
Runge–Kutta Theory and Constraint

Programming∗

Julien Alexandre dit Sandretto§

julien.alexandre-dit-sandretto@ensta-paristech.fr

U2IS, ENSTA ParisTech, Université Paris-Saclay,
828 bd des Maréchaux, 91762 Palaiseau cedex France

Abstract

There exist many Runge–Kutta methods (explicit or implicit), more
or less adapted to specific problems. Some of them have interesting prop-
erties, such as stability for stiff problems or symplectic capability for prob-
lems with energy conservation. Defining a new method suitable to a given
problem has become a challenge. The size, the complexity and the order
do not stop growing. This race to the best method is interesting but
an important unsolved problem. Indeed, the coefficients of Runge–Kutta
methods are harder and harder to compute, and the result is often ex-
pressed in floating-point numbers, which may lead to erroneous integra-
tion schemes. Here, we propose to use interval analysis tools to compute
Runge–Kutta coefficients. In particular, we use a solver based on guar-
anteed constraint programming. Moreover, with a global optimization
process and a well chosen cost function, we propose a way to define some
novel optimal Runge–Kutta methods.

Keywords: Runge–Kutta methods, Differential equations, Validated simulation.

AMS subject classifications: 34A45,65G20,65G40

1 Introduction

Many scientific applications in physical fields such as mechanics, robotics, chemistry
or electronics require solving differential equations. This kind of equation appears
e.g., when the location is required, but only the velocity and/or the acceleration are
available when modelling a system. In the general case, these differential equations
cannot be formally integrated, i.e., closed form solutions are not available, and a
numerical integration scheme is used to approximate the state of the system. The most

∗Submitted: November 30, 2016; Revised: June 7, 2017; Accepted: August 24, 2017).
§Partially funded by the Academic and Research Chair: “Complex Systems Engineering”-

Ecole polytechnique ∼ THALES ∼ FX ∼ DGA ∼ DASSAULT AVIATION ∼ DCNS Research
∼ ENSTA ParisTech ∼ Telecom ParisTech ∼ Fondation ParisTech ∼ FDO ENSTA

178

julien.alexandre-dit-sandretto@ensta-paristech.fr

Reliable Computing 25, 2017 179

classical approach is to use a Runge–Kutta scheme – carefully chosen with respect to
the problem, desired accuracy, and so on – to simulate the system behaviour.

Historically, the first method for numerical solution of differential equations was
proposed by Euler in Institutiones Calculi Integralis [7]. His main idea is based on
a simple principle: if a particle is located at y0 at time t0 and if its velocity at this
time is known to be equal to v0, then at time t1 the particle will be approximately
at position y1 = y0 + (t1 − t0)v0, under the condition that t1 is sufficiently close to t0
(that is, after a very short time), so velocity do not change “too much” over [t0, t1].
Based on this principle, around 1900 C. Runge and M. W. Kutta developed a family of
iterative methods, now called Runge–Kutta methods. While many such methods have
been proposed since then, a unified formalism and a deep analysis was first proposed
by Butcher in the sixties [4].

Almost from the beginning, after Euler, a race started to obtain new schemes, with
better properties or higher order of accuracy. It quickly became a global competition.
Recently, an explicit 14th order Runge–Kutta scheme with 35 stages [8] and an implicit
17th order Radau with 9 stages [17] were prposed. From the beginning, methods
have been discovered with the help of ingenuity in order to solve the highly complex
problem, such as use of polynomials with known zeros (Legendre for Gauss methods
or Jacobi for Radau) [10], vanishing of some coefficients [10], or symmetry [8]. All
these approaches, based on algebraic manipulations, are reaching their limit, due to
the large number of stages. Indeed, to obtain a new method, we need now to solve a
high-dimensional under-determined problem with floating-point arithmetic [19]. Even
if, as in some, multi-precision arithmetic is used, the result obtained is still not exact.
A restriction Runge–Kutta methods which have coefficients represented exactly in the
computer can be eventually considered [16]. However, this restriction is really strong,
because only few methods can be used, and it is the opposite of our approach.

For this reason, in this paper we introduce application of interval coefficients for
Runge–Kutta methods; this could be an interesting research direction for defining new
reliable numerical integration methods. We show that the properties of a Runge–Kutta
scheme (such as order, stability, symplecticity, etc.) can be preserved with interval
coefficients, while they are lost with floating-point numbers. By the use of interval
analysis tools [12, 18], and more specifically a constraint programming (CP) solver [21],
a general method to build new methods with interval coefficients is presented. More-
over, an optimization procedure allows us, with a well chosen cost function, to define
the optimal scheme. The new methods with interval coefficients, obtained with our
approach, have properties inclusion properties, meaning that the resulting interval box
is guaranteed to contain a scheme that satisfies all the desired properties. They can be
either used in a classical numerical integration procedure (but computations have to
be done with interval arithmetic), or in a validated integration one [1]. In both cases,
the properties of the scheme will be preserved.

In this paper, a recurring reference will be made to the books of Hairer [10], which
contains the majority of the results on Runge–Kutta theory.

Outline. We review the classical algorithm of a simulation of an ordinary differential
equation with Runge–Kutta methods, as well as a brief introduction to the modern
theory of Runge–Kutta methods, in Section 2. In Section 3, we present the interval
analysis framework used in this work and the advantages of having Runge–Kutta
methods with interval coefficients. We analyze some of the properties of Runge–Kutta
methods with and without interval coefficients in Section 4. In Section 5, the constraint
satisfaction problem to solve to obtain a new scheme is presented. In Section 6, we

180 Defining New Runge–Kutta methods with Interval Coefficients

present some experimental results, followed in Section 7 by the application of the new
schemes in validated simulation. In Section 8, we summarize the main contributions
of the paper.

Notation.

• ẏ denotes the time derivative of y, i.e., dy
dt

.

• a denotes a real value, while a represents a vector of real values.

• [a] represents an interval value and [a] represents a vector of interval values (a
box).

• The midpoint of an interval [x] is denoted by m([x]).

• The variables y are used for the state variables of the system and t represents
time.

• Sets will be represented by calligraphic letter such as X or Y.

• The real part and the imaginary part of a complex number z will be denoted by
<(z) and =(z) respectively.

• An interval with floating point bounds is written in the short form e.g.,
0.123456[7, 8] to represent the interval [0.1234567, 0.1234568].

2 A Review of Runge–Kutta Methods

Historically, Runge–Kutta methods were used to compute a Taylor series expansion
without any derivative computation, which was a difficult problem in the 19th Cen-
tury. Now, automatic differentiation methods [9] can be used to efficiently compute
derivatives, but Runge–Kutta methods are more than a simple technique to com-
pute a Taylor series expansion. Mainly, Runge–Kutta methods have strong stability
properties (see Section 4 for a more formal definition), which make them suitable for
efficiently solving different classes of problems, especially stiff systems. In particu-
lar, implicit methods can be algebraically stable, stiffly accurate and symplectic (see
Section 4.4). For this reason, the study of the properties of Runge–Kutta methods
is highly interesting, and the definition of new techniques to build new Runge–Kutta
methods with strong properties is also of interest.

