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Abstract

In this paper, the concept of the interval Gröbner system together with
an algorithm for its computation are proposed to analyze algebraic pol-
ynomial systems with interval coefficients (interval polynomial systems).
These systems appear in many computational problems arising from both
the engineering and mathematical sciences. As opposed to linear interval
polynomial systems, there is no method to solve and/or analyze a non-
linear interval polynomial system. Interval Gröbner systems enable us
to determine whether an interval polynomial system has any solutions or
not. If so, a finite decomposition of the solution set will be constructed
by the elements of the computed interval Gröbner system. Furthermore,
this concept allows us to verify whether two interval polynomial systems
share a common solution or not. The concept of the interval Gröbner
system is based on elimination tools on the set of interval polynomials.
It is worth noting that this is not a trivial extension of usual techniques,
since the set of interval polynomials does not satisfy the distributivity
and additive inverse axioms of a ring with usual interval arithmetic. In
doing so, we introduce the concept of the ideal family associated to an
interval polynomial system which contains an infinite number of (non-
interval) polynomial ideals. Then we analyze all of these ideals using
an equivalence relation with a finite number of equivalence classes. This
method is based on a novel computational algebraic tool, the concept of
comprehensive Gröbner system, equipped with an interval-based criterion
to omit unnecessary computations. We also provide some applications of
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interval Gröbner systems to analyze interval polynomial systems, finding
multiple roots and solving the divisibility problem of interval polynomials.
Our algorithm for the computation of interval Gröbner systems has been
implemented in both Maple and Magma software packages.

Keywords: Interval Polynomial System, Interval Gröbner system, Elimination Me-
thod, Gröbner Basis, Comprehensive Gröbner System, Multiple Roots, Real Factors
AMS subject classifications: 65G40, 13P10

1 Introduction

Many computational problems arising from applied sciences deal with floating-point
computation and therefore need to import polynomial equations containing error terms
in computers. The error terms make the polynomial equations to appear with per-
turbed coefficients, i.e. the coefficients range in specific intervals and thus are called
interval polynomial equations. Interval polynomial equations come naturally from sev-
eral problems in engineering sciences such as control theory [8, 34] and dynamical
systems [31]. One of the most important problems in the context of interval polyno-
mial equations is to analyze and study the stability and solutions of an (or a system
of) interval polynomial(s). More generally, the problem is to gain as much informa-
tion as possible from an interval polynomial system. Many scientific works in this
direction use interval arithmetic [2], for instance, computation of the roots in certain
cases [6, 33]; however, they do not enable us to obtain the desired roots, even approxi-
mately [6]. Another example consists of those works which contain (the most popular)
method to solve an interval polynomial equation by computing the roots of some ex-
act algebraic polynomials. However, it is hard to solve an algebraic equation of high
degree which has its own challenging complexity problems [10, 12]. In [13], a method
is devoted to solving an interval polynomial system by constructing two boundary sys-
tems of equality and inequalities depending on the sign of the variables to determine a
decomposition on the solution set. There is also a new method described in [38] which
counts the zeros of a univariate interval polynomial.

In addition to numerical methods, there are some attempts to combine numeric
and symbolic methods to solve an interval polynomial system. In [9], Falai et al. state
a modification of Wu’s characteristic set method for interval polynomial systems, and
use numerical approximation to find an interval containing the roots. The essential
strategy in this work is to omit all the terms with interval coefficients containing zero,
which simply permits the division of interval coefficients. This consideration may cause
the lose of some important polynomials.

In this paper, we try to use exact symbolic methods to facilitate analyzing in-
terval polynomial systems. It is worth noting that, in some published texts such as
[16, 17], it has been attempted to approximate the solution set of a polynomial sys-
tem by presenting an interval box containing the solution set. These methods are
devoted to solving a polynomial system in the usual sense (with non-interval coeffi-
cients) and thus differ from our method which is focused on polynomial systems with
interval coefficients. In our proposed method, it is very important to keep trace of
interval coefficients during computations. Roughly speaking, we associate an auxil-
iary parameter to each interval coefficient provided that each parameter ranges over
its own related interval only. Nowadays there are important results [36, 35], efficient
algorithms [20, 21, 23, 24, 25, 27, 28] and powerful implementations in the context of
parametric computations and analyzing parametric polynomial systems. We introduce
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the new concept interval Gröbner system for a system of interval polynomials using the
concept of comprehensive Gröbner system [35] which is used to describe all different
behaviors of a parametric polynomial system. An interval Gröbner system contains a
finite number of systems where each one is a Gröbner basis for (non-interval) polyno-
mial systems obtained from the main system. It is worth noting that unlike [9], we do
not omit any interval coefficient and cover all possible cases for the exact coefficients
arising from the intervals. Using an interval Gröbner system of an interval polynomial
system, one can verify in a simple way whether the system has any solution or not,
and if so, find all the solutions. Furthermore, it enables us to compute the common
solutions of two interval polynomial systems. We design also an algorithm to com-
pute an interval Gröbner system for an interval polynomial system. Our algorithm
has been implemented in Maple software which involves all the criteria and techniques
that are explained in this paper. Also, we have implemented this algorithm in the
Magma computer algebra system, but this implementation does not contain some of the
techniques 1.

This paper is organized as follows. In Section 2 we state introductory definitions
and review interval arithmetic. In Section 3 we explain interval polynomials and their
related concepts. Section 4 states the main idea behind the paper. To review the
concepts of computational algebraic tools we present Section 5 which contains a brief
introduction to the concept of the Gröbner basis and the comprehensive Gröbner sys-
tem, together with their related algorithms. Subsequently, we describe our elimination
method for interval polynomial systems in Section 6. Finally, in Section 7, we describe
some applications of the interval Gröbner system.

2 Preliminaries

In this section we present the interval arithmetic and related concepts which are needed
for the rest of this text. The main references of this section are [19] and [29]. Let R
denote the set of real numbers while R∗ is used to show the extended real numbers set
i.e. R ∪ {−∞,∞}.

Definition 1 Let a, b ∈ R∗. We define four kinds of real intervals defined by a and b
as follows:

Closed interval : [a, b] = {x | a ≤ x ≤ b} (a, b 6= ±∞)
Left half open interval : (a, b] = {x | a < x ≤ b} (b 6= ±∞)
Right half open interval : [a, b) = {x | a ≤ x < b} (a 6= ±∞)
Open interval : (a, b) = {x | a < x < b}

(1)

The set of all real intervals is denoted by [R].

It should be said that approximately all existing texts on the subject of interval
computation deal with closed intervals. In must cases, closed intervals are denoted by
capitals and their lower (resp. upper) bounds by underbars (resp. overbars), as

X = [X, X].

However, as there are some practical problems including non-closed intervals we con-
sider all different types of intervals.

1These implementations are available at http://faculty.du.ac.ir/rahmani/softwares/.

http://faculty.du.ac.ir/rahmani/softwares/
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Remark 2.1 Having all different kinds of intervals at once, we use the notion [a, b, i, j]
where i, j ∈ {0, 1} to denote the intervals in (1), as follows,

[a, b, i, j] =


[a, b] if i = j = 1
(a, b] if i = 0, j = 1
[a, b) if i = 1, j = 0
(a, b) if i = j = 0

However when all intervals come from one sort of presentation, we prefer to use the
form in (1).

Now we review the interval arithmetic and discuss the interval dependencies that will
occur in the evaluation of interval expressions.

Definition 2 Suppose that A and B are two intervals, which are considered as two
sets of real numbers. Four essential arithmetic operations on A and B are defined as

A op B = {a op b | a ∈ A, b ∈ B},

where op ∈ {+,−,×, /}.

As a consequence of the above definition, we can also define interval arithmetic when
the intervals are shown by their bounds. Let [a1, b1, i1, j1] and [a2, b2, i2, j2] be two
real intervals. Note that each real number a is considered as [a, a, 1, 1] which is called
a degenerate interval. Four essential arithmetic operations are defined as follows,

[a1, b1, i1, j1] + [a2, b2, i2, j2] = [a1 + a2, b1 + b2,min(i1, i2),min(j1, j2)]
[a1, b1, i1, j1]− [a2, b2, i2, j2] = [a1 − b2, b1 − a2,min(i1, j2),min(j1, i2)]
[a1, b1, i1, j1]× [a2, b2, i2, j2] = [akb`, ak′b`′ ,min(ik, j`),min(ik′ , j`′)],

where akb` and ak′b`′ are the minimum and maximum of the set {a1a2, a1b2, b1a2, b1b2}
respectively, and finally

[a1, b1, i1, j1]/[a2, b2, i2, j2] = [a1, b1, i1, j1]× [1/b2, 1/a2, j2, i2],

provided that a2 > 0 or b2 < 0 or a2 = i2 = 0 or b2 = j2 = 0. Note in the above
relations that all ambiguous cases ∞−∞, ±∞× 0, ±∞±∞ and 0

0
will induce the biggest

possible interval i.e. R.
As an easy observation, when an interval X = [a, b, i, j] with a 6= b contains zero,

we can compute 1/X as follows,

• If a = 0 then
1

X
=

1

[a, b, 0, j]
= [

1

b
,+∞, j, 0],

• If b = 0 then
1

X
=

1

[a, b, i, 0]
= [−∞, 1

a
, 0, i],

• If ab < 0 then by seperating X as X = [a, 0, i, 0] ∪ [0, b, 0, j] we have

1

X
=

1

[a, 0, i, 0] ∪ [0, b, 0, j]
= [−∞, 1

a
, 0, i] ∪ [

1

b
,+∞, j, 0].

