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Problem

Consider the bound constrained global optimization problem

min
x∈X

f (x)

where the n-dimensional interval X is the search region, and
f (x) : Rn → R is the objective function. We assume that there exists at
least one global minimizer point in X, that is also a stationary point.

The considered algorithm is based on an inclusion function
calculated by interval arithmetic or by other techniques.
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Properties of inclusion functions

A function F : In → I is an inclusion function of the objective function
f if for ∀Y ∈ In and ∀y ∈ Y f (y) ∈ F(Y), where I stands for the set of
all closed real intervals.

F is said to be an isotone inclusion function over X if for
∀Y, Z ∈ I(X), Y ⊆ Z implies F(Y) ⊆ F(Z).

We call the inclusion function F an α-convergent inclusion function
over X if for ∀Y ∈ I(X) w(F(Y))−w( f (Y)) ≤ Cwα(Y) holds, where α

and C are positive constants.

We say that the inclusion function F has the zero convergence property,
if w(F(Zi)) → 0 holds for all the {Zi} interval sequences for which
Zi ⊆ X for all i = 1,2, . . . and w(Zi) → 0.
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Step 1 Let L be an empty list, the leading box A := X, and the
iteration counter k := 1. Set f̃ = F(X).

Step 2 Subdivide A into s subsets Ai, (i = 1, . . . , s) satisfying
A = ∪Ai so that int(Ai)∩ int(A j) = ∅ for all i 6= j where int
denotes the interior of a set. Evaluate the inclusion function F(X)
for all the new subintervals, and update the upper bound f̃ of
the global minimum.

Step 3 Let L := L∪ {(Ai, F(Ai))}.

Step 4 Discard certain elements from L that cannot contain a global
minimum point.

Step 5 Choose a new A ∈ L and remove the related pair from the list.

Step 6 While termination criteria do not hold let k := k + 1 and go to
Step 2.
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Algorithm parameters

The generalized RejectIndex:

p f ( fk, X) =
fk − F(X)

F(X)− F(X)

is an algorithm parameter, the large value of which indicates that an
interval X is close to a minimizer point ( fk → f ∗, where f ∗ is the
global minimum).

The natural validated bounds on the fk values are:

f
k
= min{F(Yl), l = 1, ..., |L|} ≤ fk ≤ f̃ = f k.
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Convergence properties 1

THEOREM 1 [1]: Assume that the inclusion function of the objective
function is isotone and it has the zero convergence property.
Consider the interval branch-and-bound optimization algorithm that
uses the cut-off test, the monotonicity test, the interval Newton step
and the concavity test as accelerating devices, and that selects as next
leading interval that interval Y from the working list which has the
maximal p( fk, Z) value.

A necessary and sufficient condition for the convergence of this
algorithm to a set of global minimizer points is that the sequence
{ fk} converges to the global minimum value f ∗ and there exist at
most a finite number of fk values below f ∗.
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Convergence properties 2

THEOREM 2 [2]: Assume that the inclusion function of the objective
function is isotone and it has the zero convergence property.
Consider the interval branch-and-bound optimization algorithm that
uses the cut-off test, the monotonicity test, the interval Newton step
and the concavity test as accelerating devices, and that selects as next
leading interval that interval Y from the working list which has the
maximal p( fi, Z) value.

The algorithm converges exclusively to global minimizer points if

f
k
≤ fk < δ( f k − f

k
) + f

k

holds for each iteration number k, where 0 < δ < 1.
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Proof

Notice first that the maximal p f ( fk, Y) values are always
nonnegative, since fk is not less than the minimal lower bound of F.
Due to fk < f̃ , the numerator of p f is less than
f̃ −min{F(Yl), l = 1, ..., |L|}. f

k
is conservative, i.e. it is

monotonously nondecreasing (based on the isotone inclusion
functions). The same property is ensured for f k by the isotonicity of
F(X), and by the updating of f̃ . Thus f

k
is monotonously

nondecreasing, and f k is monotonously nonincreasing.

Consider now an arbitrary point x′ ∈ X in such a way that f (x′) > f ∗,
and that there is a subsequence {Ykl

} of the leading boxes that
converges to x′. For this point x′ the sequence of lower bounds F(Ykl

)
converges to f (x′) due to the zero convergence property, and
obviously the sequence of upper bounds f̃k = f k on the minimum
value converges to a value not greater than f (x′).
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Proof (continued / 2)

In the same time the fk values must be below f (x′) from a certain
iteration index K, since they fulfill the condition

f
k
≤ fk < δ( f k − f

k
) + f

k

with a 0 < δ < 1. Then the respective p f values are negative from an
index K′ ≥ K.

If there are more such points as x′, then the above reasoning holds
for each of them. In other words, also in this case from a certain
index all p f is negative.
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Proof (continued / 3)

On the other hand, there is always at least one global minimizer
point, a stationary point in one of the subintervals in the list L. The
respective subinterval cannot be deleted by an accelerating step, and
thus its p f ( fk, Y) value is nonnegative. But this contradicts that a
subinterval with a negative p f value is selected, i.e. no subsequence
of the generated intervals can converge to a nonoptimal point of the
search region. �
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Numerical testing environment

• The numerical tests were made on a Pentium-IV computer (1,4
Ghz, 1 Gbyte) under Linux.

• The inclusion functions were implemented via the PROFIL –
BIAS routines. The programs were coded in C++.

• The basis algorithm was that of the C++ Toolbox for Verified
Computing.

• The standard time unit was 0.00076 seconds.

• The new method assumed an approximate optimum value of 4
digits precision obtained by a previous traditional optimization
algorithm.
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Numerical results, basic algorithm (ε = 0.01)

Problem CPU time in seconds (Pentium IV, 1.4 Ghz)

name n F ( f k + f
k
)/2 new p f ∗

% % %

H3 3 347.64∗ 431.98∗ 124 8.46 2 5.59 2

H6 6 444.75∗ 439.99∗ 99 375.53∗ 84 368.55∗ 83

GP 2 474.79∗ 1,760.60∗ 371 3.09 1 3.48 1

SHCB 2 362.53∗ 298.12 82 0.45 0 0.54 0

L3 2 387.02∗ 443.24∗ 115 0.07 0 0.09 0

L5 2 381.78∗ 319.82∗ 84 0.03 0 0.05 0

Sch27 3 114.40 0.06 0 0.04 0 115.27 101

EX2 5 358.43∗ 354.16∗ 99 311.11∗ 87 328.91∗ 92

∗ Unsolved due to the memory limitation (at most 20.000 intervals).

12



'

&

$

%

References

1. Csendes, T.: Convergence properties of interval global
optimization algorithms with a new class of interval selection
criteria. J. Global Optimization 19(2001) 307-327

2. Csendes, T.: Numerical experiences with a new generalized
subinterval selection criterion for interval global optimization.
Reliable Computing, 9(2003) 109-125.

3. Csendes, T.: Generalized subinterval selection criteria for interval
global optimization. Submitted for publication, available at
http://www.inf.u-szeged.hu/∼csendes/publ.html

Acknowledgements: The present work was supported by the grants
MÖB D-11/2001, OMFB D-30/2000, OMFB E-24/2001, OTKA
T 032118, and T 034350.

13


