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Formulation of the First Problem

e We have n measurement results x1,...,x,

)

e Traditional data processing techniques: compute pop-

ulation parameters, e.g.,

= |

02:(x1—u)2+...+(:cn—u)2 (or 0 = v/ob).

e Often, we only have intervals x; = |z;, T;].
o Fxample: for measurements, x; = [T; — Ay, T; + 4A4).
e Weneedy = {f(z1,...,x,) |21 € X1,...,Tp € Xy }.

e What are [y, 7] and [o?, 0%]?
e For |u, 1], the answer is easy.

e When n"_, x; # (), we have g = 0; else o > 0.

e Problem (Walster): what is the total set [o?, 02] of

possible values of o?
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For this Problem, Straightforward

Interval Computations Sometimes

Lead to Excess Width

e Reminder:

— parse the function f(zq,...,x,), and

— replace each elementary operation by the corr. op-

eration of interval arithmetic.
o Fxample: for x; = x9 = [0, 1].
o Actual range: since 0? = (x1 — x9)*/4, the actual
range is [0?, o2 = [0,0.25].

o Fistimate: [u, i) = |0, 1], hence

(Xl - [Hv ﬁ])Q + (XQ _ [E? HDZ
2

e Comment: other formulas also lead to excess width.

—[0,1] D [0,0.25].

2

e Fxplanation: in each formula for o“, each variable

occurs several times.
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Centered Form Sometimes Leads to

Excess Width

e Reminder:

f(x1,...,%,) C f(T1,...,Tn)+

(X1, Xn) [ A,
where:
e ©; = (x; + ;) /2 is the interval’s midpoint and
o A\, = (z; — x;)/2 is its half-width.
e Not perfect (similar to Hertling):

e it produces an interval centered at f(Zy, ..., Ty,);

e when all intervals x; are equal, all midpoints z; are

the same:;
e hence the population variance f(Z1,...,T,) is 0;

e 50, the estimate’s lower bound is < 0, but ¢ > 0.
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First Result: Computing ¢

The following algorithm always compute ¢ in O(n?):

e First, we sort all 2n values z;, T; into a sequence

T1) S To) S-S T

e Second, we compute g and [ and select all “small

intervals” (), T(x+1)] that intersect with |u, ).

e For each of the selected small intervals [z (), (541,

we compute the ratio 7, = S /Ny, where
Y v L+ v oz,
VT2 T (1) IS ()

and NN is the total number of such ¢’s and j’s.

o If r, € |1, T(k+1)), then we compute

1
azé— > (mi-m)’+ T (T— )
n o\« Ti>T (1) JTST (k)

If N} = 0, we take 0’3 % 0.

e Finally, we return the smallest of the values o’ Z as 0.
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Example

e Input: x; = [2.1,2.6], xo = [2.0,2.1], x3 = [2.2,2.9],
x4 = [2.5,2.7], and x5 = [2.4,2.8].

o “small intervals”: |z(),z@)] = [2.0,2.1], [2.1,2.1],
2.1,2.2], [2.2,2.4], [2.4,2.5], [2.5, 2.6], [2.6, 2.7], [2.7, 2.8],
and [2.8,2.9].

e Population average |u, ] = [2.24,2.62], so we keep
2.2,2.4], [2.4,2.5], [2.5,2.6], [2.6,2.7]. For these in-
tervals:

oS, =70 Ny=3,s0ry=2333...;
e S5;=4.6, Ny =2, 80 r; =2.3;
e S5¢=2.1 Ng=1 s0rs=21;

e S, =47 N;y =2, s0r; =2.35.
e Only r4 lies within the corresponding small interval.

e Here, 0/, = 0.017333.. ., s0 o2 = 0.017333. ..
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Second Result:
Computing ¢? is NP-Hard

e Theorem. Computing 0% is NP-hard.
o Comments:

— NP-hard means, crudely speaking, that there are
no general ways for solving all particular cases of

this problem in reasonable time.
— NP-hardness of computing the range of a quadratic
function was proven by Vavasis (1991).
— By using peeling, we can compute o2 in exponen-
tial time O(2").
e Natural question: maybe the difficulty comes from

the requirement that the range be computed exactly?

