
A Solution Algorithm for a System of Interval

Linear Equations Based on the Constraint

Interval Point of View∗

M. Keyanpour
Department of Mathematics, Faculty of Sciences

University of Guilan, Iran

Kianpour@guilan.ac.ir

M. Mohaghegh Tabar
Department of Mathematics, Faculty of Sciences

University of Guilan, Iran

m.mohagheghtabar@fshiau.ac.ir

W. Lodwick§
Department of Mathematics

University of Colorado Denver, USA

Weldon.Lodwick@ucdenver.edu

Abstract

This paper focuses on solving systems of interval linear equations in a
computationally efficient way. The absence of additive inverse in the in-
terval computations motivated the authors to consider this subject. To his
end, Lodwick (“Interval linear systems as a necessary step in fuzzy linear
systems,” 2015) proposed a technical approach, and we extend it to a prac-
tical one. Since the computational complexity of most interval enclosure
numerical methods is often prohibitive, a procedure to obtain a relax-
ation of the interval enclosure solution that is computationally tractable
is proposed. We show that our approach unifies the four standard interval
solutions – the weak, strong, control and tolerance solutions. Numerical
examples illustrate advantages of our approach.
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1 Introduction to Interval Analysis and the Lack
of Additive Inverse

Systems of linear equations are applicable in various fields of science such as engineer-
ing, physics, computer science, technology, business, and economics. However, since
many applications deal with data that are not deterministic, the parameters of corre-
sponding systems are often non-deterministic and assumed to vary within prescribed
intervals. To model applications, it is necessary to consider uncertainty. One approach
for uncertainty quantification is to consider an interval as an encoding of uncertainty.
Thus, interval linear systems are frequently used to model linear problems subject to
interval uncertainty.

On the other hand, interval analysis is not only useful but necessary to the un-
derstanding of fuzzy interval analysis, especially in the context of linear systems [6].
The lack of understanding of interval linear equations and the mathematical space of
interval entities has led to various anomalies in fuzzy linear system research [6].

We apply constraint intervals in our analysis (see [4], [6]) instead of standard
interval analysis [1] to overcome the lack of additive inverses. Lack of inverses is a
characteristic of classical interval spaces. Constraint intervals represent an interval as
a parametrization, a linear function with nonnegative slope. That is, an interval, as
[x, x] in which x ≤ x and x, x ∈ R is represented as a function of a single parameter
(variable), f(λx) = x+(x−x)λx. For example, expression [3, 4]− [1, 2] is converted to
(3+(4−3)λ1)− (1+(2−1)λ2) = 2−λ1−λ2; 0 ≤ λi ≤ 1, i = 1, 2. Interval expressions
using this transformation have their resulting calculations in the space of real numbers,
a parameter space, instead of the space of intervals. To obtain an interval solution, a
global minimum and maximum with respect to all the associated parameters (there is
one parameter per distinct interval variable) is required over the unit hypercube, the
minimum being the left endpoint and the maximum yielding the right endpoint. If the
expression is well-posed, for example, it is continuous, an interval solution is always
theoretically possible to obtain.

This study uses the constraint interval approach to solve interval systems of equa-
tions and interval linear programming problems. This method is different from the
usual way interval systems are typically solved, and it unifies the four interval linear
system solution types. Furthermore, we propose two nonlinear minimizing and maxi-
mizing problems to obtain extended interval enclosure solutions in a computationally
tractable manner, which is not possible using any other interval approach. That is, our
main contribution is two-fold. We present a method to solve the interval linear sys-
tem problem that is tractable, which is used in interval linear programming problems,
and we unify the four interval linear system solutions (strong, control, tolerant, weak)
associated with interval linear programming problems. In addition, this technique can
be used for the rectangular matrix problems typical of linear programming. To the
best of our knowledge, this computationally tractable method for rectangular systems
is new.

