Probabilities, Intervals,
What Next?

 \mathbf{X} \mathbf{X} \mathbf{X}

Extension of
Interval Computations
to Situations With
Partial Information
about Probabilities

Vladik Kreinovich
Computer Science Department
University of Texas at El Paso
El Paso, TX 79968, USA
vladik@cs.utep.edu

Formulation of the First Problem

- We have n measurement results x_1, \ldots, x_n ,
- Traditional data processing techniques: compute population parameters, e.g.,

$$\mu = \frac{x_1 + \ldots + x_n}{n},$$

$$\sigma^2 = \frac{(x_1 - \mu)^2 + \ldots + (x_n - \mu)^2}{n} \text{ (or } \sigma = \sqrt{\sigma^2}).$$

- Often, we only have intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$.
- Example: for measurements, $\mathbf{x}_i = [\tilde{x}_i \Delta_i, \tilde{x}_i + \Delta_i].$
- We need $\mathbf{y} = \{ f(x_1, \dots, x_n) \mid x_1 \in \mathbf{x}_1, \dots, x_n \in \mathbf{x}_n \}.$
- What are $[\underline{\mu}, \overline{\mu}]$ and $[\underline{\sigma^2}, \overline{\sigma^2}]$?
- For $[\underline{\mu}, \overline{\mu}]$, the answer is easy.
- When $\bigcap_{i=1}^n \mathbf{x}_i \neq \emptyset$, we have $\underline{\sigma^2} = 0$; else $\underline{\sigma^2} > 0$.
- Problem (Walster): what is the total set $[\underline{\sigma^2}, \overline{\sigma^2}]$ of possible values of σ^2 ?

For this Problem, Straightforward Interval Computations Sometimes Lead to Excess Width

- Reminder:
 - parse the function $f(x_1, \ldots, x_n)$, and
 - replace each elementary operation by the corr. operation of interval arithmetic.
- *Example:* for $\mathbf{x}_1 = \mathbf{x}_2 = [0, 1]$.
- Actual range: since $\sigma^2 = (x_1 x_2)^2/4$, the actual range is $[\underline{\sigma^2}, \overline{\sigma^2}] = [0, 0.25]$.
- Estimate: $[\underline{\mu}, \overline{\mu}] = [0, 1]$, hence $\frac{(\mathbf{x}_1 [\underline{\mu}, \overline{\mu}])^2 + (\mathbf{x}_2 [\underline{\mu}, \overline{\mu}])^2}{2} = [0, 1] \supset [0, 0.25].$
- Comment: other formulas also lead to excess width.
- Explanation: in each formula for σ^2 , each variable occurs several times.

Centered Form Sometimes Leads to Excess Width

• Reminder:

$$f(\mathbf{x}_1, \dots, \mathbf{x}_n) \subseteq f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i],$$

where:

- $\tilde{x}_i = (\underline{x}_i + \overline{x}_i)/2$ is the interval's midpoint and
- $\Delta_i = (\underline{x}_i \overline{x}_i)/2$ is its half-width.
- Not perfect (similar to Hertling):
 - it produces an interval centered at $f(\tilde{x}_1, \dots, \tilde{x}_n)$;
 - when all intervals \mathbf{x}_i are equal, all midpoints \widetilde{x}_i are the same;
 - hence the population variance $f(\tilde{x}_1, \ldots, \tilde{x}_n)$ is 0;
 - so, the estimate's lower bound is < 0, but $\sigma^2 \ge 0$.

First Result: Computing $\underline{\sigma}^2$

The following algorithm always compute $\underline{\sigma}^2$ in $O(n^2)$:

- First, we sort all 2n values \underline{x}_i , \overline{x}_i into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$.
- Second, we compute $\underline{\mu}$ and $\overline{\mu}$ and select all "small intervals" $[x_{(k)}, x_{(k+1)}]$ that intersect with $[\underline{\mu}, \overline{\mu}]$.
- For each of the selected small intervals $[x_{(k)}, x_{(k+1)}]$, we compute the ratio $r_k = S_k/N_k$, where

$$S_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \ge x_{(k+1)}} \underline{x}_i + \sum_{j:\overline{x}_j \le x_{(k)}} \overline{x}_j,$$

and N_k is the total number of such i's and j's.