2.1 Numerical Integration with Runge–Kutta Methods

Runge–Kutta methods can solve the initial value problem (IVP) of non-autonomous
Ordinary Differential Equations (ODEs) defined by

ẏ = f(t,y) with y(0) = y0 and t ∈ [0, tend] . (1)

The function f : R × Rn → Rn is called the flow, y ∈ Rn is called the vector of
state variables, and ẏ denotes the derivative of y with respect to time t. We shall
always assume at least that f is globally Lipschitz in y, so Equation (1) admits a
unique solution [10] for a given initial condition y0. Furthermore, for our purpose, we
shall assume, as needed, that f is continuously differentiable. The exact solution of
Equation (1) is denoted by y(t; y0).

The goal of a numerical simulation to solve Equation (1) is to compute a sequence
of time instants 0 = t0 < t1 < · · · < tN = tend (not necessarily equidistant) and a

Reliable Computing 25, 2017 181

sequence of states y0, . . . , yN such that ∀` ∈ [0, N], y` ≈ y(t`,y`−1), obtained with
the help of an integration scheme.

A Runge–Kutta method, starting from an initial value y` at time t` and a finite
time horizon h, the step-size, produces an approximation y`+1 at time t`+1, with t`+1−
t` = h, of the solution y(t`+1; y`). Furthermore, to compute y`+1, a Runge–Kutta
method computes s evaluations of f at predetermined time instants. The number
s is known as the number of stages of a Runge–Kutta method. More precisely, a
Runge–Kutta method is defined by

y`+1 = y` + h

s∑
i=1

biki, (2)

with ki defined by

ki = f

(
t` + cih,y` + h

s∑
j=1

aijkj

)
. (3)

The coefficients ci, aij and bi, for i, j = 1, 2, · · · , s, fully characterize the Runge–Kutta
methods, and they are usually synthesized in a Butcher tableau [4] of the form

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

≡ c A

b
.

In terms of the form of the matrix A, consisting of the coefficients aij , a Runge–
Kutta method can be

• explicit, e.g., as in the classical Runge–Kutta method of order 4 given in Fig-
ure 1(a). In other words, the computation of the intermediate ki only depends
on the previous steps kj for j < i;

• diagonally implicit, e.g., as in the diagonally implicit fourth-order method given
in Figure 1(b). In this case, the computation of an intermediate step ki involves
the value ki, so non-linear systems in ki must be solved. A method is singly
diagonally implicit if the coefficients on the diagonal are all equal;

• fully implicit, e.g., the Runge–Kutta fourth-order method with a Lobatto quadra-
ture formula given in Figure 1(c). In this last case, the computation of interme-
diate steps involves the solution of a non-linear system of equations in all the
values ki for i = 1, 2, · · · , s.

The order of a Runge–Kutta method is p if and only if the local truncation error,
i.e., the distance between the exact solution y(t`; y`−1) and the numerical solution y`
is such that:

y(t`; y`−1)− y` = O(hp+1) .

Some theoretical results have been obtained concerning the relation between the
number of stages s and the order p. For the explicit methods, there is no Runge–Kutta
method of order p with s = p stages when p > 4. For the implicit methods, p = 2s
is the largest possible order for a given number of stages, and only Gauss-Legendre
methods have this capability [10].

182 Defining New Runge–Kutta methods with Interval Coefficients

0 0 0 0 0
1

2
1
2

0 0 0
1

2
0 1

2
0 0

1 0 0 1 0

1

6
1
3

1
3

1
6

(a) RK4

1

4
1
4

3

4
1
2

1
4

11

20
17
50

−1
25

1
4

1

2
371
1360

−137
2720

15
544

1
4

1
25

24
−49
48

125
16

−85
12

1
4

25

24
−49
48

125
16

−85
12

1
4

(b) SDIRK4

0
1

6
− 1

3
1
6

1

2
1
6

5
12

− 1
12

1
1

6
2
3

1
6

1

6

2

3

1

6
(c) Lobatto3c

Figure 1: Different kinds of Runge–Kutta methods

2.2 Butcher’s Theory of Runge–Kutta Methods

One of the main ideas of John Butcher in [4] is to express the Taylor expansion of
the exact solution of (1) and the Taylor expansion of the numerical solution using
the same basis of elementary differentials . The elementary differentials are made
of sums of partial derivatives of f with respect to the components of y. Another
salient idea of John Butcher in [4] is to relate these partial derivatives of order q to
a combinatorial problem to enumerate all the trees τ with exactly q nodes. From
the structure of a tree τ , one can map a particular partial derivative; see Table 1 for
some examples. It follows that one has the three following theorems, used used to
express the order condition of Runge–Kutta methods. In theorems 2.1 and 2.2, τ is
a rooted tree, F (τ) is the elementary differential associated with τ , r(τ) is the order
of τ (the number of nodes it contains), γ(τ) is the density, α(τ) is the number of
equivalent trees and ψ(τ) the elementary weight of τ based on the coefficients ci, aij
and bi defining a Runge–Kutta method; see [4] for more details. Theorem 2.1 defines
the q-th time derivative of the exact solution expressed with elementary differentials.
Theorem 2.2 defines the q-th time derivative of the numerical solution expressed with
elementary differentials. Finally, Theorem 2.3 formally defines the order condition of
the Runge–Kutta methods.

Theorem 2.1 The q-th derivative w.r.t. time of the exact solution is given by

y(q) =
∑
r(τ)=q

α(τ)F (τ)(y0) .

Theorem 2.2 The q-th derivative w.r.t. time of the numerical solution is given by

y
(q)
1 =

∑
r(τ)=q

γ(τ)ϕ(τ)α(τ)F (τ)(y0) .

Theorem 2.3 (Order condition) A Runge–Kutta method has order p iff

ϕ(τ) =
1

γ(τ)
∀τ, r(τ) 6 p .

These theorems give the necessary and sufficient conditions to define new Runge–
Kutta methods. In other words, they define a system of equations, where the unkowns
are the coefficients ci, aij and bi, which characterize a Runge–Kutta method. For

Reliable Computing 25, 2017 183

Table 1: Rooted trees τ , elementary differentials F (τ), and their coefficients
r(τ) Trees F (τ) α(τ) γ(τ) ϕ(τ)

1 f 1 1
∑

i bi

2 f ′f 1 2
∑

ij biaij

3 f ′′(f , f) 1 3
∑

ijk biaijaik

3 f ′f ′f 1 6
∑

ijk biaijajk

4 f ′′′(f , f , f) 1 4
∑

ijkl biaijaikail

4 f ′′(f ′f , f) 3 8
∑

ijkl biaijaikajl

4 f ′f ′′(f , f) 1 12
∑

ijkl biaijajkajl

4 f ′f ′f ′f 1 24
∑

ijkl biaijajkakl

example, for the first four orders, and following the order condition, the following
constraints on the derivative order have to be solved to create a new Runge–Kutta
method

• order 1:
∑
bi = 1

• order 2:
∑
biaij = 1

2

• order 3:
∑
cibiaij = 1

6
,
∑
bic

2
i = 1

3

• order 4:
∑
bic

3
i = 1

4
,
∑
biciaijcj = 1

8
,
∑
biaijc

2
j = 1

12
,
∑
biaijajkck = 1

24

The total number of constraints increases exponentially: 8 for the 4th order, 17 for
the 5th order, 37, 85, 200, etc. Note also an additional constraint, saying that the ci
must be increasing, has to be taken into account, and also that ci are such that

ci =
∑
j

aij .

