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Chapter 1: INTRODUCTORY MATERIAL

1.1 Introduction

Normally, you would introduce notation, give the reader a guide to what you will be

presenting, and motivate the reader (i.e., say why you did what you did and why it

might be interesting to the reader). However, the next section presents a totally

unrelated example of typesetting.

1.2 Reliability in a two–parameter exponential stress–strain model

In this chapter1, we want to develop inferential procedures about the reliability

parameter R = P (X > Y ), where X and Y are independent two-parameter exponential

random variables. A two-parameter exponential distribution has probability density

function (pdf) given by

f(x;µ, θ) =
1

θ
e−(x−µ)/θ, x > µ, µ ≥ 0, θ > 0, (1.1)

where µ is the location parameter and θ is the scale parameter. In lifetime data

analysis, µ is referred to as a threshold or “guarantee time” parameter, and θ is the

mean time to failure. The case of the two-parameter exponential distributions is of

importance because it allows us to derive confidence limits for the reliability parameters

involving Pareto distributions or power distributions by means of one-one

transformations. In particular, if X follows a Pareto distribution with pdf λσλ/xλ+1,

x > σ, then Y = ln(X) has the pdf in (1.1) with µ = ln(σ) and θ = 1/λ. If X follows a

power distribution with pdf λxλ−1/σλ, 0 < x < λ, then Y = ln(1/X) has the pdf in

(1.1) with µ = ln(1/σ) and θ = 1/λ. Therefore, the inferential procedures about the

1The content of this chapter will appear in Metrika.
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reliability parameter that we will derive in the following sections are readily applicable

to these distributions.

To formulate the present problem, let X ∼ exponential(µ1, θ1) independently of

Y ∼ exponential(µ2, θ2). That is, the pdf of X is f(x;µ1, θ1) and the pdf of Y is

f(y;µ2, θ2), where f is given in (1.1).
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Chapter 2: EXAMPLES

2.1 Background

Some statements:

2 = 1 + 1

=

∫ ∞
0

e−
1
2
xdx

= π − (π − 2).

A table follows.
Arabic Roman Notes

1 I |
2 II | |
3 III | | |
4 IV | | | |

We now have a theorem.

Theorem 2.1. Without a doubt,

1 + 1 = 2,

and that adds up. (We can put some additional blah-blah-blah here to illustrate how this

style file spaces lines in theorems.)

Some might say Theorem 2.1 is obvious, but it took Bertrand Russell about half

a book to develop the logical machinery to prove it.

2.1.1 A Corollary.

Corollary 2.2. 2− 1 = 1.

Remark 2.3. The theorem, proposition, lemma, corollary, remark, definition, and

example environments have been defined in the style given in the class file

ullthesis.cls. A numbering scheme acceptable to most has been chosen.
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2.1.1.1 A sub-subsection. This is the least significant part of §2.1.
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Chapter 3: MAIN RESULTS

3.1 How to add figures

Figure 3.1. A graph passing through (0,0).
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3.2 How to make tables

Table 3.1. A first finite sequence.

n 1 2 3 4 5 6
an 1 2 3 4 5 6

Table 3.2. A second finite sequence.

n 1 2 3 4 5 6
bn 1 2 3 4 5 6

Figure 3.1 is not the graph of Table 3.2.

How to cite a reference [1].

Here is another one [2].
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Chapter 4: CONCLUSIONS

4.1 Summary

In Chapter 2, we summed an array.

4.2 Future work

We certainly hope to have work in the future.

4.3 Writing the Bibliography

You can save yourself a lot of effort, and at the same time make sure your style is

consistent with that of other dissertations (and make it more likely that the Graduate

School will accept the format) if you use BibTEX and cite your references using the

citation keys in the BibTEX database or databases you use (rather than “hard-wire” the

reference numbers or names into your text by explicitly typing them). Contact me1 if

you have any questions about this. Along these lines, I recommend you copy BibTEX

entries from any databases you use to a single database for your dissertation, and

correct any minor inconsistencies. Many BibTEX databases on the web are not perfect.

For example, some might have “Newton” in the title field of a record, but most BibTEX

styles will typeset all words in the title except the first word as lower case. This can be

corrected by enclosing “Newton” in braces, i.e., by replacing “Newton” with

“{Newton}”. (BibTEX treats things within braces as a unit that it does not touch.)

1A. U. Thor = R. Baker Kearfott, rbk@louisiana.edu.
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Appendix A: Proof of Theorem A.1

Theorem A.1. I am.

Proof. I think. Therefore, I am.
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Appendix B: An Item That Can Be Removed

Make sure your work is not swollen with unnecessary verbiage.
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