Remark 2.2 Although interval arithmetic seems to be compatible with real numbers
arithmetic, but this affects the distributivity of multiplication over addition and the
existence of inverse elements. More precisely, if X,Y and Z are three intervals then
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• X × (Y + Z) ⊆ X × Y +X × Z,

and if X is non-degenerated then

• X × 1
X
6= 1, but 1 ∈ X × 1

X
and

• X + (−X) 6= 0, but 0 ∈ X + (−X).

Furthermore, if X contains some negative real numbers, then

Xn = {xn | x ∈ X} 6= X × · · · ×X︸ ︷︷ ︸
n times

.

To see this, let for instance X = [a, b, i, j] where a < 0 and |a| < b. Then, X2 =
[0, b2, 1, j] while X × X = [ab, b2,min(i, j), j]. To solve this inconsistency, we define
the n,th power of an interval for each non-negative integer n as follows,

[a, b, i, j]n =


1 n = 0
[an, bn, i, j] 0 ≤ a
[bn, an, j, i] b ≤ 0
[0,max(an, bn), 1, c] a < 0 < b

where c =

{
i |b| < |a|
j otherwise.

Let us now evaluate some expressions to illustrate more challenging problems dealing
with interval arithmetic. Let f(x, y) = x

x+y
, X = [1, 2] and Y = [1, 3]. We compute

f(X,Y ) in two ways. The first is to compute f(X,Y ) as a usual evaluation using
interval arithmetic:

X

X + Y
= [1/5, 1]. (2)

However, one can manipulate the expression to see

X

X + Y
=

1

1 + Y
X

= [1/4, 2/3]. (3)

Let us separate x and y first depending on f(x, y): we call y (resp. x), a first (resp.
second) class variable of f if it appears one (resp. more than one) time(s) in the
structure of f . As is obvious, the answer of (3) is a narrower interval and in fact the
exact value. The reason is that X is a second class variable for (2) and so it brings
dependency between two parts of the expression. This is while there is no dependency in
(3) given that Y

X
appears only one time, and so it is a first class variable. Dependency is

one of the crucial points of this paper in finding the solution set of interval polynomial
systems. Dependency is the main reason that causes the appearance of an amount
of error by introducing larger intervals than the exact solution. Nevertheless, it is
possible to cancel dependencies by considering X −X = 0 as well as X/X = 1 easily,
while sometimes this becomes difficult (see [19] for more details) .

3 Interval Polynomials

Let R be the field of real numbers, considered as the ground field of computations
throughout the current text and let the set {x1, . . . , xn} be the set of variables.
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Definition 3 Each polynomial of the form

[f ] =

m∑
i=1

[ai, bi, `i, ki]x
αi1
1 · · ·xαin

n , (4)

is called an interval polynomial, where [ai, bi, `i, ki] is a real interval for each i =
1, . . . ,m, and each power product xαi1

1 · · ·xαin
n is called a monomial where the powers

are non negative integers. We denote the set of all interval polynomials by

[R][x1, . . . , xn].

Definition 4 Let [f ] be an interval polynomial as defined in (4). The set of all pol-
ynomials arising from [f ] for different values of intervals in coefficients is called the
family of [f ] and is denoted by F([f ]). More preciesly:

F([f ]) = {
m∑
i=1

cix
αi1
1 · · ·xαin

n | ci ∈ [ai, bi, `i, ki], i = 1, . . . ,m}.

Similar to the family of an interval polynomial, we can define the family of a set of
interval polynomials as follows:

Definition 5 Let S = {[f ]1, . . . , [f ]`} be a set of interval polynomials with F([f ]j) =
Fj for each j = 1, . . . , `. We define the family of S to be the set F1×· · ·×F`, denoted
by F(S).

We now define the concept of the solution set of an interval polynomial.

Definition 6 For an interval polynomial [f ] ∈ [R][x1, . . . , xn], we say that r ∈ Rn is
a real solution or a real root of [f ], if there exists a polynomial p ∈ F([f ]) such that
p(r) = 0. Similarly, we say that a system S = {[f ]1, . . . , [f ]`} of interval polynomials
has a solution, if there exists r ∈ Rn such that for each i = 1, . . . , `, r is a root of [f ]i.

Example 3.1 Let us find the solution set of

[−2,−1]x2 + [1, 5]x+ [3, 6] = 0

where all intervals are closed. When x ≥ 0, we have

[−2,−1]x2 + [1, 5]x+ [3, 6] = [−2x2 + x+ 3,−x2 + 5x+ 6],

So we must have
0 ≤ −x2 + 5x+ 6 and − 2x2 + x+ 3 ≤ 0,

which implies that
x = −1.

Similarly when x ≤ 0, we have

[−2,−1]x2 + [1, 5]x+ [3, 6] = [−2x2 + 5x+ 3,−x2 + x+ 6],

which concludes
x = 3

Thus the solution set of this interval polynomial is

{−1, 3}
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It is notable that using interval arithmetic in the well-known method of calculating the
roots of a quadratic polynomial equation due to the discriminant, we attain

[−3.77, 0.70] ∪ [1.15, 6.77].

However, this solution set contains an amount of error, due to dependencies occurring
in the discriminant.

4 The Idea

In this section we describe some problems which may occur when using an elimination
method on a system of interval polynomials. To facilitate the description, let us give
an example of a linear interval polynomial system. It is worth noting that, as the
main elimination method for a system of linear interval polynomials, one can use
the interval Gaussian elimination method described in [1, 37]. As explained in the
ongoing example, we impose only one simple linear operation which is of course a part
of interval Gaussian elimination method. Consider the system

f1 = [1, 2]x1 + x2 + 2x3,
f2 = [1, 4]x1 + x2 + 1,
f3 = [3, 4]x1 + x2 + 4x3.

By eliminating the variable x2, we have{
f1 − f2 = [−3, 1]x1 + 2x3 − 1,
f3 − f2 = [−1, 3]x1 + 4x3 − 1

Now, if we choose 0 from both intervals [−3, 1] and [−1, 3], it will be concluded that
the system has no solution because 2x3 − 1 = 4x3 − 1 = 0.

However, this case is impossible since both the intervals [−3, 1] and [−1, 3] can not
be zero at once. To see this, notice that [−3, 1] comes from [1, 2] − [1, 4] and so for
[−3, 1] to be zero, [1, 4] must give some values in [1, 2]. On the other hand, [−1, 3]
comes from [3, 4] − [1, 4] and so this interval can be zero only when [1, 4] gives some
values in [3, 4] and this is a contradiction. This simple linear system shows that the
usual elimination method can result in a wrong conclusion or the appearance of some
extra values in the solution set. The main reason is that we forgot the dependencies
between [−3, 1] and [−1, 3] during the computation while they are both dependent on
[1, 4] and thus they are dependent on each other.

To solve this problem, we must keep trace of each interval coefficient. In doing so,
our idea is to use a parameter instead of each interval, to see how new coefficients are
built. For instance, let us substitute [1, 2], [1, 4] and [3, 4] with a, b and c as parameters
in the above example. So we have

f̃1 = ax1 + x2 + 2x3,

f̃2 = bx1 + x2 + 1,

f̃3 = cx1 + x2 + 4x3.

and applying the elimination steps we observe{
f̃1 − f̃2 = (a− b)x1 + 2x3 − 1,

f̃3 − f̃2 = (c− b)x1 + 4x3 − 1.
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Now one can conclude that under the assumption that a−b = 0, the coefficient c−b can
not be zero. The reason is that if c− b = 0 then a = c while 1 ≤ a ≤ 2 and 3 ≤ c ≤ 4.
Therefore, using parameters in the mentioned manner, prevents us reaching wrong
conclusions regarding the solution set.

The main question here, is how to use the elimination method when the coefficients
contain a number of parameters. In fact, as we will state in the following sections,
we carry out the elimination steps thanks to the method of the Gröbner basis and for
the parametric case, we use the concept of the comprehensive Gröbner system, to see
the simplest possible polynomials to solve. Thus, our idea is to convert each interval
polynomial system into a parametric polynomial system and use the parametric algo-
rithmic aspects, with some modifications, to solve the parametric system by dividing
the solution set into a finite number of components. Finally, we convert the result to
see the solution set of the interval polynomial system.

5 Gröbner Bases and Comprehensive Gröbner
Systems

In this section we review the concepts and notations of ordinary and parametric pol-
ynomial rings. Let K be a field and x1, . . . , xn be n (algebraically independent) vari-
ables. Each power product xα1

1 · · ·xαn
n is called a monomial where α1, . . . , αn ∈ Z≥0.

