
e Widening : z = [1, +0o0]

e Narrowing: x = [1, +o00] N [—00, 100] = [1, 100]

-10 -



Abstract domain for floating-point numbers

r=f+ E W' + W,
leL

e For the float f : interval of float/double
— computed as on target machine (with rounding to the nearest)
— if input values are reduced to values, f is the floating-point
result got by execution on target machine
e For the errors w : intervals of higher-precision floating-point
numbers (using the multi-precision library MPFR)

— using the fact that the norm specifies that +, —, %, /, J/ are
computed with max imprecision of ulp/2 of the exact result

— if result is a value (not interval), computation of tight bounds

-11 -



Formulation close to affine interval arithmetic

e This formulation does not take advantage of the correlations
between variables to reduce errors.

e Relational analysis using linear error dependencies :

recR — z= ferth * Y1 €1 + Wh o €ho
leL
— 7 is an abstract value that represents the error committed at

point &; for one execution. We know a range, v; € |y, 5]
— t7 expresses the dependency of the variable x to the error +;

— Difficulties with loops, and to group errors on sets of points

e One could also use affine interval arithmetic to have closer
approximations of values f*

-12 -



Relational analysis : example

= BU LTI N DAED FBETWEEN( O, 1. 0) ;
= X + 1

= 10 vy;

=z - JY,;

— N < X

Non relational :

v = [1,2) + [~2, 2Julp(D)es

z = [10,20] + [—20, 20]ulp(1)es + [—20, 20]ulp(1)es

t = [0, 15]+[—30, 30]ulp(1)es +[—20, 20]ulp(1)es 4+ [—15, 15]ulp(1)eq

Relational (partly) :
y = [1,2] + [1, 1]yz2¢2, Yo € [—2,2]ulp(1)
z = [10,20] 4 [10, 10]y2€e2 + [1, 1]73€3, v3 € [—20, 20]ulp(1)
t =[0,15] +[5,5]y2€a +[1, 1]yzes + [1,1]va€a, a4 € [-15,15]ulp(1)

-13 -



Iteration strategies to compute an approx of the fixpoint

int 1; float t=1;
for (1=0; i1<20; 1|I++)
t=t*. 618

Unfolding twice the loop : analysis of
for (i=0; i<10; i++)

{ t=t*.618;
i f (i>=10) break;
t=t*.618; }

— if we unfold the loop N times, we compute an upper approx to
limy, (X7, X3, ..., X% ) with X7 such that

X)=1,i=1...N,
Xp=XPtufO(xe ), i=1...N,n>1.

Then X = U, ; X;.

-14 -



Need for a virtual unfolding of loops

t = 1;
for (i=1; i<=20; i++)
t = t*0.618; (epsi |l on)

e Result without unfolding : ¢ € [0, 0.618], error €] — oo, +o0]|
i=1: t1 =][0.618,0.618] + 0.618 ulp(1)[—1,1]e

_ to = [0.6182%,0.618%] 4+ 2 % 0.618% ulp(1)[—1,1] €
1 = :
to :=t1 Uty = [0.6182,0.618] + 2 % 0.6182 ulp(1)[—1,1]e (2 *0.618% > 0.618)

i=3: t3=[0.6183,0.618] + (2 0.6183 + 0.6182%) ulp(1)[—1,1]¢
Because of union on values, the computed error increases while the error really
committed decreases

(could be solved with a good widening : limit of error ﬁulp(l))

-15 -



A possible solution : unfold twice the loop

. t; = [0.618,0.618] + 0.618 ulp(1) [—1, 1€y
1 = :
to = [0.6182,0.618%] 4 0.618% ulp(1) [—1, 1]e; + 0.618% ulp(1) [—1, 1]es