These constraints are the smallest set of constraints, known as Butcher rules, which
have to be validated in order to define new Runge–Kutta methods.

Additionally, other constraints can be added to define particular structure of
Runge–Kutta methods [4], as for example, to make it

• Explicit: aij = 0, ∀j ≥ i
• Singly diagonal: a1,1 = · · · = as,s

• Diagonal implicit: aij = 0,∀j > i

• Explicit first line: a11 = · · · = a1s = 0

• Stiffly accurate: asi = bi, ∀i = 1, . . . , s

• Fully implicit: aij 6= 0,∀i, j = 1, . . . , s

Note that historically, some simplifications of this set of constraints were used to
reduce the complexity of the problem. For example, to obtain a fully implicit scheme

184 Defining New Runge–Kutta methods with Interval Coefficients

with a method based on Gaussian quadrature (see [5] for more details), the c1, . . . , cs
are the zeros of the shifted Legendre polynomial of degree s, given by:

ds

dxs
(xs(x− 1)s).

This approach is called the “Kuntzmann-Butcher methods” and is used to characterize
the Gauss-Legendre methods [5]. Another example: by finding the zeros of

ds−2

dxs−2
(xs−1(x− 1)s−1),

the Lobatto quadrature formulas are obtained (see Figure 1(c)).
The problems with this approach are obvious. First, the resulting Butcher tableau

is guided by the solver and not by the requirements on the properties. Second, a
numerical computation in floating-point numbers is needed, and because such compu-
tations are not exact, the constraints may not be satisfied.

We propose an interval analysis approach to solve these constraints and hence
produce reliable results. More precisely, we follow the constraint satisfaction problem
approach.

3 Runge–Kutta with Interval Coefficients

As seen before in Section 2.2, the main constraints are the order conditions, also called
Butcher rules. Two other constraints need to be considered: the sum of aij is equal to
ci for all the table lines; and the ci are increasing with respect to i. These constraints
have to be fulfilled to obtain a valid Runge–Kutta method, and they can be gathered
in a Constraint Satisfaction Problem (CSP).

Definition 3.1 (CSP) A numerical (or continuous) CSP (X ,D, C) is defined as fol-
lows:

• X = {x1, . . . , xn} is a set of variables, also represented by the vector x.

• D = {[x1], . . . , [xn]} is a set of domains ([xi] contains all possible values of xi).

• C = {c1, . . . , cm} is a set of constraints of the form ci(x) ≡ fi(x) = 0 or
ci(x) ≡ gi(x) 6 0, with fi : Rn → R, gi : Rn → R for 1 6 i 6 m. Constraints C
are interpreted as a conjunction of equalities and inequalities.

An evaluation of the variables is a function from a subset of variables to a set of values
in the corresponding subset of domains. An evaluation is consistent if no constraint is
violated. An evaluation is complete if it includes all variables. The solution of a CSP
is a complete and consistent evaluation.

In the particular case of continuous (or numerical) CSPs, interval based techniques
provide generally one or a list of boxes which enclose the solution. The CSP approach
is at the same time powerful enough to address complex problems (NP-hard problems
with numerical issues, even in critical applications) and simple in the definition of a
solving framework [2, 14].

Indeed, the classical algorithm to solve a CSP is the branch-and-prune algorithm,
which needs only an evaluation of the constraints and an initial domain for variables.
While this algorithm is sufficient for many problems, to solve other problems, some
improvements have been achieved, and algorithms based on contractors have emerged

Reliable Computing 25, 2017 185

[6]. The branch-and-contract algorithm consists of two main steps: i) the contraction
(or filtering) of one variable and the propagation to the others until a fixed point
reached, then ii) the bisection of the domain of one variable in order to obtain two
problems, easier to solve.

A more detailed description follows.

Contraction A filtering algorithm or contractor is used in a CSP solver to reduce
the domain of variables to a fixed point (or a near fixed point), by respecting local con-
sistencies. A contractor Ctc can be defined with the help of constraint programming,
analysis or algebra, but it must satisfy three properties:

• Ctc(D) ⊆ D: contractivity,

• Ctc cannot remove any solution: it is conservative,

• D′ ⊆ D ⇒ Ctc(D′) ⊆ Ctc(D): monotonicity.

There are many contractor operators defined in the literature, most notably:

• (Forward-Backward contractor) By considering only one constraint, this method
computes the interval enclosure of a node in the tree of constraint operations
with the children domains (the forward evaluation), then refines the enclosure
of a node in terms of parents domain (the backward propagation). For example,
from the constraint x + y = z, this contractor refines initial domains [x], [y]
and [z] from a forward evaluation [z] = [z] ∩ ([x] + [y]), and from two backward
evaluations [x] = [x] ∩ ([z]− [y]) and [y] = [y] ∩ ([z]− [x]).

• (Newton contractor) This contractor, based on the first order Taylor interval
extension: [f]([x]) = f(x∗) + [Jf]([x])([x]−x∗) with x∗ ∈ [x], has the property:
if 0 ∈ [f]([x]), then [x]k+1 = [x]k ∩ x∗ − [Jf]([x]k)−1f(x∗) is a tighter inclusion
of the solution of f(x) = 0. Some other contractors based on Newton’s method,
such as the Krawczyk operator [12], have been defined.

Propagation If a variable domain has been reduced, the reduction is propagated
to all the constraints involving that variable, allowing the other variable domains to
be narrowed. This process is repeated until a fixed point is reached.

Branch-and-Prune A Branch-and-Prune algorithm consists on alternatively br-
anching and pruning to produce two sub-pavings L and S, with L the boxes too small
to be bisected and S the solution boxes. We are then sure that all solutions are
included in L ∪ S and that every point in S is a solution.

Specifically, this algorithm traverses a list of boxesW, initializedW with the vector
[x] consisting of the elements of D. For each box inW, the following is done: i) Prune:
the CSP is evaluated (or contracted) on the current box; if the box is is a solution, it
is added to S; otherwise ii) Branch: if the box is large enough, it is bisected and the
two boxes resulting are added into W; otherwise the box is added to L.

Example 3.1 An example of the problems that the previously presented tools can solve
is taken from [15]. The CSP is defined as follows:

• X = {x, y, z, t}
• D = {[x] = [0, 1000], [y] = [0, 1000], [z] = [0, 3.1416], [t] = [0, 3.1416]}
• C = {xy+ t− 2z = 4;x sin(z) + y cos(t) = 0;x− y+ cos2(z) = sin2(t);xyz = 2t}

186 Defining New Runge–Kutta methods with Interval Coefficients

We use a Branch-and-Prune algorithm with the Forward-Backward contractor and a
propagation algorithm to solve this CSP. The solution ([1.999, 2.001], [1.999, 2.001],
[1.57, 1.571], [3.14159, 3.1416]) is obtained with only 6 bisections. �

3.1 Correctness of CSP Applied to Butcher Rules

By construction, the CSP approach guarantees that the exact solution of the problem,
denoted by (ãij , b̃i, c̃i), is included in the solution provided by the corresponding solver,
given by ([aij], [bi], [ci]). The Butcher rules are then preserved by inclusion through
the use of interval coefficients.