For simplicity, we abbreviate such monomials by xα where x is used for the sequence
x1, . . . , xn and α = (α1, . . . , αn). We can sort the set of all monomials over K by spe-
cial types of total orderings, the so called monomial orderings, given in the following
definition.

Definition 7 The total ordering ≺ on the set of monomials is called a monomial
ordering whenever for each monomials xα,xβ and xγ we have:

• xα ≺ xβ ⇒ xγxα ≺ xγxβ, and

• ≺ is well-ordering.

There are an infinite number of monomial orderings, each one is convenient for a special
type of problem. Among them, we point to pure and graded-reverse lexicographic
orderings denoted by ≺lex and ≺grevlex as follows. Assume that xn ≺ · · · ≺ x1. We
say that

• xα ≺lex xβ whenever

α1 = β1, . . . , αi = βi and αi+1 < βi+1,

for an integer 1 ≤ i < n.

• xα ≺grevlex xβ if
n∑
i=1

αi <

n∑
i=1

βi,

breaking ties when there exists an integer 1 ≤ i < n such that

αn = βn, . . . , αn−i = βn−i and αn−i−1 > βn−i−1.

It is worth noting that the former has much theoretical importance while the latter
speeds up the computations and carries less information out.
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Each K−linear combination of monomials is called a polynomial on x1, . . . , xn
over K. The set of all polynomials has a ring structure with the usual polynomial
addition and multiplication, and is called the polynomial ring on x1, . . . , xn over K
and denoted by K[x1, . . . , xn] or just by K[x]. Let f be a polynomial and ≺ be a
monomial ordering. The greatest monomial w.r.t. ≺ contained in f is called the
leading monomial of f , denoted by LM(f) and the coefficient of LM(f) is called the
leading coefficient of f which is shown by LC(f). Further, if F is a set of polynomials,
LM(F ) is defined to be {LM(f)|f ∈ F} and if I is an ideal, in(I) is the ideal generated
by LM(I) and is called the initial ideal of I. Now, we state the concept of the Gröbner
basis of a polynomial ideal which provides much useful information about the ideal.

Definition 8 Let I be a polynomial ideal of K[x] and ≺ be a monomial ordering. A
finite set G ⊂ I is called a Gröbner basis of I if for each non zero polynomial f ∈ I,
LM(f) is divisible by LM(g) for some g ∈ G.

Using the well-known Hilbert basis theorem (See [4] for example), it is proved that each
polynomial ideal possesses a Gröbner basis with respect to each monomial ordering.
There are efficient algorithms also to compute a Gröbner basis. The first and simplest
one is the Buchberger algorithm presented simultaneously with the introduction of
the Gröbner basis concept while the most efficient known algorithms are Faugère’s F5

algorithm [11], G2V [14] and GVW [15]. As a witness of the efficiency of these algo-
rithms, we refer to [5] for instance, where the F5 algorithm is used to cryptanalyze the
HFE system. Also, a full discussion on the complexity of signature-based algorithms
is given in [3].
It should be said that a polynomial ideal has not a unique Gröbner basis. To have unic-
ity, we define the reduced Gröbner basis concept. As an important fact, the reduced
Gröbner basis of an ideal is unique up to the monomial ordering.

Definition 9 Let G be a Gröbner basis for the ideal I w.r.t. ≺. Then G is called the
reduced Gröbner basis of I whenever each g ∈ G is monic, i.e. LC(g) = 1 and none
of the monomials appearing in g is divisible by LM(h) for each h ∈ G \ {g}.

One of the most important applications of Gröbner basis is its role in solving a
polynomial system. Let 

f1 = 0
...

fk = 0,

be a polynomial system and I = 〈f1, . . . , fk〉 be the ideal generated by f1, . . . , fk. We
define the affine variety associated to the above system or equivalently to the ideal I
to be

V(I) = V(f1, . . . , fk) = {α ∈ Kn|f1(α) = · · · = fk(α) = 0},

where K is used to denote the algebraic closure of K. Now let G be a Gröbner basis for
I with respect to an arbitrary monomial ordering. Interestingly, I = 〈G〉 which implies
that V(I) = V(G). This is the key computational technique to solve a polynomial
system. Let us continue with an example.

Example 5.1 We will solve the following polynomial system,
x2 − xyz + 1 = 0
y3 + z2 − 1 =
xy2 + z2 = 0
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Due to the properties of pure lexicographical ordering, the reduced Gröbner basis of the
ideal I = 〈x2 − xyz + 1, y3 + z2 − 1, xy2 + z2〉 ⊂ Q[x, y, z] has the form

G = {g1(z), x− g2(z), y − g3(z)},

w.r.t. z ≺lex y ≺lex x, where

g1(z) = z15 − 3z14 + 5z12 − 3z10 − z9 − z8 + 4z6

−6z4 + 4z2 − 1
g2(z) = 2z14 − 9z13 + 11z12 + 2z11 − 7z10 − 3z9

+2z8 − z7 + 4z6 + 7z5 − 10z4 − 6z3

+11z2 + 2z − 4
g3(z) = z13 − 3z12 + z11 + 2z10 + z9 − z8 − 2z6

+2z4 − z3 − 3z2 + 1.

This special form of this Gröbner basis for the system allows us to find V(G) by
solving only one univariate polynomial g1(z) and putting the roots into the two last
polynomials in G.

Suppose now that the same system of Example 5.1 is given as follows with para-
metric coefficients, where the parameters are a, b and c:

ax2 − (a2 − b+ 1)xyz + 1 = 0
y3 + c2z2 − 1 =

(a+ b+ c)xy2 + z2 = 0

The solutions of this system depend on the values of the parameters; as can be seen
the system has no solutions whenever a = 0 and b = 1 while it converts to the system
of Example 5.1 for a = 1, b = 1 and c = −1 whereby it has a number of solutions.
To manage all the different behaviors of the parameters which cause difference in the
behavior of the main system, we recall the concept of the comprehensive Gröbner

system in the sequel. By this, we can divide the space of the parameters, i.e. K
t

into
a finite number of partitions, for which the general form of the polynomials in the
assigned Gröbner basis is determined.

Let K be a field and a := a1, . . . , at and x := x1, . . . , xn be the sequences of
parameters and variables respectively. We call K[a][x], the parametric polynomial
ring over K, with parameters a and variables x. This ring is in fact the set of all
parametric polynomials as

m∑
i=1

pix
αi

where pi ∈ K[a] is a polynomial on a with coefficients in K, for each i.

Definition 10 Let I ⊂ K[a][x] be a parametric ideal and ≺ be a monomial ordering
on x. Then the set

G(I) = {(Ei, Ni, Gi) | i = 1, . . . , `} ⊂ K[a]×K[a]×K[a][x]

is called a comprehensive Gröbner system for I if for each (λ1, . . . , λt) ∈ K
t

and each
specialization

σ(λ1,...,λt) : K[a][x] → K[x]∑m
i=1 pix

αi 7→
m∑
i=1

pi(λ1, . . . , λt)x
αi
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there exists an 1 ≤ i ≤ ` such that (λ1, . . . , λt) ∈ V(Ei) \V(Ni) and σ(λ1,...,λt)(Gi) is
a Gröbner basis for σ(λ1,...,λt)(I) with respect to ≺. For simplicity, we call Ei and Ni
the null and non-null conditions respectively.

See that, by [35, Theorem 2.7], every parametric ideal has a comprehensive Gröbner
system. Now we give an example from [24] to illustrate the definition of the compre-
hensive Gröbner system.

Example 5.2 Consider the following parametric polynomial system in Q[a, b, c][x, y]:

Σ :


ax− b = 0
by − a = 0
cx2 − y = 0
cy2 − x = 0

Choosing the graded reverse lexicographical ordering y ≺ x, we have the following
comprehensive Gröbner system: For instance, for the specialization σ(1,1,1) for which

Gi Ei Ni
{1} { } {a6 − b6, a3c− b3, b3c− a3,

ac2 − a, bc2 − b}
{bx− acy, by − a} {a6 − b6, a3c− b3, b3c− a3, {b}

ac2 − a, bc2 − b}
{cx2 − y, cy2 − x} {a, b} {c}

{x, y} {a, b, c} { }

Table 1: An example of a comprehensive Gröbner system.

a 7→ 1, b 7→ 1 and c 7→ 1,

σ(1,1,1)({bx− acy, by − a}) = {x− y, y − 1}

is a Gröbner basis of σ(1,1,1)(〈Σ〉).