1= 2:
tz =ty * 0.618 = [0.618%,0.618%] 4+ 2 % 0.6183 ulp(1) [—1, 1]e; + 0.618% uip(1) [—1, 1]e2
ty =t3 * 0.618 = [0.618%,0.618%] 4+ 2 % 0.618% wlp(1)[—1,1]e; + 2 * 0.618% ulp(1) [—1, 1]ez

t3 :=t3 Uty = [0.6183,0.618] + 0.618 ulp(1) €1 + 0.6183 ulp(1) ez
ty =t4 Uty = [0.618%,0.618%] + 0.618% ulp(1) €1 + 0.618% ulp(1) ez
1= 3:

ts = t4 * 0.618 = [0.618°,0.6183] 4 (0.6182 4 0.6183) ulp(1) [—1, 1]e; + 0.618% ulp(1) [—1, 1]e
te = ts * 0.618 = [0.618°,0.618%] 4 (0.618% 4 0.618%) ulp(1) [—1, 1]e; + (0.618° + 0.618%) ulp(1) [—1

ts :=t5 Uts = [0.618%,0.618] + 0.618 ulp(1) [—1, 1]e; + 0.618% ulp(1) [—1, 1]e2
ty =ts Uty = [0.618%,0.6182%] 4+ 0.618% ulp(1) [—1, 1]e; + 0.618% ulp(1) [—1, 1]eo

Convergence for the errors

-16 -



The Fluctuat tool

e We have a first prototype for not too numerically intensive
programs (instrumentation and control).

— Interprocedural analysis of a fragment of ANSI C; few library
functions, current work on compound data structure - alias,
struct, arrays.

e Short demo :
[We replace it here, for “paper version”, by a photo of the main window of the graphic
interface, and computed bounds for values and errors for the examples shown during the

presentation.]

-17 -



Graphic interface

#include <daed_builtins.h=
float main(float £1)
{

3

int R3;

?‘ ARDAYDAXTAYLAKE AYZAXSAYIAXKSAYABOB1B2B
3=0;

ARD=-1,000000E+01;

AY¥0=-3.000000E+01;

AX1=-1,000000E+01;

AY1=-3.000000E+D1;

AX2=0.000000E+00;

A)¥'2=0.000000E +00;

AX3=5.666700E+00;

AY3=1.700000E +01;

AX4=5666700E+00;

AY'4=1.700000E +071;

Bo=0;

B1=3.000000E+00;

B2-2.9989682E+00;

Ba3-0;

E1=_ BUILTIN_DAED_FBETWEEN(-100.0,100.0);

f(E1<AX1)
returmni(E1-AX0)*BO+AYD),

if (E1<AX2)
return{(E1-AK1)*B1+AY1)

f(E1<AX3)
return{{E1-AXZ)*BZ+AY2),

return((E1-AX3)"B3+AY3),

2.52868e-06

1.59651e-06

1.26439e-06

B.3217e-07

-18 -

[ ~300000000000000e1

[

= e
| ez
|

Variable

File List

Information

on Selected
Variable



Example 1 (simple interpolation)

#i ncl ude <daed builtins. h>
float main(float E1)

{

float RIL_X3,R2_0,R2_1,R2_2;
R2 0=0; R2_1=3;
R2_2=2.999982;
El=__ BUI LTI N_DAED FBETWEEN( - 100. 0, 100. 0); /] assertion neaning that -100 <= E1 <= 100
if (E1 < -10)
return((EL1+10. 0) *R2_0-20. 0);
if (E1 < 1.2)
return((EL1+51. 1) *R2_1-40. 0);
return(E1*R2_2);

e Result = bounds for floating point value + errors at the end of the program, for all variables

e We consider here the return value (called by the name of the function, i.e. ‘'main’) :

main = type : sinple float
Fl oati ng- poi nt value : [-2.000000el, 2. 999982e2]
Error line 6 : [-1.18606567234280646e-5, 0]
Error line 11 : [-3.19744231092045084e- 14, 3. 19744231092045084e- 14]
Error line 12 : [-1.52587890625000000e-5, 1. 52587890625000000e- 5]
Real value : [-2.00000271194458179e1l, 2.99998214721679719e2]

-19 -



Example 2

Exact limit of this famous sequence is 6, but limit with rounding errors is 100.

i nt main(voi d)

{
float x0, x1, x2
int i;
x0 = 11/ 2. 0;
x1 = 61/11.0;

for (i=1; i<=13 ; i++) {

x2 = 111 - (1130 - 3000/ x0) / x1;
x0 = x1;
x1 = x2; }

}

Results of the analysis with default precision, and complete unfolding of the loop :

x2 = type : sinple float
Fl oati ng-point value : [1.000000e2, 1. 000000e2] /1l = result got by execution
Error line 6 : [1.51444913011716410e-7, 1.51444921303193455e-7]
Error line 8 : [2.85099357418704060e- 6, 2. 85099359135853044¢e- 6]
H gher order error : [-9.50041512715925676el, -9. 31771829974241715e1]
Real value : [4.99585173084591960, 6.82282000501434116]

The floating-point value tends towards 100, and there is a large global error, between —95.1 and —93.2, that comes mainly from errors
of order larger that one. The estimation of the error is not very tight, however it is assured that the magnitude of the error is larger than 92,
we guess that the example is unstable.