e Theorem. For every € > 0, the problem of com-

puting 0% with accuracy € is NP-hard.
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Third Result:
A Feasible Algorithm
that Computes o2

in Many Practical Situations

e Case: all midpoints (“measured values”)

N T; + T;
T, = 9

of the intervals
X; = [fz — Ai, fz‘ -+ Az]
are definitely different from each other.

e Namely: the “narrowed” intervals
AVENRNAY

e T
n n

do not intersect with each other.

e In this case, there exists an algorithm computes o2 in

quadratic time.
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Algorithm

e Sort 2n endpoints of narrowed intervals into
T S T) < S Tgn)-

e Thus, IR is divided into 2n + 2 segments ( “small in-
tervals”) [z(x), T (k+1))-

e Select only “small intervals” [z(;), T(141)] that inter-

sect with [u, i]; for each, pick z; as follows:
o if z(;11) < Ty — Ay/n, then we pick z; = z;;
o if () > Z; + A;/n, then we pick z; = z;;
e for all other ¢, we consider both possible values

T, = X; and T; = X;.

e For each of the sequences x;, we check whether the
average I is indeed within this small interval, and if

it is, compute the population variance.

e The largest of these population variances is 2.
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Third Result (cont-d)

o (Question: what if two “narrowed” intervals have a

common point?

e (ase: let us fix k and consider all cases C}, in which no
more than k “narrowed” intervals can have a common

point.

e Result: Yk, the above algorithm A computes o2 in

quadratic time for all problems € C}.
o Comments:

— Computation time ¢ is quadratic in n.
— However, t is exponential in k.

— So, when k 1, the algorithm A requires more and

more computation time.

— In our proof of NP-hardness, we use the case when

all n narrowed intervals have a common point.

10
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Population Mean, Population

Variance: What Next?

e Population covariance

1 n
C=- i — M) (Yi — Hy)-
o2 (@ ) - (Y — )
e Result: both computing C and computing C' are NP-

hard problems.

e Population correlation
C

O-af;'o-y

p =
e Result: both computing p and computing p are NP-
hard problems.

e Open problem: design feasible algorithms that work

in many practical cases.
e Median: feasible (since it is monotonic in x;).

e Open problem: analyze other population parameters

from this viewpoint.
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Bounds for Sample Variance:

Variant of the First Problem

o We know:

— measurement results Ty, ..., Ty;
— the accuracies A; of each measurement;

— hence, that the actual values x; are within

x; € [z, 7] = [7 — A T+ A

— that x; are normally distributed, w/CDF Fj (x o )

e (Question: what are the possible values of a and o?

o Main idea: Kolmogorov-Smirnov (KS) inequality im-

plies (with probability p > pg) that
|F(33) — Fsample(x)| < Aa

where Fyample(Z) = % for z;y <z < x341).
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Bounds for Sample Variance:

Solution

e Due to KS, for every i, for some xz; € [z;, T;]:

Z—AgFo(x“)_a)gz+A.

n o n

® 50,

/ r /

n o n
where [(z) is # of k st. T < x, u(i) is # of k

s.t. 2 < x, and x; = x; or x, = ;.

e Hence,

i 1

n

INPEEIIUC:

o \n

¥ A) .
e We get a system of linear inequalities for a and o

[(z;)

n

Rl
o ( :

—A) §xi—a§a-F0_1 (u(%) —|—A).

e S0, we can use linear programming to find bounds on

a and o.

13
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Second Problem: Probabilistic

Extension of Interval Arithmetic

e Indirect measurements: way to measure y that are

are impossible or difficult to measure directly.

e Framples: distance to a star, the amount of oil in a

given well.

o [dea: y= f(x1,...,2T,)

=4 f g =f(Z. .., Th)

e Problem: measurements are never 100% accurate:

T; # x; (Ax; # 0) hence

g= [Ty, Tn) Fy = flr,- -, Yn)-

What are bounds on Ay def y—y?
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Why Interval Computations:

Reminder

8

v

X

3

e Traditional approach: we know probability distribu-

tion for Az; (usually Gaussian).

e Problem: sometimes we do not know the distribution
because no “standard” (more accurate) MI is avail-

able. Cases:

— fundamental science

— manufacturing

e Solution: we know upper bounds A; on |Az;| hence

T; € [sz — N, T; + Az]

15
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Interval Computations: What? How?