It is worth noting that if V(Ei)\V(Ni) = ∅ for some i, then the triple (Ei, Ni, Gi)
is useless, and must be omitted from the computed comprehensive Gröbner system. In
this case we say that the pair (Ei, Ni) is inconsistent. It is easy to see that inconsistency
occurs if and only if Ni ⊂

√
〈Ei〉 and we need an efficient radical membership test

to determine inconsistencies. In [23, 24] there is a new and efficient algorithm to
compute a comprehensive Gröbner system of a parametric polynomial ideal which
uses a new and powerful radical membership criterion. Therefore, we prefer to employ
this algorithm, the so called PGB algorithm, in our computations. Another essential
technique which is used in [24] is the usage of the minimal Dickson basis which reduces
the extent of computations in PGB. Before explaining it, let us recall some notations
which are used in the structure of PGB. Let ≺x and ≺a be two monomial orderings
on K[x] and K[a] respectively. Let also ≺x,a be the block ordering of ≺x and ≺a,
comparing two parametric monomials by ≺x, breaking the tie by ≺a. For a parametric
polynomial f ∈ K[a][x], we denote by LMx(f) (resp. by LCx(f)) the leading monomial
(resp. the leading coefficient) of f when it is considered as a polynomial in K[a][x],
and thus LCx(f) ∈ K[a].
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Definition 11 By the above notations, let P ⊂ K[a][x] be a set of parametric pol-
ynomials and G ⊂ P . Then, G is called a minimal Dickson basis of P denoted by
MDBasis(P ), if:

• For each p ∈ P , there exists some g ∈ G such that LMx(g) | LMx(p) and,

• For each two distinct polynomials in G as g1 and g2, neither of the LMx(g1)
and LMx(g2) divides the other.

In PGB, we need to compute a minimal Dickson basis for P only when P is a Gröbner
basis for 〈P 〉 itself w.r.t. ≺x,a and P ∩ K[a] = {0}. In this situation, it suffices by
Definition 11 to omit all polynomials p from P for which there exists a p′ ∈ P such
that LMx(p′) | LMx(p).

The PGB algorithm, as shown below, uses the PGB-main algorithm to introduce
new branches in computations.

Algorithm 1 PGB

1: procedure PGB(P,≺a,≺x)
2: E,N := { }, {1};
3: ≺x,a:=The block ordering of ≺x,≺a

4: Return PGB-main(P,E,N,≺x,a);
5: end procedure

The main work of PGB-main is to create all necessary branches and import them
in the comprehensive Gröbner system at output. In this algorithm A ∗B is defined to
be the set {ab | a ∈ A, b ∈ B}.



Reliable Computing 26, 2018 79

Algorithm 2 PGB-main

procedure PGB-main(P,E,N,≺x,a)
G := The reduced Gröbner basis for P ∪ E w.r.t. ≺a,x;
if 1 ∈ G then

Return (E,N, {1});
end if
Gr := G ∩K[a];
if IsConsistent(E,N ∗Gr) then

PGB := {(E,N ∗Gr, {1})};
else

PGB := ∅;
end if
if IsConsistent(Gr, N) then

Gm :=MDBasis(G \Gr);
else

Return (PGB);
end if
h := lcm(h1, . . . , hk), where hi = LCx(gi) and gi ∈ Gm;
if IsConsistent(Gr, N ∗ {h}) then

PGB := PGB ∪ {(Gr, N ∗ {h}, Gm)};
end if
for i = 1, . . . , k do

PGB := PGB ∪ PGB-main(G \Gr, Gr ∪ {hi}, N ∗ {
∏i−1

j=1 hj},≺a,x)
end for

end procedure

As is shown in the algorithm, it first computes a Gröbner basis of the ideal 〈P 〉
over K[a,x] i.e. G, before performing any branches based on parametric constraints
[24, Lemma 3.2]. After this, the algorithm computes a minimal Dickson basis i.e. Gm
and continues by making a decision for each situation in which one of the leading
coeffiecients of Gm is zero. By this, PGB-main constructs all necessary branches to
import in the comprehensive Gröbner system at output. Throughout the algorithm,
when a new branch (Ei, Ni, Gi) is needed in the system, the algorithm IsConsistent
is used as follows to test the consistency of parametric conditions (Ei, Ni).

Algorithm 3 IsConsistent

procedure IsConsistent(E,N)
flag :=false;
for g ∈ N while flag =false do

if g /∈
√
〈E〉 then

flag :=true;
end if

end for
Return flag;

end procedure
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The main part of this algorithm is the radical membership test. The powerful
technique which is used in [23, 24] for the radical membership check is based on linear
algebra methods accompanied with a probabilistic check. We refer the reader to [24,
Section 5] for more details.

6 Interval Gröbner System

In this section we introduce the new concept of interval Gröbner system and its related
definitions and statements. Let us state first, the following proposition as an immediate
consequence of Definition 6. Recall that for a polynomial system S ⊂ R[x1, . . . , xn]
the variety of S is the set of all complex solutions of S, denoted by V(S).

Definition 12 Let [S] ⊂ [R][x1, . . . , xn]. Then, the interval polynomial system [S] has
a solution if there exists a polynomial system S in F([S]) such that V(S) ∩ Rn 6= ∅.

It is worth noting that, in the case of (non-interval) polynomial systems, there
is an efficient criterion due to the well-known Hilbert Nullestelensatz theorem which
determines the emptiness of V(S) by applying the reduced Gröbner basis: V(S) 6= ∅
if and only if the reduced Gröbner basis of 〈S〉 with respect to an arbitrary monomial
ordering does not contain 1. However, this is not the case for the interval polynomial
systems due to Definition 12, because of two main difficulties: first, we can not de-
fine the concept of the Gröbner basis in [R][x1, . . . , xn] as it is not a polynomial ring
and second, the solutions of an interval polynomial system are real points while the
elements of the variety may be purely complex. The following theorem states the mod-
ified version of the Hilbert Nullestelensatz theorem for interval polynomial systems:

Theorem 6.1 (Interval Hilbert Nullestelensatz)
Let [S] ⊂ [R][x1, . . . , xn]. Then, the interval polynomial system [S] has a solution if
and only if there exists a polynomial system S in F([S]) such that for G, the reduced
Gröbner basis of 〈S〉 with respect to an arbitrary monomial ordering, V(G) ∩Rn 6= ∅.

Proof: First, from V(G) ∩ Rn 6= ∅ it is concluded that 1 /∈ G. It is easy to see by
Definition 6 that r ∈ Rn is a solution of [S] if and only if there exists a polynomial
system S ∈ F([S]) for which r ∈ V(S). Therefore, by the Hilbert Nullestelensatz
theorem, r is a solution of [S] if and only if 1 /∈ G and also V(G) ∩ Rn 6= ∅, where G
is the reduced Gröbner basis of 〈S〉 with respect to an arbitrary monomial ordering,
for at least one S ∈ F([S]).

Remark 6.2 It is worth noting in the above theorem that, from the theoretical point
of view, it is sufficient that V(G) ∩ Rn 6= ∅. However, from the algorithmic point of
view, it is easier to check first if 1 ∈ G. In the affirmative case, it is concluded by the
Hilbert Nullestelensatz theorem that the system has no solution. Else, it is necessary
to check whether V(G) ∩ Rn 6= ∅ or not.

Note that there are an infinite number of polynomial systems in F([S]) for an interval
polynomial system [S] and so it is practically impossible to check all of them by the
Interval Hilbert Nullestelensatz theorem. Nevertheless, we give a finite partition on
the set of all polynomial systems arising from [S] using the concept of comprehensive
Gröbner system.
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Definition 13 Let [S] = {[f ]1, . . . , [f ]`} be a system of interval polynomials. We
define the ideal family of [S], denoted by IF([S]) to be the set

IF([S]) = {〈p1, . . . , p`〉 | (p1, . . . , p`) ∈ F([S])}

Theorem 6.3 Let [S] be a system of interval polynomials and ≺ be a monomial or-
dering on R[x1, . . . , xn]. Then

• The set of initial ideals {in(I) | I ∈ IF([S])} is a finite set, and

• For each set J of ideals of IF([S]) with the same initial ideal, there exists a set of
parametric polynomials which induces the ideals in J by different specializations.

Proof: To prove this theorem, we use the concept of the comprehensive Gröbner sys-
tem. Suppose that S∗ is obtained by replacing each interval coefficient by a parameter.
Note that if an interval appears in t ≥ 1 coefficients, then we assign t distinct param-
eters to it. It is easy to check that each element of IF([S]) is the image of S∗ under a
suitable specialization. On the other hand, by [35, Theorem 2.7], S∗ has a finite com-
prehensive Gröbner system as G = {(E1, N1, G1), . . . , (Ek, Nk, Gk)}, where for each
specialization σ there exists a 1 ≤ j ≤ k such that LM(σ(S∗)) = LM(Gj). It should
be said that although there is a finite number of branches in G, we can also remove
the specializations with complex values, and also those with values out of the assigned
interval. Thus, for each I ∈ IF([S]) there exists an 1 ≤ i ≤ k with in(I) = 〈LM(Gi)〉
and this finishes the proof.

What is explained in the proof of Theorem 6.3 allows to extend the concept of the
comprehensive Gröbner system to the concept of the interval Gröbner system.