-20 -



Analysis with 80 bits of precision :

x2 = type : sinple float
Fl oati ng-point value : [1.000000e2, 1. 000000e2] /1l = result got by execution
Error line 6 : [1.51444917165164321972338e-7, 1.51444917165172229341030e- 7]
Error line 8 : [2.85099358276164098879841e- 6, 2. 85099358276165736480817e- 6]
H gher order error : [-9.40722624813775285718735el, -9. 40722607395473614241816e1]
Real value : [5.92774052106097135493179,5.92774226289113850264803]

The estimation of the error is now tight. And the more iterations of the sequence we want to compute, the more precision in analysis we
will need for a tight estimation of errors and real value.

-1 -



Example 3 (loop)

#i ncl ude <daed builtins. h>
mai n(int n) {
float x,y,2z,t;

int i;

x=1.0;, t = 0;

y = __BU LTI N DAED FBETWEEN(-2.0, 3.0);

y =y-1.0/3.0;

for (i=1;i<=n;i++) { /1 Note that n can take any integer value
Z=X; X=Y;
y=(x+z)/6.0;

t=(2*t+y)/2.0; }
}

The value of «, y and z, and the errors committed on these variables, decrease during the iterations. The value of £, and the error

committed, increase.

-22 -



Result of analysis (for all value of n) without unfolding the loop :

X = type : sinple float
Fl oati ng-point value : [-2.333333, 2. 666667]
Error line 7 : [-1.19209289791474132e-7,1.19209289754611258e-7]

Error line 10 : [-o0o0, +00]

t =type : sinple float

Fl oati ng- poi nt value : [-o00, +00]
Error line 7 : [-00,+00]
Error line 10 : [-o00, +00]
Error line 11 : [-o00, +00]

Note that we get a bounded value for = (or y or z), and a bounded error coming from line 7 : even if we did not get bounds for line 10
error, this is a stable scheme for y. Indeed, the error committed outside the loop is not amplificated inside the loop. Whereas it is

amplificated for ¢.

Result of analysis with 3 unfoldings of the loop :

X = type : sinple float

Fl oati ng- poi nt value : [-2.333333, 2. 666667]
Error line 7 : [-1.19209289791474132e-7,1.19209289754611258e- 7]
Error line 10 : [-6.75874097750114471e-8, 6. 75874097750114471e- 8]

Values and errors for ¢ are still unbounded. But now we get bounds for all errors on « (or y and z) .

-23-



Some problems

e Unstable tests :
What to do when, because of a test, the real values can follow a different
path than the floating-point values !?

— Follow only the floating-point value path, and signal any unstable
test (done now)

— Follow the different paths, and take results of real path as reference
to compute extra errors (correct, but often pessimistic)

e Evaluation order in expressions with several arithmetic
operations :
We do not execute the code but we analyze a graph of the program, thus
we do not know the optimizations that the compiler will do (a solution
is to analyze the assembly code ...)

-24 -



References

- “Static analyses of the precision of floating-point operations”, Eric Goubault, SAS’01, Lecture
Notes in Computer Science # 2126

- “Concrete and Abstract Semantics of Floating-Point Operations”, Eric Goubault, Matthieu
Martel, Sylvie Putot, Research Report DRT /LIST/DTSI/SLA /LSL/01-058, 2001

- “Asserting the precision of floating-point computations: a simple abstract interpreter”, Eric
Goubault, Matthieu Martel, Sylvie Putot, ESOP’02, Lecture Notes in Computer Science

- “Static Analysis of the Numerical Stability of Loops”, Matthieu Martel, SAS’02
- “Fluctuat : a Static Analyzer to assert the precision of floating-point computations. User Manual”,

Eric Goubault, Matthieu Martel, Sylvie Putot, Research Report DTSI/SLA /02-497 /EG, 2002

http:/ /www-dta.cea.fr/Pages/List/lse/LSL/Flop/index.html
http:/ /www.di.ens.fr/ cousot/projects/DAEDALUS/synthetic_summary/CEA /Fluctuat/

-25-