Research papers akin to our study of interval spaces have the aim of solving interval
problems. This paper adopts and extends what is proposed in [5] to obtain an interval
enclosure (IE) (see [8]) we call the extended IE(EIE). Some well-known methods for
solving interval linear equation are Oettli [9], Jansson [2] and Shary [12]. Oettli [9]
proves that the intersection of the solution set of a real linear interval system with
each orthant is a convex polyhedron. This fact was used in linear programming to
compute exact lower and upper bounds of the solution set in each orthant. Since there
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are 2n orthants for x ∈ Rn, the method proposed in [9] can be used only for small
dimensions. Jansson [2] proposed some topological and graph theoretical properties of
the solution set of linear algebraic systems with interval coefficients. In [2] a method is
described in which, in a finite number of steps, either the method calculates the exact
bounds for each component of the solution set, or it finds a singular matrix within
the given interval coefficients. The calculation of exact bounds of the solution set is
known to be NP-hard [10]. The method proposed in [2] needs p calls of a polynomial-
time algorithm, where p is the number of nonempty intersections of the solution set in
each orthant. Moreover, Jansson [2] also mentions that due to physical or economical
requirements, many variables do not change in sign. This eliminates the number of
orthants that need to be consulted. In these cases p is small, and our extended IE
method works efficiently. It is in this sense that our methods are tractable. Shary [12]
investigated basic properties of the algebraic (classic) solutions to the interval linear
systems and proposed a number of numerical methods to compute them. While we use
Shary’s [12] taxonomy and definition of solution of interval linear systems, we depart
from his solution methods.

Remark 1 In this paper, we demonstrate that constraint intervals have theoretical and
computational advantages. This paper contributes to the theoretical and computational
understanding in which solutions to interval linear systems are formulated and solved
in a unique, powerful and unified way. There are many research results associated
with interval linear systems [12], the most important difference and advantage of our
approach is to be independent of calculating the inverse and to apply to non-square
matrices which appear in linear programming problems.

Remark 2 We do not claim that solving interval linear systems is new nor necessarily
computationally more efficient. Certainly interval linear systems have been efficiently
solved for 50 years. We claim that our approach unifies the theory and that linear
systems can be solved from this point of view.

Remark 3 There are many interval arithmetic methods (see [5] pages 22-33). There,
in particular, affine arithmetic of [13] is discussed. In [5] many types of interval
arithmetics are discussed, not just affine arithmetic. Affine arithmetic deals with de-
pendencies via a series of parameters that are known a-priori. A constraint interval is
explicitly given as a function of a single parameter. This is not how affine intervals
are defined in [13]. Constraint intervals are elements in a space of functions (see [7]).
Constraint intervals encode both dependencies and symbolically represent the whole in-
terval by one parameter that is constrained to lie between 0 and 1. The constraint
interval point of view leads to global optimization algorithms, whereas the affine point
of view leads to an arithmetic.

2 Preliminaries

Let a system of linear equations [A]x = [b], for which [A] and [b] are an n× n−matrix
and an n−vector right-hand side, respectively, with interval-valued elements. The aim
is to obtain its interval solution set. Strong solution (pessimistic, classic), control
solution, tolerance solution, algebraic solution, and weak solution (optimistic, united
set solution) are some definitions of solution sets associated with systems of constraints,
which is our interest (see [6] for our point of view). We begin with the four already
known solution types proposed by interval analysis researchers (see Lodwick [3], Rohn
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[10] and Chapter 2 [1], and Shary [12]) for a real-valued interval linear system [A]x =
[b].

Definition 1 United solution set [6] A vector x ∈ Rn is called a united solution of
the interval linear system [A]x = [b], if Ax = b is satisfied for some A ∈ [A] and for
some b ∈ [b]. We denote the set of united solutions by

Ω∃∃ = {x|∃A ∈ [A], ∃b ∈ [b] such that Ax = b}.

Definition 2 Tolerance solution set [6] A vector x ∈ Rn is called a tolerance solu-
tion of the interval linear system [A]x = [b], if Ax = b is satisfied for all A ∈ [A] and
for some b ∈ [b]. We denote the set of tolerance solutions by

Ω∀∃ = {x|∀A ∈ [A], ∃b ∈ [b] such that Ax = b}.

Definition 3 Control solution set [6] A vector x ∈ Rn is called a control solution
of the interval linear system [A]x = [b], if Ax = b is satisfied for some A ∈ [A] and for
all b ∈ [b]. We denote the set of control solutions by

Ω∃∀ = {x|∀b ∈ [b],∃A ∈ [A] such that Ax = b}.