• If $r_k \in [x_{(k)}, x_{(k+1)}]$, then we compute

$$\sigma'_k^2 \stackrel{\text{def}}{=} \frac{1}{n} \cdot \left(\sum_{i: \underline{x}_i \geq x_{(k+1)}} (\underline{x}_i - r_k)^2 + \sum_{j: \overline{x}_j \leq x_{(k)}} (\overline{x}_j - r_k)^2 \right).$$

If $N_k = 0$, we take $\sigma'_k^2 \stackrel{\text{def}}{=} 0$.

• Finally, we return the smallest of the values σ'_k^2 as $\underline{\sigma}^2$.

Example

- Input: $\mathbf{x}_1 = [2.1, 2.6], \ \mathbf{x}_2 = [2.0, 2.1], \ \mathbf{x}_3 = [2.2, 2.9],$ $\mathbf{x}_4 = [2.5, 2.7], \ \text{and} \ \mathbf{x}_5 = [2.4, 2.8].$
- "small intervals": $[x_{(1)}, x_{(2)}] = [2.0, 2.1], [2.1, 2.1],$ [2.1, 2.2], [2.2, 2.4], [2.4, 2.5], [2.5, 2.6], [2.6, 2.7], [2.7, 2.8], and [2.8, 2.9].
- Population average $[\underline{\mu}, \overline{\mu}] = [2.24, 2.62]$, so we keep [2.2, 2.4], [2.4, 2.5], [2.5, 2.6], [2.6, 2.7]. For these intervals:
 - $S_4 = 7.0$, $N_4 = 3$, so $r_4 = 2.333...$;
 - $S_5 = 4.6$, $N_5 = 2$, so $r_5 = 2.3$;
 - $S_6 = 2.1$, $N_6 = 1$, so $r_6 = 2.1$;
 - $S_7 = 4.7$, $N_7 = 2$, so $r_7 = 2.35$.
- Only r_4 lies within the corresponding small interval.
- Here, ${\sigma'}_4^2 = 0.017333...$, so $\underline{\sigma}^2 = 0.017333...$

Second Result: Computing $\overline{\sigma^2}$ is NP-Hard

- Theorem. Computing $\overline{\sigma^2}$ is NP-hard.
- Comments:
 - NP-hard means, crudely speaking, that there are no general ways for solving all particular cases of this problem in reasonable time.
 - NP-hardness of computing the range of a quadratic function was proven by Vavasis (1991).
 - By using peeling, we can compute $\overline{\sigma^2}$ in exponential time $O(2^n)$.
- Natural question: maybe the difficulty comes from the requirement that the range be computed exactly?
- **Theorem.** For every $\varepsilon > 0$, the problem of computing $\overline{\sigma^2}$ with accuracy ε is NP-hard.

Third Result:

A Feasible Algorithm that Computes $\overline{\sigma^2}$ in Many Practical Situations

• Case: all midpoints ("measured values")

$$\widetilde{x}_i = \frac{\underline{x}_i + \overline{x}_i}{2}$$

of the intervals

$$\mathbf{x}_i = [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]$$

are definitely different from each other.

• Namely: the "narrowed" intervals

$$\left[\widetilde{x}_i - \frac{\Delta_i}{n}, \widetilde{x}_i + \frac{\Delta_i}{n}\right]$$

do not intersect with each other.

• In this case, there exists an algorithm computes $\overline{\sigma^2}$ in quadratic time.

Algorithm

- Sort 2n endpoints of narrowed intervals into $x_{(1)} \le x_{(2)} \le \ldots \le x_{(2n)}$.
- Thus, IR is divided into 2n + 2 segments ("small intervals") $[x_{(k)}, x_{(k+1)}]$.
- Select only "small intervals" $[x_{(k)}, x_{(k+1)}]$ that intersect with $[\underline{\mu}, \overline{\mu}]$; for each, pick x_i as follows:
 - if $x_{(k+1)} < \tilde{x}_i \Delta_i/n$, then we pick $x_i = \overline{x}_i$;
 - if $x_{(k)} > \tilde{x}_i + \Delta_i/n$, then we pick $x_i = \underline{x}_i$;
 - for all other i, we consider both possible values $x_i = \overline{x}_i$ and $x_i = \underline{x}_i$.
- For each of the sequences x_i , we check whether the average E is indeed within this small interval, and if it is, compute the population variance.
- The largest of these population variances is $\overline{\sigma^2}$.

Third Result (cont-d)

- Question: what if two "narrowed" intervals have a common point?
- Case: let us fix k and consider all cases C_k in which no more than k "narrowed" intervals can have a common point.
- Result: $\forall k$, the above algorithm $\overline{\mathcal{A}}$ computes $\overline{\sigma^2}$ in quadratic time for all problems $\in C_k$.
- Comments:
 - Computation time t is quadratic in n.
 - However, t is exponential in k.
 - So, when $k \uparrow$, the algorithm $\overline{\mathcal{A}}$ requires more and more computation time.
 - In our proof of NP-hardness, we use the case when all n narrowed intervals have a common point.