Definition 14 Let [S] ⊂ [R][x1, . . . , xn] be a system of interval polynomials with t
interval coefficients, and ≺ be a monomial ordering on R[x1, . . . , xn]. Let also that

G = {(E1, N1, G1), . . . , (Ek, Nk, Gk)},

be a set of triples such that

(Ei, Ni, Gi) ∈ R[a1, . . . , at]× R[a1, . . . , at]× R[a1, . . . , at][x1, . . . , xn],

where each ai is a parameter which is assigned to an interval appearing in a coefficient.
Then we call G an interval Gröbner system for [S] denoted by G≺([S]) if for each
t−tuple (α1, . . . , αt) of the inner values of interval coefficients there exists an 1 ≤ i ≤ k,
and also for each 1 ≤ i ≤ k there exists (α1, . . . , αt) of the inner values of interval
coefficients such that:

• For each p ∈ Ei, p(α1, . . . , αt) = 0,

• There exist some q ∈ Ni such that q(α1, . . . , αt) 6= 0, and

• σ(Gi) is a Gröbner basis for 〈σ([S])〉 with respect to ≺, where σ is the special-
ization aj 7→ αj for j = 1, . . . , t.

Theorem 6.4 Each interval polynomial system possesses an interval Gröbner system.

Proof: Let S∗ be the parametric polynomial system obtained by assigning each interval
coefficient to a parameter. As mentioned in the proof of Theorem 6.3, G≺([S]) is the
same comprehensive Gröbner system of S∗ where each parameter is bounded to give
values from its assigned ideal. On the other hand, it is proved that each system of
parametric polynomials has a comprehensive Gröbner system, which terminates the
proof.

We now give an easy example to illustrate what was described above.
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Example 6.5 Consider the interval polynomial system

[S] =

{
[−1, 2)xy + [−1, 1)y + [3, 5) = 0,
[−3, 1)xy2 + [1, 3)y = 0.

(5)

To obtain a parametric polynomial system, we must assign to each one of the intervals
[−1, 2), [−1, 1), [3, 5), [−3, 1) and [1, 3) one parameter from {h1, . . . , h5} respectively.
Then we observe the parametric polynomial system

S∗ = {a1xy + a2y + a3, a4xy
2 + a5y} ⊂ R[a1, . . . , a5][x, y].

Using the lexicographic monomial ordering y ≺ x we can compute a comprehensive
Gröbner system for 〈S∗〉 which contains about 19 triples. However some of them are
admissible only for some values of parameters out of their assigned intervals. For
instance the triple

({1}, {a1, a2, a4, a5}, {a3})

is not acceptable in this example, since by applying this triple, a5 = 0 while from the
main structure of the system, a5 ∈ [1, 3] and so it is a contradiction. By removing
such triples, there remains only 8 triples shown in the following table. Therefore the
following table shows G≺([S]).

Ei Ni Gi
{a1, a2, a4} { } {1}
{a1, a2} {a4} {1}
{a1, a4} {a2} {1}
{a4} {a1} {1}
{a2} {a1a4(a1a5 − a3a4)} {1}

{a1a5 − a3a4} {a1a2a4} {1}
{a1} {a2a4} {a2y + a3, a4x− a2a5}

{a2, a1a5 − a3a4} {a1a4} {a1xy + a3}
{a2a4y − a1a5 + a3a4,

{ } {a1a2a4(a1a5 − a3a4)}
(a21a5 − a1a3a4)x+ a22a4y + a2a3a4}

Table 2: Interval Gröbner system of System (5)

Let us explain some rows of Table 3. Suppose that one selects 1, 0, 4,−1 and 2 from
[−1, 2), [−1, 1), [3, 5), [−3, 1) and [1, 3), respectively. By this choice, system 5 converts
to

S1,0,4,−1,2 =

{
xy + 4 = 0,
− xy2 + 2y = 0.

(6)

Now, using Table 3, it can be observed by the fifth row of the Table that the evaluations
satisfy the null and non-null conditions of this row. This implies that the reduced
Gröbner basis of 〈SS1,0,4,−1,2〉 equals {1} and so there is no solution given by the
Hilbert Nullestelensatz theorem. Suppose now that we change our selected values by
choosing 1/2 instead of 0 from [−1, 1). In this case, we observe the system

S1,1/2,4,−1,2 =

{
xy + 1/2y + 4 = 0,
− xy2 + 2y = 0.

(7)
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However, the new values satisfy the conditions of the last row of the table, which
shows that (after dividing by the leading coefficients) the reduced Gröbner basis of
〈S1,1/2,4,−1,2〉 is

{y + 12, x− 1/24y − 1/3}.
It can be concluded that in this case we have a unique solution x = −1/6, y = −12.

6.1 Computing Interval Gröbner Systems

In this section we state our algorithm, called IGS, to compute an interval Gröbner
system for an interval polynomial system. This algorithm is based on the PGB al-
gorithm with some conditions for consistency. To begin, let [S] = {[f ]1, . . . , [f ]`} ⊂
[R][x1, . . . , xn] be a system of interval polynomials, where for each 1 ≤ j ≤ `,

[f ]j =

mj∑
i=1

[aij , bij ]x
αij,1

1 · · ·xαij,n
n

and (αij,1, . . . , αij,n) ∈ Zn≥0, for each i. As is mentioned in Theorem 6.3, we assign
to each interval coefficient [aij , bij ] a parameter hij to convert [S] to a parametric
polynomial system S∗. The following proposition describes the relations between the
comprehensive Gröbner systems of S∗ and the interval Gröbner systems of [S].

Proposition 6.6 Using the above notations, let [G] and G be an interval Gröbner basis
for [S] and a comprehensive Gröbner basis for S∗ respectively with respect to the same
monomial ordering ≺. Then, for each (E,N,G) ∈ [G], there exists (E′, N ′, G′) ∈ G
such that

V(E) \V(N) ⊂ V(E′) \V(N ′)

and G and G′ have the same initial ideals.

Proof: This comes from Definitions 14 and 10.
According to the above proposition, to compute an interval Gröbner basis for [S],

it is enough to compute a comprehensive Gröbner basis for S∗, and use a criterion to
omit the triples (E,N,G) lying in G \ [G], which we consider redundant triples.

Remark 6.7 Note that for each triple (E,N,G) in G \ [G], the intersection of V(E)\
V(N) with the Cartesian product of the interval coefficients is empty.

We will now present a criterion to determine the elements of G \ [G]. This criterion is
based on the answer to this question:

How can we be sure that a system of polynomials E ⊂ R[a1, . . . , at] has a real root in
the interval [α1, β1)× · · · × [αt, βt)?

In the following items, a brief survey of existing methods which can answer the
above question is presented:

• In the case for which 〈E〉 is zero-dimensional (i.e. V(E) is a finite set), this
question is answered generally with efficient computational tools such as Sturm’s
chain by isolating the real roots (see [30]).

• In the case of a positive dimensional 〈E〉, there exist certain algorithms to isolate
the real roots. Among them there exists an algorithm which determines whether
a multivariate polynomial system has real roots or not (see [7]).
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• In [16, 17], the authors have used the Bernstein expansion to find a suitable box
which contains real solutions of a polynomial system. The cornerstone of their
methods relies on computing Bernstein polynomials.

• There are also some computational methods based on interval computations
([29]) and also quantifier elimination (QE) methods ([22]) which are devoted to
finding the real solutions of polynomial equations.

In addition to what was mentioned, we convert the above key question to the problem
of determining whether a polynomial system has a real root or not. This conversion
makes it also possible to use the first two methods to here.

Theorem 6.8 Let E ⊂ R[a1, . . . , at] be a finite set of polynomials. Let also

F = E ∪ {ai + (ai − βi)b2i − αi | i = 1, . . . , t} ⊂ R[a1, . . . , at, b1, . . . , bt],

where bj’s are algebraically independent of ai’s and suppose that [αi, βi) is a real inter-
val for each i = 1, . . . , t. Then the system E = 0 has a solution in [α1, β1)×· · ·×[αt, βt)
if and only if the system F = 0 has a real solution.

Proof: Let E = 0 has a solution (γ1, . . . , γt) ∈ [α1, β1)× · · · × [αt, βt). Let also

ηi =

√
αi − γi
γi − βi

for each i = 1, . . . , t. It is seen that

γi + (γi − βi)η2i − αi = 0

which implies that (γ1, . . . , γt, η1, . . . , ηt) is a solution of F = 0.

Conversely, suppose that there exists

(γ1, . . . , γt, η1, . . . , ηt) ∈ R2t

which is a solution of F = 0, i. e. f(γ1, . . . , γt) = 0 for each f ∈ F and γi + (γi −
βi)η

2
i − αi = 0, for each i = 1 . . . , t. It is enough to show that γi ∈ [αi, βi). In doing

so, we see that

γi =
αi + βiη

2
i

1 + η2i
= (βi − αi)

η2i
1 + η2i

+ αi.

Indeed, 0 ≤ η2i
1+η2i

< 1 and this shows that

αi ≤ (βi − αi)
η2i

1 + η2i
+ αi︸ ︷︷ ︸

γ
i

< βi

which finishes the proof.

Remark 6.9 Note that for the intervals [α,∞) and (−∞, β] we can use the auxiliary
polynomials a− α− b2 and a− β + b2 respectively.