Definition 4 Classical solution set [6]

Ω∀∀ = Ω∀∃
⋂

Ω∃∀.

In what follows, we use boxes for two-dimensional intervals, cubes for three-
dimensional intervals, and hyper-boxes for intervals in dimensions higher than three.
It can be verified that the solution sets Ω∃∃,Ω∀∃,Ω∃∀ and Ω∀∀ are not necessarily a
box, cube or hyper-box. A new definition proposed by Lodwick and Jenkins [7] is:
the smallest box that contains the weak solution (they called the united solution) that
never loses a possible solution value, denoted by NLV. This is called the interval hull
in the interval analysis literature. Here, we use the term, “interval enclosure” (IE),
which is this also a standard term found in interval analysis. In what follows, we use
constraint intervals, defined next, to construct the IE solution.

Definition 5 Constraint interval (see [6]) A constraint interval is an interval that
is defined as a linear function with non-negative slope over [0, 1],

[x] = x(λx) = x+ wx.λx;wx = x− x, 0 ≤ λx ≤ 1.

Interval matrices and vectors defined from the constraint interval point of view are:

[A] = A(ΛA) = A+WA.ΛA;WA = A−A; (1)

and
[b] = b(λb) = b+ wb.λb;wb = b− b; (2)

where WA and ΛA are real valued matrices, wb and λb are real valued vectors with

0 ≤ (ΛA)ij ≤ 1, 0 ≤ (λb)i ≤ 1; i = 1, ...,m, j = 1, ..., n.

The product operator between WA,ΛA, wb and λb in Equations (1) and (2) is the
Hadamard product, denoted WA.ΛA and wb.λb. Using this transformation of an in-
terval linear system into a constraint interval setting, the IE solution is obtained as
follows (see [6]). For [A]x = [b] , the NLV solution is,

[x] = [x, x] = [ min
0≤ΛA,λb≤1

A(ΛA)−1b(λb), max
0≤ΛA,λb≤1

A(ΛA)−1b(λb)]. (3)
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It can be proved that [6]

Ω∀∀ ⊆ Ω∀∃ ⊆ Ω∃∃ ⊆ [x],

and
Ω∀∀ ⊆ Ω∃∀ ⊆ Ω∃∃ ⊆ [x].

Note that (3) is a unified approach for the four solutions (see [7]), since we can
consider all four cases by varying “for all” and “for each” with ΛA and λb. This is
what we do subsequently. Although the interval solution set of (3) is well-defined,
this method is applicable for square systems with an invertible coefficient matrix, and
thus not suitable for general linear programming problems. Moreover, (3) requires a
constrained global optimization of a nonlinear non-convex problem. This means that
numerical methods most often converge to a local optimal solution instead of a global
optimal solution. This IE method needs first to calculate the inverse of the coefficient
matrix, and then solve 2n nonlinear non-convex programming problems. Thus, (3) is
a theoretical approach.

3 The Extended IE Solution

The theoretical IE solution proposed by Lodwick and Dubois [6] is tractable for small
square matrices, and is a nonlinear programming problem. These two properties moti-
vated the authors to extend the IE solution approach without the necessity to calculate
the inverse, with the view to apply it to large scale problems and non-square problems.
In addition, we propose an algorithm to relax the nonlinear non-convex problem to a
linear convex one. Based on (3) consider the two following programming problems

P1 : min
ΛA,λb

eTj x

s.t. A(ΛA)x ≤ b(λb)
0 ≤ (ΛA)ij ≤ 1
0 ≤ (λb)i ≤ 1

P2 : max
ΛA,λb

eTj x

s.t. A(ΛA)x ≤ b(λb)
0 ≤ (ΛA)ij ≤ 1
0 ≤ (λb)i ≤ 1

(4)

for i = 1, ...,m and j = 1, ..., n. Let x = [xj ]j=1,...,n and x = [xj ]j=1,...,n be the
symbolic representation of the optimal values for P1 and P2, respectively.