Population Mean, Population Variance: What Next?

• Population covariance

$$C = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x) \cdot (y_i - \mu_y).$$

- Result: both computing \overline{C} and computing \underline{C} are NP-hard problems.
- Population correlation

$$\rho = \frac{C}{\sigma_x \cdot \sigma_y}.$$

- Result: both computing $\overline{\rho}$ and computing $\underline{\rho}$ are NP-hard problems.
- Open problem: design feasible algorithms that work in many practical cases.
- Median: feasible (since it is monotonic in x_i).
- Open problem: analyze other population parameters from this viewpoint.

Bounds for Sample Variance: Variant of the First Problem

- We know:
 - measurement results $\tilde{x}_1, \ldots, \tilde{x}_n$;
 - the accuracies Δ_i of each measurement;
 - hence, that the actual values x_i are within

$$\mathbf{x}_i \stackrel{\text{def}}{=} [\underline{x}_i, \overline{x}_i] = [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i].$$

- that x_i are normally distributed, w/CDF $F_0\left(\frac{x-a}{\sigma}\right)$.
- Question: what are the possible values of a and σ ?
- Main idea: Kolmogorov-Smirnov (KS) inequality implies (with probability $p \geq p_0$) that

$$|F(x) - F_{\text{sample}}(x)| \le \Delta,$$

where $F_{\text{sample}}(x) = \frac{i}{n}$ for $x_{(i)} \le x < x_{(i+1)}$.

Bounds for Sample Variance: Solution

• Due to KS, for every i, for some $x_i \in [\underline{x}_i, \overline{x}_i]$:

$$\frac{i}{n} - \Delta \le F_0\left(\frac{x_{(i)} - a}{\sigma}\right) \le \frac{i}{n} + \Delta.$$

• So,

$$\frac{l(x_i')}{n} - \Delta \le F_0\left(\frac{x_i' - a}{\sigma}\right) \le \frac{u(x_i')}{n} + \Delta,$$

where l(x) is # of k s.t. $\overline{x}_k \leq x$, u(i) is # of k s.t. $\underline{x}_k \leq x$, and $x_i' = \underline{x}_i$ or $x_i' = \overline{x}_i$.

• Hence,

$$F_0^{-1}\left(\frac{l(x_i')}{n} - \Delta\right) \le \frac{x_i' - a}{\sigma} \le \left(\frac{u(x_i')}{n} + \Delta\right).$$

• We get a system of linear inequalities for a and σ :

$$\sigma \cdot F_0^{-1} \left(\frac{l(x_i)}{n} - \Delta \right) \le x_i - a \le \sigma \cdot F_0^{-1} \left(\frac{u(x_i)}{n} + \Delta \right).$$

• So, we can use linear programming to find bounds on a and σ .

Second Problem: Probabilistic Extension of Interval Arithmetic

- Indirect measurements: way to measure y that are are impossible or difficult to measure directly.
- Examples: distance to a star, the amount of oil in a given well.
- Idea: $y = f(x_1, \dots, x_n)$

$$\begin{array}{c|c}
 & \overline{\widetilde{x}_1} \\
\hline
\widetilde{x}_2 \\
\hline
\widetilde{x}_n \\
\end{array} \qquad f \qquad \overline{\widetilde{y}} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$$

• Problem: measurements are never 100% accurate: $\tilde{x}_i \neq x_i \ (\Delta x_i \neq 0)$ hence

$$\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) \neq y = f(x_1, \dots, y_n).$$

What are bounds on $\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y$?

Why Interval Computations: Reminder

$$\begin{array}{c|c} \Delta x_1 \\ \hline \Delta x_2 \\ \hline \dot{\Delta} \dot{x}_n \end{array} \quad f \quad \Delta y$$

- Traditional approach: we know probability distribution for Δx_i (usually Gaussian).
- *Problem:* sometimes we do not know the distribution because no "standard" (more accurate) MI is available. Cases:
 - fundamental science
 - manufacturing
- Solution: we know upper bounds Δ_i on $|\Delta x_i|$ hence

$$x_i \in [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i].$$

Interval Computations: What? How?