Theorem 3.1 If Runge–Kutta coefficients are given by intervals obtained by a CSP
solver on constraints coming from the order condition defined in Theorem 2.3 then
they contain at least one solution which satisfies the Butcher rules.

Proof: Starting from the order condition defined in Theorem 2.3, and given the
additional details in [1], if the Runge–Kutta coefficients are given by intervals, such
that ãij ∈ [aij], b̃i ∈ [bi], c̃i ∈ [ci], then [ϕ(τ)] 3 1

γ(τ)
∀τ, r(τ) ≤ p. In other words,

y(q) ∈ [y
(q)
1],∀q ≤ p, and then the derivatives of the exact solution are included in

the numerical ones, and the Taylor series expansion of the exact solution is included
(monotonicity of the interval sum) in the Taylor series expansion of the numerical
solution obtained from the Runge–Kutta method with interval coefficients.

Remark 3.1 If a method is given with interval coefficients such that ãij ∈ [aij], b̃i ∈
[bi], c̃i ∈ [ci], there is an over-estimation of the derivatives |y(q)− [y

(q)
1]|. To make this

over-approximation as small as possible, the enclosure of the coefficients has to be as
sharp as possible.

3.2 Link with Validated Numerical Integration Methods

To make the Runge–Kutta method validated [1], the challenging question is how to
compute a bound on the difference between the true solution and the numerical solu-
tion, defined by y(t`; y`−1)− y`. This distance is associated with the local truncation
error (LTE) of the numerical method. We showed that LTE can be easily bounded by
using the difference between the Taylor series of the exact and the numerical solutions,
which is reduced to LTE = y(p+1)(t`)− [y

(p+1)
`], with p the order of the method undere

consideration. This difference has to be evaluated on a specific box, obtained with the
Picard-Lindelöf operator, but this is outside the scope of this paper, see [1] for more
details. For a method with interval coefficients, the LTE is well bounded (even over-
approximated), which is not the case for a method with floating-point coefficients. For
a validated method, the use of interval coefficients is then a requirement.

4 Stability Properties with Interval Coefficients

Runge–Kutta methods have strong stability properties which are not present for
other numerical integration methods such as multi-step methods, e.g., Adams-Moulton
methods or BDF methods [10]. It is interesting to understand that these properties,
proven in theory, are lost in practice if we use floating-point number coefficients. In
this section, we show that the properties of Runge–Kutta methods are preserved with

Reliable Computing 25, 2017 187

the use of interval coefficients in the Butcher tableau. The definition of stability can
have a very different form depending on the class of problems under consideration.

4.1 Notion of Stability

In [10], the authors explain that when we do not have the analytical solution of a
differential problem, we must be content with numerical solutions. As they are ob-
tained for specified initial values, it is important to know the stability behaviour of
the solutions for all initial values in the neighbourhood of a certain equilibrium point.

For example, we consider a linear problem ẏ = Ay, with exact solution y(t) =
exp(At)y0. This solution is analytically stable if all trajectories remain bounded as
t→∞. Theory says that it is the case if and only if the real part of the eigenvalues of
A are strictly negative. If a numerical solution of this problem is computed with the
Euler method, the system obtained is:

y(t∗ + h) ≈ y(t∗) + Ahy(t∗) = (I + Ah)y(t∗) = Fx(t∗) .

In the same manner, the explicit Euler method is analytically stable if the discretized
system yk+1 = Fyk is analytically stable.

Many classes of stability exist, such as A-stability, B-stability, A(α)-stability, Al-
gebraic stability; see [10] for more details. Regarding the linear example above, each
stability class is associated with a particular class of problems.

4.2 Linear Stability

We focus on linear stability for explicit methods, which is easier to study, and is enough
to justify the use of interval coefficients. For linear stability, the classical approach
consists of computing the stability domain of the method. The stability function of
explicit methods is given in [10]:

R(z) = 1 + z
∑
j

bj + z2
∑
j,k

bjajk + z3
∑
j,k,l

bjajkakl + . . . , (4)

which can be written if the Runge–Kutta method is of order p as

R(z) = 1 + z +
z2

2!
+
z3

3!
+ · · ·+ zp

p!
+O(zp+1) . (5)

For example, the stability function for a fourth-order method with four stages,
such as the classic RK4 method given in Figure 1(a), is:

R(z) = 1 + z +
z2

2
+
z3

6
+
z4

24
. (6)

The stability domain is then defined by S = {z ∈ C : |R(z)| 6 1}. This definition of S
can be transformed into a constraint on real numbers following an algebraic process
on complex numbers, such as

S = {(x, y) : <
(√
<(R(x+ iy))2 + =(R(x+ iy))2

)
6 1}.

188 Defining New Runge–Kutta methods with Interval Coefficients

The constraint produced is given in Equation (7).(
1

6
x3y +

1

2
x2y − 1

6
xy3 + xy − 1

6
y3+

y2 +
1

24
x4 +

1

6
x3 − 1

4
x2y2 +

1

2
x2 − 1

2
xy2 + x+

1

24
y4 − 1

2
y2 + 1

) 1
2

6 1 (7)

The set S is now defined by a constraint on real numbers x, y and can be easily
computed by a classical paving method [12]. The result of this method is marked in
blue in in Figure 2 for an explicit Runge–Kutta fourth-order method with four stages,
such as the classical Runge–Kutta method (RK4).

We can study the influence of the numerical accuracy on the linear stability. If we
compute the coefficients (for example 1/6 and 1/24) with low precision (even exagger-
atedly in our case), the stability domain is reduced as shown in Figure 2.

First, we consider an error of 1× 10−8, which is the classical precision of floating-
point numbers for some tools (see Figure 2 on the left). For example, the coefficient
equal in theory to 1/6 is encoded by 0.16666667. Then, we consider an error of 0.1 for
this example, to see the impact: the stability domain becomes the same as a first order
method such as Euler’s method. If it seems to be exaggerated, in fact it is not rare
to find old implementations of Runge–Kutta with only one decimal digit of accuracy
(see Figure 2 on the right).

Figure 2: Paving of stability domain for RK4 method with high precision coef-
ficients (blue) and with small error (red) on coefficients (left) and large error on
coefficients (right).

4.3 Algebraic Stability

Another interesting stability class for Runge–Kutta methods is algebraic stability,
which is useful for stiff problems or to solve algebraic-differential equations. A method
is algebraically stable if the coefficients aij and bi in the Butcher tableau are such that

bi ≥ 0, ∀i = 1, . . . , s : M = (mij) = (biaij + bjaji − bibj)si,j=1 is non-negative definite.

The test for non-negative definiteness can be done with constraint programming
by solving the eigenvalue problem det(M−λI) = 0 and proving that λ > 0. I denotes

Reliable Computing 25, 2017 189

the identity matrix of dimension s× s. For example, with a three stage Runge–Kutta
method, i.e., s = 3, the constraint is:

(m11 − λ)((m22 − λ)(m33 − λ)−m23m32)−m12(m21(m33 − λ)−m23m13)+

m31(m21m32 − (m22 − λ)m31) = 0. (8)

Based on a contractor programming approach [6], the CSP to solve is:

Equation (8) has no solution in]−∞, 0[≡ M is non-negative definite.