The following example shows the importance of Theorem 6.8.
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Example 6.10 Let a1 = [3, 5), a2 = [2, 3) and f = a1a
2
2 − a2 − 42. We will use

Theorem 6.8, to find whether f = 0 has a solution in [3, 5) × [2, 3) or not. For this,
we construct the polynomial ideal

I = 〈a1 + (a1 − 2)b21 − 1, a2 + (a2 − 3)b22 − 2, a1a
2
2 − a2 − 42〉.

Computing a Gröbner basis for I with respect to b2 ≺grevlex b1 ≺grevlex a2 ≺grevlex a1,
we will see that

29b21b
2
2 + 18b42 + 24b21 + 53b22 + 32 ∈ I.

This concludes that no b1 or b2 can be specialized to a real value. So, f = 0 has no real
solution. It is worth noting that if we use interval arithmetic to solve this problem, we
will see that f([2, 3), [3, 5)) = [−33, 1), which contains zero. But as was seen above, it
is impossible for f to have a real solution. Thus, interval arithmetic is unable to solve
this problem.

Using Theorem 6.8 and the Remarks 6.7 and 6.9, we can determine the elements of
G \ [G] exactly (see Proposition 12).

Corollary 6.11 Let (E,N,G) ∈ G and suppose that [α1, β1), . . . , [αt, βt) are t real
intervals. Then (E,N,G) is redundant if and only if the system F = 0 has no real
roots, where

F = E ∪ {ai + (ai − βi)b2i − αi | i = 1, . . . , t} ∪ {
∏
g∈N

(cgg − 1)}

⊂ R[a1, . . . , at, b1, . . . , bt, cg : g ∈ N ].

Proof: The proof comes from Theorem 6.8 and the fact that if
∏
g∈N (cgg − 1) = 0

then, there exist some g ∈ N for which cgg − 1 = 0, which implies that g 6= 0.
The above corollary states the criterion which determines all redundant triples, and

by installing this criterion on the PGB algorithm, we can design our new algorithm
to compute interval Gröbner systems. We now design the IGS algorithm by its main
procedure.

Algorithm 4 IGS

procedure IGS([S],≺x)
Assign a1, . . . , at to interval coefficients and name it S∗;
≺a:= an arbitrary monomial ordering on a1, . . . , at;
E,N := { }, {1};
≺x,a:=The block ordering of ≺x,≺a

Return PGB-main(P,E,N,≺x,a, L); \\L is the ordered set of interval
coefficients which is needed to check consistency.
end procedure

The PGB-main algorithm is the same as that which was used in the PGB algo-
rithm. We only change the definition of consistency as below.

Definition 15 Let [α1, β1), . . . , [αt, βt) be t real intervals and E,N ⊂ R[a1, . . . , at].
The pair (E,N) is called consistent if it is not redundant, or equivalently,

[V(E) \V(N)] ∩ [α1, β1)× · · · × [αt, βt) 6= ∅.
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According to the above definition, we change the IsConsistent algorithm to
Interval-IsConsistent, which checks the consistency for radical membership and
redundancy determination.

Algorithm 5 Interval-IsConsistent

procedure Interval-IsConsistent(E,N, [α1, β1), . . . , [αt, βt))
test :=false;
flag :=false;
if (E,N) is not redundant then

test :=true;
end if
if test then

flag :=false;
for g ∈ N while flag =false do

if g /∈
√
〈E〉 then

flag :=true;
end if

end for
end if
Return flag;

end procedure

Example 6.12 The Interval-IsConsistent algorithm returns false for the pair
({a1a22 − a2 − 42}, {a1, a2}), as regards the Example 6.10; this pair is redundant.

Remark 6.13 It is worth noting that redundant triples will be omitted before the al-
gorithm continues with them. This property causes IGS to return fewer triples than
PGB.

In the following, we clarify the complexity of the IGS algorithm. In doing so, we state
an upper bound for the number of operations which are done in the first branch of the
algorithm. Recall that an interval polynomial is homogeneous if all of its monomials
have the same degree.

Theorem 6.14 Let [S] = {[f ]1, . . . , [f ]`} ⊂ [R][x1, . . . , xn] be a system of homoge-
neous interval polynomial system with t intervals and maximum degree d. The number
of operations required to compute an interval Gröbner system for [S], in the first branch

is bounded by d2
O(t+n)

.

Proof: It is well-known that in the worst case, the complexity of the computation of
a Gröbner basis is doubly exponential in the number of variables ([18, 26]). On the
other hand, in the first branch of the PGB-Main algorithm, all parameters (which
are the intervals) are considered as variables and so t + n variables are encountered.
Thus, the above upper bound for the number of operations in the first branch of IGS
is given.

Indeed, a similar bound exists for each branch, provided that the degree of the
polynomials dose not increase. Otherwise, the bound for each branch depends on the
degree of the result of previous branches. To see an upper bound for the degree of a
Gröbner basis see [3].
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Remark 6.15 It is worth noting that the worst case estimations of the complexity
of the computation of a Gröbner basis have led to the belief that Gröbner basis is
not a useful tool in practice. However, there are quite efficient implementations to
compute a Gröbner basis which have surprisingly good results in practical challenges
([3]). This is while the cornerstone of the IGS algorithm is based on the computation
of some Gröbner bases and so each efficient implementation to compute a Gröbner
basis results in an efficient implementation of the IGS algorithm. For instance, in
[21] signature-based algorithms are used to compute comprehensive Gröbner systems
which can be modified and be used to compute interval Gröbner systems.

In the following part, we give an illustrative example to show the steps of computing
an interval Gröbner system.

Example 6.16 In this example, we declare the execution details of the IGS algo-
rithm to compute an interval Gröbner system with respect to the monomial ordering
y ≺grevlex x, for

[S] =

{
[−1, 2]x2 + [−2, 2]y + 1 = 0
[2, 3]xy + y2 + 2 = 0

. (8)

As the first step, we assign the parameters a1, a2 and a3 to intervals [−1, 2], [−2, 2] and
[2, 3] respectively, and put a monomial ordering on them such as a1 ≺lex a2 ≺lex a3.
So, the system assigns to the parametric ideal

I = 〈ax2 + by + 1, cxy + y2 + 2〉.

The IGS algorithm evaluates E (resp. N) to { } (resp. {1}) and continues by the
PGB-Main sub-algorithm. In the first step of this algorithm, G as the reduced Gröbner
basis of I with respect to ≺x,a, will be computed as follows:

G = {2a1a3x− a1y3 − a2a23y2 − (a23 + 2a1)y,

a1xy
2 − a2a3y2 + 2a1x− a3y, a1x2 + a2y + 1, a3xy + y2 + 2}.

From this, Gr = ∅ and so Gr and N are consistent, since N = {1}. So, a minimal
Dickson basis must be computed which equals

Gm = {2a1a3x− a1y3 − a2a23y2 − (a23 + 2a1)y, a1x
2 + a2y + 1, a3xy + y2 + 2}.

Also, h = lcm(a1, a1, a3) = a1a3 denotes the least common multiple of leading coef-
ficients of the elements of Gm with respect to y ≺grevlex x. Now, (Gr, N ∗ {h}) =
({ }, {a1a3}) enters the Interval-IsConsistent sub-algorithm to determine whether
they are consistent or not. As the assigned intervals to a1 and a3 contain non-zero
elements, it is possible for a1 and a3 to be non-zero and consequently ({ }, {a1a3}) is
not redundant. In the sequel, since E = { } the sub-algorithm returns true and, there-
fore, ({ }, {a1a3}, Gm) adds to PGB as a branch. In the sequel, PGB-Main begins
with E = {a1}, N = {1} and G. In this step, we will see that

G = {a1, a2y + 1, a3x+ y − 2a2},

and thus Gr = {a1} and consequently, Gm = {a3x + y − 2a2, a2y + 1} as a minimal
Dickson basis of G \ Gr. Here, h = a2a3, and so (Gr, N ∗ {h}) = ({a1}, {a2a3})
will be checked by the Interval-IsConsistent algorithm to determine consistency.
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Obviously, 0 ∈ [−1, 2] and there are elements in [−2, 2] and [2, 3] which are non-
zero. Thus, the algorithm returns true since the radical conditions are also satisfied.
Consequently, ({a1}, {a2a3}, {a3x + y − 2a2, a2y + 1}) appears as a new branch in
PGB. Next, PGB-Main gives E := {a1, a3}, N = {1} and {a3x + y − 2a2, a2y + 1}.
However, in this step the Interval-IsConsistent sub-algorithm does not allow the
algorithm to continue with this branch, as a3 is assigned to [2, 3] which can not be
zero. Therefore, the algorithm begins with E := {a1, a2}, N = {1} and G = {a3x+ y−
2a2, a2y + 1}. But in this case, the reduced Gröbner basis equals 1 and so (E,N, {1})
adds to PGB. Finally, verifying different branches in a similar way to that described
above, the algorithm finds some branches which are involved in the above branches, or
inconsistent conditions. Therefore, the algorithm terminates with the interval Gröbner
system for [S], which is shown in the following Table,

Ei Ni Gi
{a1, a2} {} {1}

{2a1a3x− a1y3 − a2a23y2 − (a23 + 2a1)y,
{ } {a1a3}

a1x
2 + a2y + 1, a3xy + y2 + 2}

{a1} {1} {a3x+ y − 2a2, a2y + 1}

Table 3: Interval Gröbner system of [S] in Example 8

7 Applications of Interval Gröbner System

Interval Gröbner systems have some novel properties which make it possible to analyze
interval polynomial systems. This section aims to declare some applications of interval
Gröbner systems.