Clearly, problems P1 and P2 address the first of the two properties, but they
are still nonlinear, non-convex and NP-hard. We next address the second of the two
properties by transforming the nonlinear and non-convex problems via a relaxation.
To this end, we change the nonlinear constraints of P1 and P2 to linear ones in such
a way that the obtained solution contains all the solutions of P1 and P2. We recall
that for the equality A(ΛA)x = b(λb) with

0 ≤ (ΛA)ij ≤ 1; 0 ≤ (λb)i ≤ 1;

we have
A(ΛA)x = (A+WA.ΛA)x = b+ wb.λb = b(λb); (5)

or
Ax− b− wb.λb = −WA.ΛAx; (6)

where ≤ (ΛA)ij ≤ 1 and 0 ≤ (λb)i ≤ 1. We know that Equation (6) can be rewritten
as {

(A+WA.ΛA)x ≤ b+ wb.λb
(A+WA.ΛA)x ≥ b+ wb.λb.

(7)
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Remark 4 If we choose a particular λ, either 0 or 1 for all the parameters λ, we will
obtain various kinds of solutions containing the united, control, tolerance and classical
solutions. It is clear that (3) is the interval hull. Moreover, since it was shown in
[6], that the constraint interval approach encompasses the four standard solution types
(united extension, control, tolerance, classical-set theoretic), the methods applied to
each of the four types contain as subsets each of the types.

The right-hand side of Equation (6) is the only nonlinear part of the equality. Since
WA ≥ 0 , and 0 ≤ ΛA ≤ 1, depending on the sign of x, we can obtain a lower and
an upper bound for the right-hand side. To determine the sign of x, we restrict the
region to each orthant. Let ej be the unique vector in Rn for which the jth component
is 1 and all of the other elements are zero. In an n-dimensional space, there are 2n

orthants. Corresponding to the qth orthant (q = 1, ..., 2n), we can construct matrix
Dq such that Dq = [dq1, d

q
2, ..., d

q
n], where dqn is either ej or −ej . We can also denote

Dq = Diagq(αq) = Diagq(αq1, α
q
2, ..., α

q
n) where αqj = {−1, 1}; j = 1, ..., n, q = 1, ..., 2n.

It can be shown that Diagq is a permutation matrix. Let Dq be a permutation matrix.
An element z ∈ Rn belongs to qth orthant if and only if Dqz ≥ 0. Two matrices
Rq = [Rj ] and Sq = [Sj ] can be defined as bounds for WAΛAD

q as

Rq ≤WAΛAD
q ≤ Sq. (8)

The relaxed problem is defined as follows for any q = 1, .., 2n, and j = 1, ..., n;

P1relaxed : (xrelaxed )jq = inf eTj x
s.t. (A+ Lq)x− wbλb ≤ b

(A+ Uq)x− wbλb ≥ b
0 ≤ (λb)i ≤ 1

Dqx ≥ 0

(9)

P2relaxed : (xrelaxed )jq = sup eTj x
s.t. (A+ Lq)x− wbλb ≤ b

(A+ Uq)x− wbλb ≥ b
0 ≤ (λb)i ≤ 1

Dqx ≥ 0

(10)

Problems P1relaxed and P2relaxed are linear and convex. There are n×2n problems to
be solved, and the algorithm is still NP-hard as the size of problem increases. Clearly
in each orthant, all elements of the solution will be a minimum and maximum. Thus,
we define the extended IE solution as (xrelaxed )j = min{(xrelaxed )jq; q = 1, ..., 2n}
and (xrelaxed )j = max{(xrelaxed )jq; q = 1, ..., 2n}

Theorem 3.1 Let x and x be the optimal solutions of problems P1 and P2 respec-
tively, and xrelaxed and xrelaxed be the optimal solutions of problems P1relaxed and
P2relaxed, respectively. Then,

[x, x] ⊆ [xrelaxed, xrelaxed].

Proof: Suppose x and x are the optimal solutions of problems P1 and P2 . This
means that x and x satisfy the constraints. Without loss of generality, we prove the
theorem for either x or x. Let us consider x. From Equations (5) and (6), A(Λx)x =
b(λb) implies that (A + WAΛA)x = (b + wb.λb) and Ax − b − wb.λb = −WA.ΛAx .
We have WA ≥ 0 and 0 ≤ (ΛA)ik ≤ 1; i = 1, ...,m; k = 1, ..., n. On the other hand,
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since Dqx ≥ 0; q = 1, ..., 2n multiplying relationship (8) by Dqx leads to RqDqx ≤
WA.ΛAD

qDqx ≤ SqDqx. Clearly, DqDq = I, and therefore we have Lqx ≤WA.ΛAx ≤
Uqx, where Lq = RqDq and Uq = SqDq. Consequently, Equation (6) implies that we
have −Uqx ≤ Ax − b − wb.λb ≤ −Lqx. Hence x is a feasible point of the problem
P1relaxed . On the other hand, since x is the optimal solution, for any x, we have

(ej)
Tx ≤ (ej)

Tx.