A contractor based on the Forward/Backward algorithm is applied to the initial in-
terval [−1× 108, 0]; if the result obtained is the empty interval, then Equation (8) has
no negative solution, and M is non-negative definite, so the method is algebraically
stable.

We apply this method to the three-stage Lobatto IIIC, and the result of contractor
is empty, proving there is no negative eigenvalue, hence the matrix M is non-negative
definite and the Lobatto IIIC method is algebraically stable, which is consistent with
the theory. Similarly, we apply it to the three-stage Lobatto IIIA, and the contractor
finds at least one negative eigenvalue (−0.048 112 5) so this method is not algebraically
stable, which is also consistent with the theory.

Now, if an algebraically stable method is implemented with coefficients in floating-
point numbers, this property is lost. Indeed, an error of 1× 10−9 on aij is enough to
lose the algebraic stability for Lobatto IIIC methods (a negative eigenvalue appears
equal to −1.030 41× 10−5).

4.4 Symplecticity

Finally, another property of Runge–Kutta methods is tested, the symplecticity. This
property is associated with a notion of energy conservation. A numerical solution
obtained with a symplectic method preserves an energy quantity, without formally
expressing the corresponding law.

Definition 4.1 (Symplectic integration methods) Hamiltonian systems, given
by

ṗi = −∂H
∂qi

(p, q), q̇i = −∂H
∂pi

(p, q), (9)

have two remarkable properties: i) the solutions preserve the Hamiltonian H(p, q);
ii) the corresponding flow is symplectic, i.e., preserves the differential 2-form ω2 =∑n
i=1 dpi∧dqi. A numerical method used to solve Equation (9), while preserving these

properties, is a symplectic integration method.

Definition 4.2 (Symplectic interval methods) A Runge–Kutta method with in-
terval coefficients {[b], [c], [A]}, such that a method defined by {b, c,A} with b ∈ [b],
c ∈ [c], and A ∈ [A] is symplectic, is a symplectic interval method.

A Runge–Kutta method is symplectic if it satisfies the condition M = 0, where

M = (mij) = (biaij + bjaji − bibj)si,j=1.

With interval computation of M, it is possible to verify if 0 ∈M, which is enough to
prove that the method with interval coefficients is symplectic. Indeed, it is sufficient to

190 Defining New Runge–Kutta methods with Interval Coefficients

prove that a trajectory which preserves a certain energy conservation condition exists
inside the numerical solution.

We apply this approach to the three-stage Gauss-Legendre method with coefficients
computed with interval arithmetic. The matrix M contains the zero matrix (see
Equation (10)), so this method is symplectic, which is in agreement with the theory.

M =

[−1.3e−17, 1.4e−17] [−2.7e−17, 2.8e−17] [−2.7e−17, 1.4e−17]
[−2.7e−17, 2.8e−17] [−2.7e−17, 2.8e−17] [−1.3e−17, 4.2e−17]
[−2.7e−17, 1.4e−17] [−1.3e−17, 4.2e−17] [−1.3e−17, 1.4e−17]

 (10)

Now, if we compute only one term of the Gauss-Legendre method with floating-
point numbers, for example a1,2 = 2.0/9.0−

√
15.0/15.0, the symplecticity property is

lost (see Equation (11)).

M = [−1.3e−17, 1.4e−17] [−1.91e−09,−1.92e−09] [−2.7e−17, 1.4e−17]
[−1.91e−09,−1.92e−09] [−2.7e−17, 2.8e−17] [−1.3e−17, 4.2e−17]

[−2.7e−17, 1.4e−17] [−1.3e−17, 4.2e−17] [−1.3e−17, 1.4e−17]

 (11)

5 A Constraint Optimization Approach to De-
fine New Runge–Kutta Methods

In the previous section, the properties of Runge–Kutta methods with interval co-
efficients in the Butcher tableau have been studied, and we have shown that these
properties are preserved with intervals while they are often lost with floating-point
numbers. In this section, an approach based on constraint optimization is presented
to obtain optimal Runge–Kutta methods with interval coefficients. The cost function
is also discussed, while the solving procedure is presented in Section 6.1.

5.1 Constraints

The constraints to solve to obtain a novel Runge–Kutta method are the ones presented
in Section 2.2, and the approach is based on a CSP solver based on contractors and a
branching algorithm (see Section 3). The problem under consideration can be under-
constrained, and more than one solution can exist (for example, there are countless
fully implicit fourth-order methods with three stages). With the interval analysis
approach, which is based on set representation, a continuum of coefficients can be
obtained. As the coefficients of the Butcher tableau have to be as tight as possible
to obtain sharp enclosure of the numerical solution, a continuum (or more than one)
of solutions is not serviceable. Indeed, in a set of solutions, or a continuum, it is
interesting to find an optimal solution with respect to a given cost.

Note that using the framework of CPS, adding a cost function and hence solving
a constraint optimization problem can be done following classical techniques such as
those defined in [11].

5.2 Cost function

In the literature, a cost function based on the norm of the local truncation error is
sometimes chosen [20].

Reliable Computing 25, 2017 191

5.2.1 Minimizing the LTE

There exist many explicit second-order methods with two stages. A general form,
shown in Table 2, has been defined. With α = 1, this method is Heun’s method, while
α = 1/2 gives the midpoint method (see [4] for details about these methods).

0 0
α α

1-1/(2α) 1/(2α)

Table 2: General form of ERK with 2 stages and order 2

Ralston has proven that α = 2/3 minimizes the sum of square of coefficients of
rooted trees in the local truncation error computation [5], which is given by:

min
α

(−3α/2 + 1)2 + 1. (12)

The resulting Butcher tableau is given in Table 3.

0 0
2/3 2/3

1/4 3/4

Table 3: Ralston method

5.2.2 Maximizing order

Another way to obtain a similar result is to try to attain one order larger than the
desired one. For example, if, as Ralston, we try to build an explicit second-order
method with two stages but as close as possible to the third order by minimizing:

min
aij ,bi,ci

(∑
cibiaij −

1

6

)2

+

(∑
bic

2
i −

1

3

)2

. (13)

The same result is obtained (Table 4). This way of optimization is more interesting for
us because it reuses the constraint generated by the order condition. It also minimizes
the LTE at a given order p, because it tends to a method of order p + 1 which has a
LTE equal to zero at this order. It is important to note that minimizing the LTE or
maximizing the order leads to the same result; the difference is in the construction of
the cost function and in the spirit of the approach.

Table 4: Ralston method with interval coefficients
[−0, 0] [−0, 0]

0.6...6[6, 7] 0.6...6[6, 7]
[0.25, 0.25] [0.75, 0.75]

192 Defining New Runge–Kutta methods with Interval Coefficients

6 Experiments

Experiments are performed to, first, re-discover Butcher’s theory and, second, to find
new methods with desired structure.