• What:

$$[\underline{y}, \overline{y}] = \{ f(x_1, \dots, x_n) \mid x_1 \in [\underline{x}_1, \overline{x}_1], \dots, x_n \in [\underline{x}_n, \overline{x}_n] \}.$$

- *How* (straightforward interval computations):
 - parse f into elementary operations +, -, ·, 1/x, min, max;
 - replace each operation by the corresponding operation of interval arithmetic:

$$[\underline{x}_1, \overline{x}_1] + [\underline{x}_2, \overline{x}_1] = [\underline{x}_1 + \underline{x}_2, \overline{x}_1 + \overline{x}_2];$$

$$[\underline{x}_1, \overline{x}_1] - [\underline{x}_2, \overline{x}_1] = [\underline{x}_1 - \overline{x}_2, \overline{x}_1 - \underline{x}_2].$$

Adding Moments: Step One

- So far, we have considered two cases:
 - statistical case: we know $Prob(\Delta x_i)$;
 - interval case: we know nothing about $Prob(\Delta x_i)$.
- Possible: we have partial information about $Prob(\Delta x_i)$.
- Example: we know moments.
- Simplest case: we know $E_i \stackrel{\text{def}}{=} E[x_i]$ (or rather \mathbf{E}_i).
- Problem:

$$egin{array}{c|c} \mathbf{x}_1, \mathbf{E}_1 \\ \hline \mathbf{x}_2, \mathbf{E}_2 \\ \hline \vdots \\ \mathbf{x}_n, \mathbf{E}_n \end{array} \quad f \quad \mathbf{y}, \mathbf{E} \quad .$$

• Solution: parse to $+, -, \cdot, 1/x$, max, min.

Problem: Formulation, Cases

- Given:
 - $[\underline{x}_1, \overline{x}_1], [\underline{E}_1, \overline{E}_1],$
 - $\bullet [\underline{x}_2, \overline{x}_2], [\underline{E}_2, \overline{E}_2],$
 - an operation $y = x_1 \odot x_2$ ($\odot = +, -, \cdot, 1/x, \max, \min$).
- Find: exact bounds on $[\underline{y}, \overline{y}]$ and $[\underline{E}, \overline{E}]$.
- Comment: bounds on $[\underline{y}, \overline{y}]$ same.
- Cases:
 - we have no info about correlation between x_i ;
 - we know that x_i are independent;
 - we know that x_i are maximally + correlated:

$$\exists t \text{ s.t. } x_1(t) \uparrow \& x_2(t) \uparrow;$$

• we know that x_i are maximally – correlated:

$$\exists t \text{ s.t. } x_1(t) \uparrow \& x_2(t) \downarrow .$$

Formulation of the problem in Precise Terms

- Given: values \underline{x}_1 , \overline{x}_1 , \underline{x}_2 , \overline{x}_2 , \underline{E}_1 , \overline{E}_1 , \underline{E}_2 , \overline{E}_2 , and operation \odot .
- Find: the values

$$\underline{E} \stackrel{\text{def}}{=} \min\{E(x_1 \odot x_2) \mid \text{ all distributions of } (x_1, x_2)$$

for which
$$x_1 \in [\underline{x}_1, \overline{x}_1], x_2 \in [\underline{x}_2, \overline{x}_2],$$

$$E[x_1] \in [\underline{E}_1, \overline{E}_1], E[x_2] \in [\underline{E}_2, \overline{E}_2]$$

and

$$\overline{E} \stackrel{\text{def}}{=} \max\{E(x_1 \odot x_2) \mid \text{ all distributions of } (x_1, x_2)$$

for which
$$x_1 \in [\underline{x}_1, \overline{x}_1], x_2 \in [\underline{x}_2, \overline{x}_2],$$

$$E[x_1] \in [\underline{E}_1, \overline{E}_1], E[x_2] \in [\underline{E}_2, \overline{E}_2]$$

(plus restrictions on the correlation).

Simplest Cases: +, - (All 4 Cases), and Product of Independent x_i

• Addition: we know that

$$E[x_1 + x_2] = E[x_1] + E[x_2],$$

SO

$$[\underline{E}, \overline{E}] = [\underline{E}_1 + \underline{E}_2, \overline{E}_1 + \overline{E}_2]$$

(in all 4 cases).

• Subtraction: similarly,

$$E[x_1 - x_2] = E[x_1] - E[x_2],$$

SO

$$[\underline{E}, \overline{E}] = [\underline{E}_1 - \overline{E}_2, \overline{E}_1 - \underline{E}_2].$$

(in all 4 cases).