7.1 Solving Interval Polynomial Systems

In this section we state an application of the interval Gröbner system to discuss the so-
lution set of an interval polynomial system. Furthermore, we state another application
to find the solutions which two interval polynomial systems may share. The following
theorem shows how the interval Gröbner system can be used to find out whether an
interval polynomial system has a solution or not.

Theorem 7.1 Let [S] be an interval polynomial system, and G≺([S]) be an interval
Gröbner system for [S], with respect to ≺. Then,

(a) If for each (E,N,G) ∈ G≺([S]), G = {1} then, [S] has no solution.

(b) If [S] has no solution then, for each (E,N,G) ∈ G≺([S]), either G = {1} or
V(G) ∩ Rn = ∅, where n denotes the number of variables.

Proof: Rewriting the Interval Hilbert Nullestelensatz theorem (see Theorem 6.1) by the
notion of the ideal family in Definition 13 implies that the interval polynomial system
[S] has a solution, if for each ideal in IF([S]), neither the reduced Gröbner basis equals
{1} nor has any real solutions. On the other hand, the interval Gröbner system gives
a full decomposition on IF([S]) by presenting all different possible Gröbner bases. So,
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[S] has a solution if and only if none of the reduced Gröbner bases of G≺([S]) equals
{1} and all have some real solutions. This proves both parts of the theorem.

The following illustrative example shows the ability of the above theorem.

Example 7.2 Consider the interval polynomial system described as follows:

[S] =


a1xy

2 + a2x
2y + a3 = 0

a4x
3y3 + a5xy + a6y = 0

x3y2 − 1
2
a5x− 1

2
a6 = 0

(9)

where,

a1 = [2, 3], a2 = [3, 7], a3 = [7, 12], a4 = [1, 2], a5 = [4, 6], a6 = [2, 4].

The interval Gröbner system of [S] contains only one possible Gröbner basis which
equals {1} and by Theorem 7.1 (a), has no solution. To verify this, note that from the
third equation, 2x3y3 = a5xy + a6y. So, by the second equation, a4x

3y3 + 2x3y3 = 0,
which implies that x3y3 = 0. Thus, x = 0 or y = 0, each of which together with the
first equation implies that a3 = 0. However, this is a contradiction and so this system
has no solution.

When Theorem 7.1 can not assert that an interval polynomial system has no solution,
we will try to solve and find the solutions of the system, as shown in the following
example.

Remark 7.3 Suppose that G = {(E1, N1, G1), . . . , (Ek, Nk, Gk)}, is an interval Gröb-
ner system for an interval polynomial system [S]. Then,

V([S]) ⊂
k⋃
i=1

V(Gi).

In the sequel, we state an example which illustrates how interval Gröbner systems
solve interval polynomial systems.

Example 7.4 Consider the following system of interval polynomials,

[S] =


[1, 3]x2 + [−2,−1]y2 + [2, 4](z + [−2, 1])2 = 0
[−4,−1]y2 + x3y = 0
x3y3 + [2, 5]x2 = 0

(10)

By computing an interval Gröbner system for this system, we attain only one branch
(E,N,G), where E = { } and N contains the non-nullity conditions over all intervals
except [−2, 1]. Therefore, all of the conditions are satisfied. Thus, it is enough to solve
G to find out all solutions of [S]. It is worth noting that G contains [−4,−1]y4−[2, 5]x2

among its 8 elements, which implies that x = y = 0. Putting these values in the first
equation of [S], we see that z = [−1, 2], and so the solution set of [S] is a segment on
the z−axis.

The following lemma states a way to find the common solutions of two interval poly-
nomial systems.

Lemma 7.5 Let [S] and [S′] be two interval polynomial systems. Then, V([S]∪[S′])∩
Rn equals the set of all common solutions of [S] and [S′], where n denotes the number
of variables.
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Proof: It is easy to see that V([S]) =
⋃
S∈F([S]) V(S) (and similarly for [S′]). On the

other hand, a ∈ Rn is a common solution of [S] and [S′], if there exist S ∈ F([S]) and
S′ ∈ F([S′]) such that a ∈ V(S) ∩V(S′). Therefore, the set of all common solutions
equals ⋃

S∈F([S]),S′∈F([S′])

V(S) ∩V(S′) =
⋃

S∈F([S])

V(S) ∩
⋃

S′∈F([S′])

V(S′)

= V([S]) ∩V([S′]). (11)

However, as a simple fact, for each two sets of polynomials S and S′, V(S)∩V(S′) =
V(S ∪ S′) and so⋃

S∈F([S]),S′∈F([S′])

V(S) ∩V(S′) =
⋃

S∈F([S]),S′∈F([S′])

V(S ∪ S′)

=
⋃

S′′∈F([S]∪[S′])

V(S′′)

= V([S] ∪ [S′]). (12)

Thus, relations (11) and (12) imply that

V([S]) ∩V([S′]) = V([S] ∪ [S′]),

which proves the assertion.

Remark 7.6 It is easy to see that the above lemma can be extended to find the common
solutions of an arbitrary number of interval polynomial systems.

The following illustrative example explains the application of interval Gröbner systems
in finding the common solutions of two interval polynomial systems.

Example 7.7 Consider the interval polynomial system

[S] =

{
[3, 5]x4z − y = 0
[3, 7]x2y2 + yz3 = 0

,

and let [f ] = [2, 4]x2 + [1, 5]y2 + [−4,−2]xz. In this example, we will apply the concept
of interval Gröbner system to find the common solutions of [S] and [f ]. In doing so,
by Lemma 7.5, we construct a new interval polynomial system [S′] = [S] ∪ {[f ]}, and
compute an interval Gröbner system for [S′], which contains only one branch (E,N,G).
Here, E = { } and N contains non-nullity conditions on interval coefficients which
are all satisfied. Also, G has no non-zero real solution and this shows that there is no
common solution between [S] and [f ] except (0, 0, 0).

7.2 Multiple zeros of an interval polynomial

In this section we state another application of interval Gröbner systems to find multiple
roots of interval polynomials which can be useful in the study of the stability of
polynomial roots. It should be said that the concepts related to multiple roots, come
from [32].

Definition 16 An interval polynomial [f ] has a multiple root of order ` if there exists
f ∈ F([f ]) with a multiple root of order `.
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We first state a criterion to verify whether an univariate interval polynomial has a mul-
tiple root, and then generalize it for the multivariate case. Note that in the following,
[f ](i) denotes the i−th derivation of [f ].

Theorem 7.8 Let [f ] be an univariate interval polynomial and G≺ be an interval
Gröbner system of {[f ], [f ]′, . . . , [f ](`−1)} with respect to an arbitrary monomial order-
ing ≺. Then, [f ] has a multiple root of order at least ` if and only if G≺ contains a
triple (E,N,G) in which V(G)∩R 6= ∅. Furthermore, V(G)∩R contains all multiple
roots of [f ] of order at least `.

Proof: Let [f ] have a multiple root of order at least `. From Definition 16, there
exists f ∈ F([f ]) with a multiple root of order `. Suppose that f = σ([f ]) where
σ is a suitable evaluation of intervals. This implies that there exists a non-constant
polynomial h such that

gcd(f, f ′, . . . , f (`−1)) = h.

Now, from a well-known theorem from polynomial algebra

〈f, f ′, . . . , f (`−1)〉 = 〈h〉,

and so by the definition of the interval Gröbner system, there exists a triple (E,N,G)
such that {h} = σ(G). Therefore, V(G) 6= ∅. Conversely, let (E,N,G) ∈ G≺ such
that V(G)∩R 6= ∅ and σ be a suitable evaluation of intervals compatible with (E,N).
By a fact from polynomial algebra,

〈σ([f ]), σ([f ]′), . . . , σ([f ](`−1))〉 = 〈gcd(σ([f ]), σ([f ]′), . . . , σ([f ](`−1)))〉,

and so by the definition of the interval Gröbner system,

〈gcd(σ([f ]), σ([f ]′), . . . , σ([f ](`−1)))〉 = 〈σ(G)〉.

Now, as V(G) ∩ R 6= ∅, gcd(σ([f ]), σ([f ]′), . . . , σ([f ](`−1))) has a real root and so [f ]
has a multiple root of order at least `.

The following example shows the application of interval Gröbner systems to find
multiple roots of interval polynomials.

Example 7.9 Suppose that [f ] = x8 − 4x6 + [4, 8]x4 + [−6,−3]x2 + [−1, 2]. We use
Theorem 7.8 to find whether [f ] has a multiple root of order at least 3 or not. In
doing so, we compute an interval Gröbner system for {[f ], [f ]′, [f ]′′} with respect to a
lexicographical ordering. It contains a triple (E,N,G), where

E = {a23 − a3, a2 + 4a3, a1 − 6a3}, N = {1}, G = {x4 − 2a3x
2 + a3},

in which a1 = [4, 8], a2 = [−6,−3] and a3 = [−1, 2]. The one evaluation σ which arises
from E is a1 7→ 6, a2 7→ −4 and a3 7→ 1. Now, we have σ(G) = {x4 − 2x2 + 1} which
concludes that [f ] has two multiple roots 1 and −1 with an order of at least 3.