6.1 Details of Implementation

To implement the approach presented in this paper, two steps need to be performed.
The first one is a formal procedure used to generate the CSP, and the second one is
applying a CSP solver based on interval analysis.

6.1.1 Definition of the Desired Method and Generation of the CSP

The definition of the desired method consists of the choice of

• Number of stages of the method

• Order of the method

• Structure of the method (singly diagonal, explicit method, diagonally implicit
method, explicit first line and/or stiffly accurate method)

Based on this definition and the algorithm defined in [3], a formal procedure gener-
ates the constraints associated with the structure and Butcher rules (see Section 2.2),
and eventually a cost function (see Section 5.2.2).

6.1.2 Constraint Programming and Global Optimization

Problem solution is done with Ibex, a library for interval computation with a constraint
solver and a global optimizer.

This library can address two major problems [22]:

• System solving: A guaranteed enclosure for each solution of a system of (non-
linear) equations is calculated.

• Global optimization: A global minimizer of some function under non-linear
constraints is calculated with guaranteed bounds on the objective minimum.

Global optimization is performed with an epsilon relaxation, so the solution is
optimal but the constraints are satisfied with respect to the relaxation. A second
pass with the constraint solver is then needed to find the validated solution inside
the inflated optimal solution. The solver provides its result in the form of an interval
vector such as ([bi], [ci], [aij]).

Some experiments are performed in the following. First, the constraint solving
part, which allows us to find methods with sufficient constraints to be the unique
solution, is tested. Second, the global optimizer is used to find the optimal methods
which are under-constrained by order conditions. Both parts are used to find the
existing methods and potentially new ones. In the following, just few methods that
can be computed are shown. Indeed, numerous methods can be obtained.

6.2 Constraint Solving

The first part of the presented approach is applied. It allows one to solve the constraints
defined during the user interface process, without cost function. This option permits

• finding a method if there is only one solution (well-constrained problem),

Reliable Computing 25, 2017 193

• knowing if there is no solution available,

• validating the fact that there is a continuum in which an optimum can be found.

To demonstrate the efficiency of this solution part, we apply it with user choices that
lead to existing methods and well-known results. After that, we describe some new
interesting methods.

6.2.1 Existing Methods

Only One Fourth-Order Method with Two Stages: Gauss-Legendre
If we are looking for a fourth-order fully implicit method with two stages, the theory
says that only one method exists, the Gauss-Legendre scheme. In the following, we
try to obtain the same result with the solution part of our scheme.

The CSP for this method is defined as follows:

X = {b, c,A}

D = {[−1, 1]2, [0, 1]2, [−1, 1]4}

C =

b0 + b1 − 1 = 0

b0c0 + b1c1 −
1

2
= 0

b0(c0)2 + b1(c1)2 − 1

3
= 0

b0a00c0 + b0a01c1 + b1a10c0 + b1a11c1 −
1

6
= 0

b0(c0)3 + b1(c1)3 − 1

4
= 0

b0c0a00c0 + b0c0a01c1 + b1c1a10c0 + b1c1a11c1 −
1

8
= 0

b0a00(c0)2 + b0a01(c1)2 + b1a10(c0)2 + b1a11(c1)2 − 1

12
= 0

b0a00a00c0 + b0a00a01c1 + b0a01a10c0 + b0a01a11c1 + b1a10a00c0+

b1a10a01c1 + b1a11a10c0 + b1a11a11c1 −
1

24
= 0

a00 + a01 − c0 = 0

a10 + a11 − c1 = 0

c0 < c1

The result from the solver is that there is only one solution, and if this result is

written in the Butcher tableau form (Table 5), we see that this method is a numerically
guaranteed version of Gauss-Legendre.

Table 5: Guaranteed version of Gauss-Legendre
0.21132486540[5, 6] [0.25, 0.25] −0.038675134594[9, 8]
0.78867513459[5, 6] 0.53867513459[5, 6] [0.25, 0.25]

[0.5, 0.5] [0.5, 0.5]

194 Defining New Runge–Kutta methods with Interval Coefficients

No Fifth-Order Method with Two Stages It is also easy to verify that
there is no fifth-order methods with two stages. The CSP generated is too large to be
presented here. The solver proves that there is no solution, in less than 0.04 seconds.

Third-Order SDIRK Method with Two Stages The solver is used to obtain
a third-order Singly Diagonal Implicit Runge–Kutta (SDIRK) method with two stages.
The result obtained is presented in Table 6. This method is known; it is the SDIRK
method with λ = 1/2(1− 1/

√
3).

Table 6: Third-order SDIRK method with two stages
0.21132486540[5, 6] 0.21132486540[5, 6] [0, 0]
0.78867513459[5, 6] 0.577350269[19, 20] 0.21132486540[5, 6]

[0.5, 0.5] [0.5, 0.5]

6.2.2 Other Methods

Now, it is possible to obtain new methods with the presented approach.

Remark 6.1 It is hard to be sure that a method is new because there is no database
collecting all the methods.

A Fourth-Order Method with Three Stages, Singly and Stiffly Accu-
rate In theory, this method is promising because it has the capabilities, desirable
for stiff problems (and for differential algebraic equations), to simultaneously optimize
the Newton’s method solution process and to be stiffly accurate (to be more efficient
with respect to stiffness). Our approach finds a unique method, unknown to-date,
satisfying to these requirements. The result is presented in Table 7.

Table 7: A fourth-order method with three stages, singly and stiffly accurate:
S3O4
0.1610979566[59, 62] 0.105662432[67, 71] 0.172855006[54, 67] −0.117419482[69, 58]
0.655889341[44, 50] 0.482099622[04, 10] 0.105662432[67, 71] 0.068127286[68, 74]

[1, 1] 0.3885453883[37, 75] 0.5057921789[56, 65] 0.105662432[67, 71]
0.3885453883[37, 75] 0.5057921789[56, 65] 0.105662432[67, 71]

A Fifth-Order Method with Three Stages, Explicit First Line With
only 6 non zero coefficients in the intermediate computations, this method could be a
good compromise between a fourth-order method with four intermediate computations
(fourth-order Gauss-Legendre) and sixth-order with nine intermediate computations
(sixth-order Gauss-Legendre). As we know, there is no Runge–Kutta method with the
same capabilities as the Gauss-Legendre method, but with fifth order. The result is
presented in Table 8.

Reliable Computing 25, 2017 195

Table 8: A fifth-order method with three stages, explicit first line: S3O5
[0, 0] [0, 0] [0, 0] [0, 0]

0.355051025[64, 86] 0.152659863[17, 33] 0.220412414[50, 61] −0.0180212520[53, 23]
0.844948974[23, 34] 0.087340136[65, 87] 0.57802125[20, 21] 0.179587585[44, 52]

0.111111111[03, 26] 0.512485826[00, 36] 0.376403062[61, 80]

6.3 Global Optimization

When the first part of our solution process provides more than one solution or a
continuum of solutions, we are able to define an optimization cost to find the best
solution with respect to that cost. We have decided to use a cost which implies that
the method tends to a higher order (Section 5.2).

6.3.1 Existing Methods

Ralston We obtain the same result as the one published by Ralston in [20], and
described in Section 5.2.2.

