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Problem

Consider the bound constrained global optimization problem
min f(x)

where the n-dimensional interval X is the search region, and
f(x) : R" — R is the objective function. We assume that there exists at
least one global minimizer point in X, that is also a stationary point.

The considered algorithm is based on an inclusion function
calculated by interval arithmetic or by other techniques.
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Properties of inclusion functions

A function F : I" — I is an inclusion function of the objective function
fitforVY el"and Vy € Y f(y) € F(Y), where I stands for the set of
all closed real intervals.

F is said to be an isotone inclusion function over X if for
VY,Z € (X), Y C Zimplies F(Y) C F(Z).
We call the inclusion function F an «-convergent inclusion function

over X if for VY € I(X) w(F(Y)) —w(f(Y)) < Cw*(Y) holds, where «
and C are positive constants.

We say that the inclusion function F has the zero convergence property,
if w(F(Z;)) — 0 holds for all the {Z;} interval sequences for which
Z; CXforalli=1,2,...and w(Z;) — 0. /
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/Step 1 Let L be an empty list, the leading box A := X, and the \
iteration counter k := 1. Set f = F(X).

Step 2 Subdivide A into s subsets A;, (i =1, ...,s) satistying
A = UA, so that int(A;) Nint(A;) = () for all i # j where int
denotes the interior of a set. Evaluate the inclusion function F(X)
for all the new subintervals, and update the upper bound f of
the global minimum.

Step 3 Let L:= LU{(A;,E(A))}.

Step 4 Discard certain elements from L that cannot contain a global
minimum point.

Step 5 Choose a new A € L and remove the related pair from the list.

Step 6 While termination criteria do not hold let k := k + 1 and go to

\ Step 2. /
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Algorithm parameters

The generalized RejectIndex:

i — E(X)

is an algorithm parameter, the large value of which indicates that an
interval X is close to a minimizer point (fy — f*, where f* is the
global minimum).

The natural validated bounds on the f; values are:

fk = min{E(Yl),l =1, L[} < f < fz?k‘
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Convergence properties 1

THEOREM 1 [1]: Assume that the inclusion function of the objective
function is isotone and it has the zero convergence property.
Consider the interval branch-and-bound optimization algorithm that
uses the cut-off test, the monotonicity test, the interval Newton step
and the concavity test as accelerating devices, and that selects as next
leading interval that interval Y from the working list which has the
maximal p(fy, Z) value.

A necessary and sufficient condition for the convergence of this
algorithm to a set of global minimizer points is that the sequence
{fi} converges to the global minimum value f* and there exist at
most a finite number of f; values below f*.
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Convergence properties 2

THEOREM 2 [2]: Assume that the inclusion function of the objective
function is isotone and it has the zero convergence property.
Consider the interval branch-and-bound optimization algorithm that
uses the cut-off test, the monotonicity test, the interval Newton step
and the concavity test as accelerating devices, and that selects as next
leading interval that interval Y from the working list which has the
maximal p(f;, Z) value.

The algorithm converges exclusively to global minimizer points if

[ S fe<ofi=f)+ ],

holds for each iteration number k, where 0 < § < 1.
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4 Proof )

Notice first that the maximal pf(f, Y) values are always
nonnegative, since fx is not less than the minimal lower bound of F.
Due to f; < f, the numerator of pf is less than

f—min{F(Y",l =1,...,|L|}. f, s conservative, i.e. it is
monotonously nondecreasing (based on the isotone inclusion
functions). The same property is ensured for f, by the isotonicity of
F(X), and by the updating of f. Thus f, is monotonously

nondecreasing, and f, is monotonously nonincreasing.

Consider now an arbitrary point x’ € X in such a way that f(x) > f*,
and that there is a subsequence {Y}, } of the leading boxes that
converges to x’. For this point x’ the sequence of lower bounds F(Yy,)
converges to f(x’) due to the zero convergence property, and

obviously the sequence of upper bounds f; = f, on the minimum
Qalue converges to a value not greater than f(x’). /
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Proof (continued / 2)

In the same time the f; values must be below f(x’) from a certain
iteration index K, since they fulfill the condition

[ S fe <= f)+f,

with a 0 < 0 < 1. Then the respective pf values are negative from an
index K’ > K.

If there are more such points as x’, then the above reasoning holds
for each of them. In other words, also in this case from a certain
index all pf is negative.
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Proof (continued / 3)

On the other hand, there is always at least one global minimizer
point, a stationary point in one of the subintervals in the list L. The
respective subinterval cannot be deleted by an accelerating step, and
thus its pf(fx, Y) value is nonnegative. But this contradicts that a
subinterval with a negative pf value is selected, i.e. no subsequence
of the generated intervals can converge to a nonoptimal point of the
search region. []
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Numerical testing environment

The numerical tests were made on a Pentium-IV computer (1,4
Ghz, 1 Gbyte) under Linux.

The inclusion functions were implemented via the PROFIL —
BIAS routines. The programs were coded in C++.

The basis algorithm was that of the C++ Toolbox for Verified
Computing.

The standard time unit was 0.00076 seconds.

The new method assumed an approximate optimum value of 4
digits precision obtained by a previous traditional optimization

/

algorithm.
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Numerical results, basic algorithm (e = 0.01)
Problem CPU time in seconds (Pentium IV, 1.4 Ghz)

name 7 F (f + f)/2 new pf*

Yo Yo Yo
H3 3 | 347.64" 431.98* 124 8.46 2 5.59 2
H6 6 | 444.75* 439.99* 99 | 375.53* 84 | 368.55* 83
GP 2 | 47479 | 1,760.60* 371 3.09 1 3.48 1
SHCB 2 | 362.53" 298.12 82 0.45 0 0.54 0
L3 2 | 387.02% 443.24* 115 0.07 0 0.09 0
L5 2 | 381.78" 319.82* 84 0.03 0 0.05 0
Sch27 3 | 114.40 0.06 0 0.04 0 | 115.27 101
EX2 5 | 358.43" 354.16* 99 | 311.11* 87 | 328.91* 92

K*Unsolved due to the memory limitation (at most 20.000 intervals)./
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