Theorem 3.2 If A is invertible and all components of A−1 are negative, then [x, x] =
[xrelaxed, xrelaxed] .

Proof: Let x and x be the optimal solutions of the problems P1 and P2 respectively,
xrelaxed and xrelaxed be the optimal solutions of problems P1relaxed and P2relaxed
respectively. According to Theorem 3.1, it is sufficient to prove

[xrelaxed , xrelaxed ] ⊆ [x, x].

That is, for any x ∈ [xrelaxed , xrelaxed ], we have x ∈ [x, x] . Let x ∈ [xrelaxed , xrelaxed ]

be in the qth orthant. Therefore, from the definition of P1relaxed , we have

(A+ Lq)− wb.λb ≤ b, and
(A+ Uq)− wb.λb ≥ b

(11)

where 0 ≤ λb ≤ 1 . Since the matrix function WA.ΛAD
q is continuous in terms of

ΛA’s components and its domain is compact, the minimum and maximum ofWA.ΛAD
q

exist, that is,
∃Λ,Λ;Rq = WA.ΛAD

q, Sq = WA.ΛAD
q.

Therefore
Lq = RqDq = WA.ΛAD

qDq = WA.ΛA
Uq = SqDq = WA.ΛAD

qDq = WA.ΛA.
(12)

Inequalities (11) imply that

(A+WA.ΛA)x ≤ b+ wb.λb
(A+WA.ΛA)x ≥ b+ wb.λb.

(13)

Since A(ΛA)−1 ≤ 0 , we have{
x ≥ A(ΛA)−1b(λb) ≥ minΛA,λb A(ΛA)−1b(λb),

x ≤ A(ΛA)−1b(λb) ≤ maxΛA,λb A(ΛA)−1b(λb).
(14)

Thus, {
x ≥ minΛA,λb A(ΛA)−1b(λb),
x ≤ maxΛA,λb A(ΛA)−1b(λb),

(15)

and the proof is completed.
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Algorithm 1 To obtain the extended IE solution by [A], [b],WA, wb.

for q = 1, ..., 2n

construct Uq = [uq1, u
q
2, ..., u

q
n] and Lq = [lq1, l

q
2, ..., l

q
n] where

lqi =

{
(WA)i if di = ei
0 if di = −ei

uqi =

{
0 if di = ei

(WA)i if di = −ei
in which di is the ith column of Dq = Diagq(αq1, ..., α

q
n) where

αqi ∈ {−1, 1} for j = 1, ..., n compute
(xrelaxed )jq = inf eTj x subject to (A + Lq)x − wb.λb ≥ b, (A + Uq)x − wb.λb ≤ b, 0 ≤
λb ≤ 1, Dqx ≥ 0
(xrelaxed )jq = sup eTj x subject to (A+ Lq)x− wb.λb ≥ b, (A+ Uq)x− wb.λb ≤ b, 0 ≤
λb ≤ 1, Dqx ≥ 0
end
end
(xrelaxed )j = min{(xrelaxed )jq, q = 1, ..., 2n}
(xrelaxed )j = max{(xrelaxed )jq, q = 1, ..., 2n}

We compare IE and the extended IE,

Size Inverse Problem Optimal
Solution

Number of problems
to be solved

IE Square need NLP Local 2n

EIE Free No need LP Global n2n

Example 1 Consider the system of linear interval equations (see [6])

[2, 4]x1 + [−2, 1]x2 = [−2, 2]
[−1, 2]x1 + [2, 4]x2 = [−2, 2].

According to the IE solution and using INTLAB (see [11]), its solution is −4 ≤
x1 ≤ 4;−4 ≤ x2 ≤ 4. To obtain the extended IE solution

A =

(
2 −2
−2 1

)
; WA =

(
4 1
2 4

)
; b =

(
−2
−2

)
; wb =

(
4
4

)
.