Remark 7.10 To find whether an interval polynomial [f ] ∈ [R][x] has a multiple root
of order exactly `, it is enough to solve the system

{[f ], [f ]′, . . . , [f ](`−1), y[f ](`) − 1},

where y is a new variable. Indeed, the last polynomial ensures that [f ](`) 6= 0, and thus
[f ] has a multiple root of order exactly ` if and only if the interval Gröbner system of
the above system contains a triple (E,N,G) with V(G) ∩ R2 6= ∅.
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In the sequel, we describe a method to find multiple zeros of multivariate interval
polynomials. It is easy to see that a multivariate function has a multiple root of order
at least ` whenever the function and all of its partial derivatives up to order ` − 1
share a common zero. We apply this fact to state the following theorem. It is worth
noting that the proof of this theorem is similar to that of Theorem 7.8 and so we leave
it without proof. In the following theorem, [f ]

x
j
i

denotes the partial derivation of [f ]

with respect to xi of order j.

Theorem 7.11 Let [f ] ∈ [R][x1, . . . , xn] be a multivariate interval polynomial. Then,
[f ] has a multiple root of order at least `, if and only if the interval Gröbner system of

{[f ]} ∪ {[f ]
x
j
i
| i = 1, . . . , n, j = 1, . . . , `− 1}

contains some triples (E,N,G) such that V(G) ∩ Rn 6= ∅. Furthermore, V(G) ∩ Rn
contains all multiple roots of [f ] of order at least `.

In the following example, we apply the above theorem to verify whether a given mul-
tivariate interval polynomial has multiple roots or not.

Example 7.12 Let [f ] = [7, 10]x3 + [1, 3]y3 − [9, 12]xy2 + 12x2y ∈ [R][x, y]. We will
determine the multiple roots of [f ] of order at least 2. In doing so, we compute a re-
duced interval Gröbner system for [S] = {[f ], [f ]x, [f ]y} with respect to a lexicographical
monomial ordering. This system contains two triples (E1, N1, G1) = ({α}, {a3, a1a3 +
48}, {(2a1a3 + 96)xy + (−3a1a2 − 4a3)y2, (3a1a3 + 144)x2 + (36a2 − a23)y2}), and
(E2, N2, G2) = ({ }, {α, a3, a1a3 + 48}, G1 ∪ {αy3}), in which α = 27a21a

2
2 − 4a1a

3
3 +

216a1a2a3 − 144a23 + 6912a2, and a1, a2 and a3 are assigned to [7, 10], [1, 3] and [9, 12]
respectively. It concludes by Theorem 7.11 that each real solution of G1 and also G2

determines a multiple root of [f ] of order at least 2.
More precisely, from (E2, N2, G2), we observe that y = 0, provided that at least one

of the α, a3 and a1a3+48 does not equal zero (note that such an evaluation exists). But,
this implies that x = 0 and so (0, 0) is one of the multiple roots of [f ]. Furthermore,
by evaluating under the specialization σ for which a1 7→ 9, a2 7→ 2 and a3 7→ 11, we see
that σ(α) = 0 and the conditions of (E1, N1, G1) are satisfied (note that σ(a3) 6= 0).
However, under this evaluation, G1 converts to {3xy− y2, 9x2 − y2} which shows that
each point over the line 3x− y = 0 is a multiple root of [f ] with order at least 2. So,
[f ] has infinite number of multiple roots of order at least 2.

7.3 Real Factors

In this section, we apply interval Gröbner systems to find real factors of interval
polynomials. One of the interesting problems in the context of interval polynomials is
the Divisibility Problem stated as follows ([32]):

For an interval polynomial [f ] ∈ [R][x1, . . . , xn] and a real polynomial
g ∈ R[x1. . . . , xn], determine whether there is a polynomial p ∈ F([f ]) such that g is a
factor of p.

In the following, we state a criterion based on the interval Gröbner system which
determines a solution for the above problem. It is worth noting that g i-divides [f ]
whenever the answer of the above problem is yes.

Theorem 7.13 Let [S] = {[f ], g} ⊂ [R][x1, . . . , xn] and G≺ be a reduced interval
Gröbner system for [S] with respect to a monomial ordering ≺. Then g i-divides [f ] if
and only if there exists a triple (E,N,G) ∈ G≺ such that G = {g}.
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Proof: It is easy to see that g i-divides [f ] if and only if there exists a specialization
σ for which g|σ([f ]) and of course σ([f ]) 6= 0. This implies that for such evaluation,
σ([S]) can be expressed only by {g} and therefore there exists a pair of parametric
sets (E,N) such that (E,N, {g}) ∈ G≺.

Example 7.14 We will solve the divisibility problem for

[f ] = [−1, 1]x2 + [−3, 1]y2 + [1/2, 2]xy ∈ [R][x, y],

and g = x −
√

2y ∈ R[x, y]. By computing a reduced interval Gröbner system for
[S] = {[f ], g} with respect to a lexicographical monomial ordering, we find the triple

({a3
√

2 + 2a1 + a2}, {1}, {x−
√

2y})

where a1, a2 and a3 denote inner values of the intervals [−1, 1], [−3, 1] and [1/2, 2].
This means that if the values of a1, a2 and a3 satisfy the equation a3

√
2+2a1 +a2 = 0,

then there exists some p ∈ F([f ]) such that g|p. For instance, by evaluating under the
specialization σ for which a1 7→ 1/3, a2 7→ −2 and so a3 7→ 2

√
2/3 we find p = 1/3x2−

2y2 + (2
√

2/3)xy ∈ F([f ]) which is divisible by g (note that p = 1/3(x + 3
√

2y)g).
Therefore g i-divides [f ].

Remark 7.15 We can use Theorem 7.13 for further aims. Let f, g ∈ R[x1, . . . , xn]
where g does not divide f . Then one can use Theorem 7.13 to find a polynomial f̃
with the same coefficients of f which contain little perturbations and g | f̃ . In doing
so, one can convert f to an interval polynomial [f ] by putting the interval [c− ε, c+ ε]
instead of the coefficient c, for each coefficient c appearing in f . Then, using Theorem
7.13 one can increase ε enough such that g i-divides [f ] with the desired precision.

It should be pointed out that the proposed method can also be used for the di-
visibility problem of two interval polynomials. Given [f ], [g] ∈ [R][x1, . . . , xn], the
following theorem determines if there exists g ∈ F([g]) such that g i-divides [f ]. As
the proof of this theorem is similar to the proof of Theorem 7.13, we leave it without
proof.

Theorem 7.16 Let [S] = {[f ], [g]} ⊂ [R][x1, . . . , xn] and G≺ be a reduced interval
Gröbner system for [S] with respect to a monomial ordering ≺. Then there exists
g ∈ F([g]) such that g i-divides [f ] if and only if there exists a triple (E,N,G) ∈ G≺
such that G = {g̃} and g̃ is the parametric form of [g] which is simplified by E.

The following example illustrates the above criterion to solve the divisibility problem
for two interval polynomials.

Example 7.17 Let [f ] = x4 + [1, 4]x2z2 + x3y + [1, 4]x2y2 + [3, 7]y2z2 + 3y3x and
[g] = x2 + [−1, 4]y2. By computing a reduced interval Gröbner system for [S] =
{[f ], [g]} with respect to a lexicographical monomial ordering, we observe that this
system contains the triple (E,N,G) = ({3a1 − a3, a2 − 3, a4 − 3}, { }, {x2 + 3y2}), in
which a1, a2, a3 and a4 are assigned to [1, 4], [1, 4], [3, 7] and [−1, 4] respectively. This
shows that g = x2 + 3y2 ∈ F([g]) i-divides [f ]. Furthermore, as the equations in E
show, x2 + 3y2 divides p = x4 +a1x

2z2 +x3y+ 3x2y2 + 3a1y
2z2 + 3y3x ∈ F([f ]) where

a1 is an arbitrary value of [1, 4] (note that p/g = x2 + xy + a1z
2).
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8 Conclusion and Future Works

In the current paper we have introduced the concept of the interval Gröbner system
as a novel computational tool to analyze interval polynomial systems. We have fur-
ther designed a complete algorithm for its computation using the existing methods to
analyze parametric polynomial systems. There are also sufficient conditions on the
interval Gröbner systems to determine whether an interval polynomial system has any
solutions or not, and help to find the solution set. There are also some applications
of interval Gröbner system such as computing the common solutions of two interval
polynomial systems and computing the multiple roots of interval polynomials.

In future works, we hope to apply the interval Gröbner system to find the approx-
imate gcd and the nearest polynomials with some specific properties. Moreover, we
can use this concept to solve optimization problems in which the objective function
and constraints are in the form of interval polynomials.
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