Infinitely many Second-Order Methods with Two Stages, Stiffly Ac-
curate and Fully Implicit The theory says that there are infinitely many second-
order methods with two stages, stiffly accurate and fully implicit. But there is only
one third-order method: radauIIA.

The generated CSP for this method is defined as follows:

X = {b, c,A}

D =
{

[−1, 1]2, [0, 1]2, [−1, 1]4
}

C =

b0 + b1 − 1 6 ε

b0 + b1 − 1 > −ε

b0c0 + b1c1 −
1

2
6 ε

b0c0 + b1c1 −
1

2
> −ε

a00 + a01 − c0 = 0

a10 + a11 − c1 = 0

c0 6 c1

a10 − b0 = 0

a11 − b1 = 0

Minimize

(
b0(c0)2 + b1(c1)2 − 1

3

)2

+

(
b0a00c0 + b0a01c1 + b1a10c0 + b1a11c1 −

1

6

)2

The optimizer find an optimal result in less than 4 seconds; see Figure 9.

The cost of this solution is in [−∞, 2.89× 10−11], which means that 0 is a possible
cost, that is to say that a third-order method exists. A second pass with the solver is
needed to find the acceptable solution (without relaxation) by fixing some coefficients
(b1 = 0.75 and c2 = 1 for example); the well known RadauIIA method is then obtained.

196 Defining New Runge–Kutta methods with Interval Coefficients

Table 9: Method close to RadauIIA obtained by optimization
0.333333280449 0.416655823215 −0.0833225527662
0.999999998633 0.749999932909 0.250000055725

0.749999939992 0.250000060009

6.3.2 Other Methods

Now, we are able to obtain new methods with our optimizing procedure.

An Optimal Explicit Third-Order Method with Three Stages There
are infinitely many explicit (3, 3)-methods, but there is no fourth-order method with
three stages. Our optimization process helps us to produce a method as close as
possible to fourth order (see Table 10). The corresponding cost is computed to be
in 0.00204[35, 49]. As explained before, this method is not validated due to relaxed
optimization. We fix some coefficients (enough to obtain only one solution) by adding
the constraints given in Equation 14. After this first step, the solver is used to obtain
a guaranteed method, close to the fourth order (see Table 11).

b1 > 0.195905;

b1 < 0.195906;

b2 > 0.429613;

b2 < 0.429614;

b3 > 0.37448000;

b3 < 0.37448001;

c2 > 0.4659;

c2 < 0.4660;

c3 > 0.8006;

c3 < 0.8007;

a32 > 0.9552;

a32 < 0.9553;

a31 > −0.1546;

a31 < −0.1545;

(14)

Table 10: An optimal explicit third-order method with three stages (not vali-
dated due to relaxation)

1.81174261766e-08 6.64130952624e-09 9.93482546211e-09 -1.11126730095e-09
0.465904769163 0.465904768843 -1.07174862901e-09 3.94710325991e-09
0.800685593936 -0.154577204301 0.955262788613 9.99497058355e-09

0.195905959102 0.429613967179 0.37448007372

If we compute the order conditions up to fourth order, we verify that this method
is third-order by inclusion, and close to fourth-order. We compute the Euclidean
distance between order condition and obtained values. For our optimal method the
distance is 0.045221[2775525, 3032049] and for Kutta(3,3) [13], which is known to be

Reliable Computing 25, 2017 197

Table 11: A guaranteed explicit third-order method with three stages, the closest
to fourth-order

[0, 0] [0, 0] [0, 0] [0, 0]
0.4659048[706, 929] 0.4659048[706, 929] [0, 0] [0, 0]
0.8006855[74, 83] −0.154577[20, 17] 0.9552627[48, 86] [0, 0]

0.19590[599, 600] 0.42961[399, 400] 0.3744800[0, 1]

one of the best explicit (3,3) method1, 0.058926. Our method is then closer to fourth
order than Kutta(3,3). As far as we know, this method is new.

Table 12: Order conditions up to fourth order
Order Result of optimal method Order condition

Order 1 [0.99999998, 1.00000001] 1
Order 2 [0.499999973214, 0.500000020454] 0.5
Order 3 [0.33333330214, 0.333333359677] 0.333333333333
Order 3 [0.166666655637, 0.166666674639] 0.166666666667
Order 4 [0.235675128044, 0.235675188505] 0.25
Order 4 [0.133447581964, 0.133447608305] 0.125
Order 4 [0.0776508066238, 0.0776508191916] 0.0833333333333
Order 4 [0, 0] 0.0416666666667

Figure 3: Paving of stability domain for RK4 method with high precision coef-
ficients (blue) and for ERK33 (green).

7 Implementation in the DynIBEX Library

DynIBEX offers a set of validated numerical integration methods based on Runge–
Kutta schemes to solve initial value problem of ordinary differential equations and for

1“Von den neueren Verfahren halte ich das folgende von Herrn Kutta angegebene für das
beste.“, C.Runge 1905 [10]

198 Defining New Runge–Kutta methods with Interval Coefficients

DAE in Hessenberg index 1 form. Even if our approach is applied not only to validated
integration but also to classical numerical integration with interval coefficients, the
validated integration allows us to obtain a validated enclosure of the final solution of
the simulation. This enclosure provides, with its diameter, a guaranteed measure of
the performance of the integration scheme. The computation time increases rapidly
with respect to the order of the method; because of the LTE, its complexity is O(np+1),
with n the dimension of the problem and p the order. The experimental results provide
the sharpest enclosure of the final solution with the lowest possible order.

We implement three new methods: S3O4 (Table 7), S3O5 (Table 8), and ERK33
(Table 11).

7.1 Experiments with S3O4

The test is based on an oil reservoir problem, a stiff problem given by the initial value
problem:

ẏ =

[
ẏ0
ẏ1

]
=

[
y1

y21 − 3
ε+y20

]
, with y(0) = (10, 0)T and ε = 1× 10−4 . (15)

A simulation up to t = 40s is performed. This problem being stiff, the results of the
new method S3O4 are compared with the Radau family, specially the RadauIIA of
third and fifth order. The results are summarized in Table 13.

Table 13: Results for S3O4
Methods time no. steps norm of diameter of final solution

S3O4 39 1821 5.9 × 10−5

Radau3 52 7509 2.0 × 10−4

Radau5 81 954 7.6 × 10−5

S3O4 is a singly implicit scheme, to optimize the Newton’s method solving, and
stiffly accurate, to be more efficient with respect to stiff problems. Based on experi-
mental results, S3O4 seems to be as efficient as the fifth-order method RadauIIA, but
faster than the third-order method RadauIIA.

7.2 Experiments with S3O5

The test is based on an interval problem, which can quickly explode, given by the
initial value problem:

ẏ =

ẏ0ẏ1
ẏ2

 =

 1
y2

y31
6
− y1 + 2 sin(λy0)

 , with y(0) = (0, 0, 0)T and λ ∈ [2.78, 2.79] .

(16)
A simulation up to t = 10s is performed. Since this problem includes an interval
parameter, a comparison with Gauss-Legendre family makes sense, Gauss–Legendre
methods have a good contracting property. Thus, we compare to the fourth- and
sixth-order Gauss-Legendre methods. Results are summarized in Table 14.

