
Comments and Suggestions for the Proposed Standard Interval Library for C++

Workshop on New Perspectives in Enclosure Methods
J. Wolff v. Gudenberg

Dagstuhl Oct 2005

The participants of the workshop - including some of the authors of C-XSC and filib++ -
have been discussing the proposal in moderate detail and came to the decision to
strongly support the proposal for standardizing interval arithmetic in C++.

Some comments in favour of the proposal
1. We support the decision to offer a template with a typename parameter for one of the

real arithmetic types.
2. Hardware rounding should not be visible to the user.
3. Least bit accuracy is not necessary but inclusion is.
4. The empty interval is ok, but operations with empty intervals must be clearly defined.

(see below)
5. exception free mode producing result intervals containing infinities is an acceptable

decision, but we must be sure that no containment errors occur (see below)
6. We accept the interval bool type

Some problems with the proposal
1. The output operator << should satisfy inclusion property, as well as input operator

should perform proper outwardly directed rounding
Reason: Users will be puzzled otherwise.

2. Comparison operators <= etc. for intervals should not be defined, only functions
Reason: We have different comparisons and the user should be able to choose his
favorite version. Filib++ users, e.g. are used that <= means subset inclusion.

3. Some cases are not considered in the specification of the arithmetic operations
See addition for example:
If the value lhs of *this prior to the addition is non empty, *this contains [xl+yl,xu+yu]
where lhs = [xl; xu] and rhs = [yl;yu] and all operations are computed exactly, and this->empty()
is true otherwise.
Otherwise is unclear, rhs = empty would be clearer

4. The specification of the division is wrong, at least incomprehensible.
Stores an empty interval<T> in *this if rhs is empty or the singleton interval<T>(T(0)),
otherwise does not change *this if it already contains interval<T>(T(0))
otherwise stores interval<T>::whole() in *this if rhs strictly contains T(0),
otherwise divides the interval *this by the interval value rhs and stores the result in *this.

What does that mean ?? the second line ?
It should return whole, if 0 is contained in this and in rhs !

Some further suggestions
1. We think it is very important that the existing libraries boost and filib++,e.g. can

be rebuild on top of the new standard and that users of the advanced features of

these libraries will not be compromised. From the filib++ point of view we will
define aliases if the function name differs and implement the new functions.

2. We think it will be appropriate to give a reference to C-XSC in the introduction of
the proposal. Here is a link

 http://www.math.uni-wuppertal.de/org/WRST/literatur/cxsc_docu.html
3. The feature that std::set<interval> is possible is of minor importance.
4. We also would like to propose elementary functions. Filib++ provides a reference

implementation. But perhaps it is cleverer to postpone this for the second step.