Orthant 1: x1 ≥ 0; x2 ≥ 0 then D1 =

(
1 0
0 1

)
; L1 =

(
0 0
0 0

)
; U1 =(

2 3
3 2

)
; and 0 ≤ x1 ≤ 4⇒ x1 = 0; x1 = 4; 0 ≤ x2 ≤ 3⇒ x1 = 0; x1 = 3.

Orthant 2: x1 ≤ 0; x2 ≥ 0 then D2 =

(
−1 0
0 1

)
; L2 =

(
2 0
3 0

)
; U2 =(

0 3
0 2

)
; and −3 ≤ x1 ≤ 0⇒ x1 = −3; x1 = 0; 0 ≤ x2 ≤ 4⇒ x1 = 0; x1 = 4.

Orthant 3: x1 ≤ 0; x2 ≤ 0 then D3 =

(
−1 0
0 −1

)
; L3 =

(
2 3
3 2

)
; U3 =(

0 0
0 0

)
; and −4 ≤ x1 ≤ 0⇒ x1 = −4; x1 = 0; − 3 ≤ x2 ≤ 0⇒ x1 = −3; x1 = 0.
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Figure 1: The red filled star, the blue dash box and the brown dot box in each orthant
show the weak solution, IE solution, and our extended IE solution, respectively.

Orthant 4: x1 ≤ 0; x2 ≤ 0 then D4 =

(
1 0
0 −1

)
; L4 =

(
0 3
0 2

)
; U4 =(

2 0
3 0

)
; and 0 ≤ x1 ≤ 4⇒ x1 = 0; x1 = 4; − 4 ≤ x2 ≤ 0⇒ x1 = −4; x1 = 0.

Therefore,

x1 = min−4,−3, 0 = −4

x1 = max 0, 3, 4 = 4

x2 = min−4,−3, 0 = −4

x2 = max 0, 3, 4 = 4.

Figure 1 depicts the solution using INTLAB [11] with both the IE and Extended IE
solutions.

Table 1 of the appendix shows the numerical results obtained by IE and the ex-
tended IE in detail, where OS stands for Obtained Solution and RT stands for Running
Time. Clearly, the extended IE solution is either equal to the IE solution or includes
it. On the other hand, for both algorithms, we deal with a programming problem. In
this case, the IE is considered as a nonlinear programming problem. Therefore, as the
size of the system increases, the number of orthants increases, which means that the
run time of the extended IE also increases. On the other hand, IE obtains the optimal
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solution independent of orthants. Therefore, we expect that for large scale systems,
the run time of the Extended IE to be more than that of IE, and this fact is confirmed
by our preliminary numerical results.

4 Conclusion

The IE solution for a system of linear equations in the presence of interval parameters
involves two nonlinear programming problems. For IE solutions, the coefficient matrix
needs to be square and invertible. Moreover, the optimal solution is a local optimum.
We proposed two optimization problems without having to invert coefficient matrices.
Then a relaxation is proposed to transform the nonlinear problem to a linear one. Next,
we obtained convexity by analyzing the solution set in each orthant. This extended IE
solution contains the weak, strong, control, tolerance and IE solutions, and it is equal
to the IE solution for square coefficient matrices.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments
and suggestions to improve the quality of the paper. The third author wishes to thank
CNPq project 400754/2014− 2 for partially supporting this research.

References

[1] M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, and K. Zimmermann. Optimization
Problems with Inexact Data. springer, 2006.

[2] C. Jansson. Calculation of exact bounds for the solution set of linear interval
systems. Linear Algebra Appl, 251:321–340, 1997.

[3] W.A. Lodwick. Analysis of structure in fuzzy linear programs. Fuzzy Sets and
Systems, 38:15–26, 1990.

[4] W.A. Lodwick. Constrained interval arithmetic. Technical report, University of
Colorado at Denver, 1999. http://ccm.ucdenver.edu/reports/rep138.pdf.

[5] W.A. Lodwick. Interval and fuzzy analysis: A unified approach. Advances in
Imaging and Electronic Physics, 148:76–192, 2007.

[6] W.A. Lodwick and D. Dubois. Interval linear systems as a necessary step in fuzzy
linear systems. Fuzzy Sets and Systems, 274:227–251, 2015.