The results show that S305 is more efficient than the sixth-order Gauss-Legendre
method and five time faster. Although the fourth-order Gauss-Legendre method is
two times faster, the final solution is much wider.

Reliable Computing 25, 2017 199

Table 14: Results for S3O5
Methods time no. steps norm of diameter of final solution

S3O5 92 195 5.9
Gauss4 45 544 93.9
Gauss6 570 157 7.0

7.3 Experiments with ERK33

The test is based on the classical Van der Pol problem, which contains a limit circle,
and is given by the initial value problem:

ẏ =

[
ẏ0
ẏ1

]
=

[
y1

µ(1− y20)y1 − y0

]
, with y(0) = (2, 0)T and µ = 1 . (17)

A simulation up to t = 10s is performed. Since this problem contains a limit circle, it
can be effectively simulated with an explicit scheme. The two most famous schemes
are the explicit Runge–Kutta (RK4), the most used, and Kutta, known to be the
optimal explicit third-order scheme. We compare ERK33 with these methods, and
present the results in Table 15.

Table 15: Results for ERK33
Methods time no. steps norm of diameter of final solution
ERK33 3.7 647 2.2 × 10−5

Kutta(3,3) 3.5 663 3.4 × 10−5

RK4 4.3 280 1.9 × 10−5

THese results show that ERK33 is equivalent in time consumed but with perfor-
mance closer to RK4.

7.4 Discussion

After experimentation with the three new Runge–Kutta methods obtained with the
constraint programming approach presented in this paper, it is clear that these meth-
ods are effective. Moreover, even with coefficients of the Butcher tableau expressed in
intervals with a diameter of 1× 10−10 (for S3O4 described in Table 7 and S3O5 de-
scribed in Table 8) to 1× 10−8 (for ERK33 described in Table 11), the final solution is
often narrower for the same or higher order methods with exact coefficients. A strong
analysis is needed, but it seems that by guaranteeing the properties of the method,
the contractivity of the integration schemes is improved.

8 Conclusion

In this paper, a new approach to discovering new Runge–Kutta methods with interval
coefficients has been presented. In a first step, we show how interval coefficients can
preserve properties such as stability or symplecticity, unlike coefficients expressed in
floating-point numbers. We have presented two tools, a CSP solver used to find the
unique solution of the Butcher rules, and an optimizer procedure to obtain the best

200 Defining New Runge–Kutta methods with Interval Coefficients

method with respect to a well chosen cost. This cost will provide a method of order
p with a LTE as close as possible to the LTE of a method at order p+ 1. Finally, the
methods obtained guarantee that the desired order and properties are obtained. These
new methods are then implemented in a validated tool called DynIbex, and some tests
on problems well chosen with respect to the required properties are performed. The
results lead us to conclude that the approach is valid and efficient in the sense that the
new methods provide highly competitive results with respect to existing Runge–Kutta
methods.

In future work, we will embed our approach in a high level scheme, based on a
branching algorithm to also verify properties such as stability or symplecticity, with
the same verification procedures as are presented in this paper.

References

[1] Julien Alexandre dit Sandretto and Alexandre Chapoutot. Validated Explicit
and Implicit Runge-Kutta Methods. Reliable Computing, 22:79–103, 2016.

[2] Frédéric Benhamou, David McAllester, and Pascal Van Hentenryck. CLP (In-
tervals) Revisited. Technical report, Brown University, Providence, RI, USA,
1994.

[3] Folkmar Bornemann. Runge-Kutta Methods, Trees, and Maple - On a Simple
Proof of Butcher’s Theorem and the Automatic Generation of Order Condition.
Selcuk Journal of Applied Mathematics, 2(1), 2001.

[4] John C. Butcher. Coefficients for the Study of Runge-Kutta Integration Processes.
Journal of the Australian Mathematical Society, 3:185–201, 1963.

[5] John C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley,
2003.

[6] Gilles Chabert and Luc Jaulin. Contractor Programming. Artificial Intelligence,
173(11):1079–1100, 2009.

[7] Leonhard Euler. Institutiones Calculi Integralis. Academia Imperialis Scien-
tiarum, 1792.

[8] Terry Feagin. High-order Explicit Runge-Kutta Methods Using M-Symmetry.
Neural, Parallel & Scientific Computations, 20(4):437–458, 2012.

[9] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

[10] Ernst Hairer, Syvert P. Norsett, and Grehard Wanner. Solving Ordinary Differ-
ential Equations I: Nonstiff Problems. Springer-Verlag, 2nd edition, 2009.

[11] Eldon R. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker
Inc., 2003.

[12] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied Interval
Analysis. Springer, 2001.

[13] Martin W. Kutta. Beitrag zur Näherungsweisen Integration Totaler Differential-
gleichungen. Zeit. Math. Phys., 46:435–53, 1901.

[14] Yahia Lebbah and Olivier Lhomme. Accelerating Filtering Techniques for Nu-
meric CSPs. Artificial Intelligence, 139(1):109–132, 2002.

Reliable Computing 25, 2017 201

[15] Olivier Lhomme. Consistency Techniques for Numeric CSPs. In Proceedings of
the 13th International Joint Conference on Artifical Intelligence, volume 1, pages
232–238, 1993.

[16] Andrzej Marciniak and Barbara Szyszka. On Representation of Coefficients in Im-
plicit Interval Methods of Runge-Kutta Type. Computational Methods in Science
and Technology, 10(1):57–71, 2004.

[17] Jesus Mart́ın-Vaquero. A 17th-order Radau IIA Method for Package RADAU.
Applications in mechanical systems, Computers & Mathematics with Applications,
2010.

[18] Ramon Moore. Interval Analysis. Prentice Hall, 1966.

[19] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre Jean-
nerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé,
and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhauser, 2009.

[20] Anthony Ralston. Runge-Kutta Methods with Minimum Error Bounds. Mathe-
matics of computation, pages 431–437, 1962.

[21] Michel Rueher. Solving Continuous Constraint Systems. In Proc. of 8th Interna-
tional Conference on Computer Graphics and Artificial Intelligence (3IA’2005),
2005.

[22] Ibex Team. Ibex. http://ibex-lib.org/.

http://ibex-lib.org/

	Introduction
	A Review of Runge–Kutta Methods
	Numerical Integration with Runge–Kutta Methods
	Butcher's Theory of Runge–Kutta Methods

	Runge–Kutta with Interval Coefficients
	Correctness of CSP Applied to Butcher Rules
	Link with Validated Numerical Integration Methods

	Stability Properties with Interval Coefficients
	Notion of Stability
	Linear Stability
	Algebraic Stability
	Symplecticity

	A Constraint Optimization Approach to Define New Runge–Kutta Methods
	Constraints
	Cost function
	Minimizing the LTE
	Maximizing order

	Experiments
	Details of Implementation
	Definition of the Desired Method and Generation of the CSP
	Constraint Programming and Global Optimization

	Constraint Solving
	Existing Methods
	Other Methods

	Global Optimization
	Existing Methods
	Other Methods

	Implementation in the DynIBEX Library
	Experiments with S3O4
	Experiments with S3O5
	Experiments with ERK33
	Discussion

	Conclusion