X1
A2y = f(xy,.. ., X0)
o What:
v, gl = {f(x1,...,2,) |21 € [21,T1), ..., Tpn € [T, Tn] }-

e How (straightforward interval computations):
— parse f into elementary operations +, —, -, 1/,
min, max;
— replace each operation by the corresponding oper-

ation of interval arithmetic:
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Adding Moments: Step One

e So far, we have considered two cases:

— statistical case: we know Prob(Ax;);

— interval case: we know nothing about Prob(Awx;).
e Possible: we have partialinformation about Prob(Az;).
e Frample: we know moments.
o Simplest case: we know F; & E[z,] (or rather E;).

e Problem:

e Solution: parse to +, —, -, 1/x, max, min.
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Problem: Formulation, Cases

o Given:

° [x1,71], [Ey, 1],

® (29, T9), [Eo, Fy,

e an operation y = r10x3 (® = +, —, -, 1/, max, min).
e Find: exact bounds on |y, 7] and [E, E].
e Comment: bounds on [y, 7| same.

o (Cases:

e we have no info about correlation between x;;
e we know that x; are independent;

e we know that x; are maximally + correlated:
dt s.t. 21(t) T &aa(t) 1
e we know that x; are maximally — correlated:

At s.t. x1(t) T &xa(t) | .
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Formulation of the problem

in Precise Terms

o Given: values z1, T, To, To, E1, 1, Es, Ey, and

operation ©.
e [ind: the values

E ¥ min{E(z1 ® )| all distributions of (z1, z2)
for which z1 € [z1,%1], x2 € [x2, To],
Elz1] € [Ex, Er], Elxs] € [Ea, Eol}

and

F ¥ max{E(z1 ©® z,)| all distributions of (z1, z>)
for which x;, € [x1,T1], T2 € [22, To],
Elx1] € [E1, E1], E|xs] € [Es, Es|}

(plus restrictions on the correlation).

19
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Simplest Cases: +, — (All 4 Cases),

and Product of Independent z;

e Addition: we know that
E[il?l —+ 5132] — E[ZCl] + E[SBQ],
SO
|E,FE] = [E1 + Es, F1 + E))

(in all 4 cases).
e Subtraction: similarly,
E[ZL’l — .CCQ] = E[ZCl] — E[SBQ],

SO

(in all 4 cases).

e Product, independent x;:

here, E|x1 - x2] = E[x1] - Flxs], hence

E=E; . E,.

20
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Product — Case When We Have No
Info About Correlation: Theorem
Theorem. For multiplication y = x1 - 9, when we have

no information about the correlation,
E = max(p; + p2 — 1,0) - T1 - To+
min(py, 1 — po) - T1 - Zo+
min(1 — p1, p2) -

max(l — P1 — P2, 0) ' It X,
and

E = min(py, p2) - T1 - Tot

max(p; — p2,0) - T1 - T2+

max(py — p1,0) - 21 - To+
min(l — pi,1 — po) - T1 - 2o,

where p; € (E; — ;) /(zi — zi).
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Meaning of the Theorem

e What are p;: if we only allow values x; and z;, then

p;i is p|x;] for which average is Ej; then plx;] = 1 — p;.
o If we know p(A) and p(B), then p(A& B) can take
any values:
— from p(A& B) % max(p(A) + p(B) — 1,0)
—to p(A& B) = min(p(A), p(B));

e Hence,

E :Q[Tl&fz] -1+ Ty —|—]_?[T1&$2] - X1 Lo+

Plar & o] - x1 - Ty + play & x9) - 21 - 29;

E :P[Tl&fz] -1+ Ty —|—B[T1&$2] - T1 - o+

plz1 & To) - 21 - Ty + play & o) - 11 - T,

22
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Proof: Main Idea

G | z0)

X8

Thus, instead of considering all possible distributions, it
is sufficient to consider only distributions for which

r1 € {&1,T1} and x9 € {&2,T2}2

23
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Further Results

e Similar results are given:

— correlation cases;

— for the case when we have non-degenerate

intervals E;.
— for other elementary arithmetic operations
(1/2, min, max);
e Similar ideas can be used:

— for more general operations;

— for the case when we know 2nd moments in addi-

tion to the 1st moments.

24
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