[7] W.A. Lodwick and O.A. Jenkins. Constrained intervals and interval spaces. Soft
Computing, 17(8):1393–1402, 2013.

[8] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis.
SIAM, 2009.

[9] W. Oettli. On the solution set of a linear system with inaccurate coefficients.
SIAM Journal on Numerical Analysis, 2:115–118, 1965.

http://ccm.ucdenver.edu/reports/rep138.pdf


Reliable Computing 26, 2018 11

[10] J. Rohn. NP-hardness results for linear algebraic problems with interval data.
In J. Herzberger, editor, Topics in Validated Computations, Studies in Computa-
tional Mathematics. Elsevier Science Publishers., pages 463–471, 1994.

[11] Siegfried M. Rump. INTLAB – INTerval LABoratory, 2017. http://www.ti3.

tu-harburg.de/rump/intlab/.

[12] S. P. Shary. Algebraic approach to the interval linear static identification, tol-
erance, and control problems, or one more application of Kaucher arithmetic.
Reliable Computing, (2)1:3–34, 1996.

[13] J. Stolfi and L.H. de Figueriredo. Self-Validated Numerical Methods and Appli-
cations. IMPA, Brazilian Mathematics Colloquium monograph, 1997.

http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/


12 Keyanpour et al, Solution Algorithm Based on Constraint Intervals

5 Appendix

size sample OS(IE) OS(EIE) RT(IE) RT(EIE)

n = 2

A =

(
3 −2
−1 2

)
WA =

(
2 4
3 2

)
bT =

(
−2 −2

)
wTb =

(
4 3

)
(

[−1.0789, 4]
[−5, 3.5]

) (
[−3, 4]

[−5, 3.5]

)
1.167084 0.287524

n = 2

A =

(
3 −2
−1 2

)
WA =

(
3 4
3 3

)
bT =

(
−2 −2

)
wTb =

(
4 3

)
(

[−2, 4]
[−5, 1.6585]

) (
[−3, 4]

[−5, 3.5]

)
1.268958 0.289187

n = 2

A =

(
3 −2
−1 2

)
WA =

(
3 4
3 3

)
bT =

(
−3 −2

)
wTb =

(
4 5

)
(

[−6, 0.6695]
[−2.25, 7.5]

) (
[−6, 3]

[−4, 7.5]

)
1.125899 0.294201

n = 2

A =

(
3 −4
−2 3

)
WA =

3 4
2 3

bT =
(
−3 −3

)
wTb =

(
4 4

)
(

[−21, 1.4045]
[−14.9998, 4.9998]

) (
[−21, 7]
[−15, 5]

)
0.943582 0.301753

n = 3

A =

 3 −4 4
−2 3 5
3 4 3


WA =

 3 4 2
2 3 5
3 4 2


bT =

(
−3 −3 −3

)
wTb =

(
4 4 4

)

 [−1.3153, 1.4496]
[−10.250, 10.750]
[−13.500, 12.500]

  [−8.1667, 8.500]
[−10.250, 10.75]
[−13.500, 12.50]

 0.943582 0.301753

n = 4 Random


[−0.0010, 0.1949]
[−5.9060, 0.1943]
[−0.0046, 0.0493]
[−0.1204, 0.0648]




[−24.4672, 6.5633]
[−12.7777, 4.9699]
[−1.0965, 1.0965]
[−1.2771, 1.2771]

 4.237973 1.946557

n = 5 Random


[−4.4259, 0.0136]
[−0.1223, 0.0899]
[−0.0095, 2.0353]
[−0.0113, 0.0060]
[−0.0790, 0.0132]




[−36.5793, 10.9590]
[−0.0000, 0.0000]
[−2.0581, 1.1558]
[−14.8230, 5.0579]
[−47.1432, 21.8656]

 5.772440 4.662293

m = 3
n = 2

A =

 1 0.5
0.5 2
1.5 2


WA =

 2 0.5
0.5 1
1.5 2


bT =

(
1.25 3.25 3.75

)
wTb =

(
5.75 5.75 10.75

)
−

(
[−6.5, 10.75]
[−3.75, 7.75]

)
− 0.233373

Table 1: Some numerical examples that compare the IE and EIE solutions
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