• Product, independent x_i :

here,
$$E[x_1 \cdot x_2] = E[x_1] \cdot E[x_2]$$
, hence

$$\mathbf{E} = \mathbf{E}_1 \cdot \mathbf{E}_2$$
.

Product – Case When We Have No Info About Correlation: Theorem

Theorem. For multiplication $y = x_1 \cdot x_2$, when we have no information about the correlation,

$$\underline{E} = \max(p_1 + p_2 - 1, 0) \cdot \overline{x}_1 \cdot \overline{x}_2 +$$

$$\min(p_1, 1 - p_2) \cdot \overline{x}_1 \cdot \underline{x}_2 +$$

$$\min(1 - p_1, p_2) \cdot \underline{x}_1 \cdot \overline{x}_2 +$$

$$\max(1 - p_1 - p_2, 0) \cdot \underline{x}_1 \cdot \underline{x}_2;$$

and

$$\overline{E} = \min(p_1, p_2) \cdot \overline{x}_1 \cdot \overline{x}_2 +$$

$$\max(p_1 - p_2, 0) \cdot \overline{x}_1 \cdot \underline{x}_2 +$$

$$\max(p_2 - p_1, 0) \cdot \underline{x}_1 \cdot \overline{x}_2 +$$

$$\min(1 - p_1, 1 - p_2) \cdot \underline{x}_1 \cdot \underline{x}_2,$$

where $p_i \stackrel{\text{def}}{=} (E_i - \underline{x}_i)/(\overline{x}_i - \underline{x}_i)$.

Meaning of the Theorem

- What are p_i : if we only allow values \underline{x}_i and \overline{x}_i , then p_i is $p[\overline{x}_i]$ for which average is E_i ; then $p[\underline{x}_i] = 1 p_i$.
- If we know p(A) and p(B), then p(A & B) can take any values:
 - $-\operatorname{from}\,\underline{p}(A\,\&\,B)\stackrel{\mathrm{def}}{=}\max(p(A)+p(B)-1,0)$
 - $-\operatorname{to} \overline{p}(A \& B) \stackrel{\mathrm{def}}{=} \min(p(A), p(B));$
- Hence,

$$\underline{E} = \underline{p}[\overline{x}_1 \& \overline{x}_2] \cdot \overline{x}_1 \cdot \overline{x}_2 + \overline{p}[\overline{x}_1 \& \underline{x}_2] \cdot \overline{x}_1 \cdot \underline{x}_2 +$$

$$\overline{p}[\underline{x}_1 \& \overline{x}_2] \cdot \underline{x}_1 \cdot \overline{x}_2 + \underline{p}[\underline{x}_1 \& \underline{x}_2] \cdot \underline{x}_1 \cdot \underline{x}_2;$$

$$\overline{E} = \overline{p}[\overline{x}_1 \& \overline{x}_2] \cdot \overline{x}_1 \cdot \overline{x}_2 + \underline{p}[\overline{x}_1 \& \underline{x}_2] \cdot \overline{x}_1 \cdot \underline{x}_2 +$$

$$p[\underline{x}_1 \& \overline{x}_2] \cdot \underline{x}_1 \cdot \overline{x}_2 + \overline{p}[\underline{x}_1 \& \underline{x}_2] \cdot \underline{x}_1 \cdot \underline{x}_2.$$

Proof: Main Idea

Thus, instead of considering all possible distributions, it is sufficient to consider only distributions for which $x_1 \in \{\underline{x}_1, \overline{x}_1\}$ and $x_2 \in \{\underline{x}_2, \overline{x}_2\}$:

Further Results

- Similar results are given:
 - correlation cases;
 - for the case when we have non-degenerate intervals \mathbf{E}_i .
 - for other elementary arithmetic operations $(1/x, \min, \max);$
- Similar ideas can be used:
 - for more general operations;
 - for the case when we know 2nd moments in addition to the 1st moments.

Acknowledgments

This work was supported in part:

- by NASA under grants NCC5-209 and NCC2-1232;
- by the Air Force Office of Scientific Research grants F30602-00-2-0503 and F49620-00-1-0365;
- by NSF grants CDA-9522207, EAR-0112968, EAR-0225670, and 9710940 Mexico/Conacyt;
- by Small Business Innovation Research grant 9R44CA8174 from the National Institutes of Health (NIH);
- IEEE/ACM SC2002 Minority Serving Institutions Participation Grants;
- by a research grant from Sandia National Laboratories as part of the Department of Energy Accelerated Strategic Computing Initiative (ASCI).