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Abstract

This paper presents some constructive error estimates for two-dimen-
sional biharmonic equations by using verified computational techniques.
These estimations are expected to provide valuable information for com-
puter-assisted proofs of nonlinear biharmonic problems. Several numerical
examples that confirm the effectiveness are reported.
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1 Introduction

Let Ω ⊂ R2 be a bounded polygonal domain. This paper provides a guaranteed error
bound for finite-dimensional approximate solutions for the biharmonic problem ∆2u = f in Ω,

u =
∂u

∂n
= 0 on ∂Ω

(1)

for f ∈ L2(Ω). Here, ∂u/∂n stands for the outer normal derivative of u. The bihar-
monic problem (1) arises in areas of continuum mechanics, including linear elasticity
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theory and the solution of Stokes flows by using a stream function-vorticity formula-
tion [1, Chapter 7].

For some integer m, let Hm(Ω) denote the real L2-Sobolev space of order m on Ω.
We define the Hilbert space

H2
0 (Ω) :=

{
u ∈ H2(Ω)

∣∣∣∣ u =
∂u

∂n
= 0 on ∂Ω

}
(2)

with the inner product (∆u,∆v)L2(Ω) and the norm ‖u‖H2
0 (Ω) := ‖∆u‖L2(Ω), where

(u, v )L2(Ω) implies the L2-inner product on Ω. We also define the Hilbert space

H1
0 (Ω) := {u ∈ H1(Ω) | u = 0 on ∂Ω} (3)

with the inner product (∇u,∇v)L2(Ω) and the norm ‖u‖H1
0 (Ω) := ‖∇u‖L2(Ω), and a

Banach space
D(∆2) := {u ∈ H2

0 (Ω) | ∆2u ∈ L2(Ω) } (4)

with respect to the norm ‖u‖H2
0 (Ω) + ‖∆2u‖L2(Ω).

We assume that for each f ∈ L2(Ω), there exists a unique solution u ∈ D(∆2)
satisfying (1). For example, when Ω is the unit square, the existence of u is assured [5].
We aim to obtain a computable upper bound C(h) > 0 such that

‖u− uh‖H2
0 (Ω) ≤ C(h)‖f‖L2(Ω) (5)

for an approximate solution uh ∈ Sh of (1) satisfying

(∆uh,∆vh)L2(Ω) = ( f, vh )L2(Ω), ∀vh ∈ Sh. (6)

Here, Sh ⊂ H2
0 (Ω) is a finite-dimensional approximation subspace dependent on the

parameter h > 0. In the computer-assisted proof for nonlinear biharmonic equa-
tions, especially, for the two-dimensional Navier-Stokes equations [6, 11], the constant
C(h) > 0 plays an essential and important role.

Let P2 : H2
0 (Ω)→ Sh be the H2

0 -projection defined by

(∆(ϕ− P2ϕ),∆vh)L2(Ω) = 0, ∀vh ∈ Sh. (7)

Because the weak formulation of (1) is

(∆u,∆v)L2(Ω) = ( f, v )L2(Ω), ∀v ∈ H2
0 (Ω), (8)

and the approximate solution uh of (1) satisfies (6), it holds that uh = P2u for the
solution u ∈ D(∆2) of (1). Therefore, the error estimation (5) for the biharmonic
problem is equivalent to finding C(h) > 0 such that

‖u− P2u‖H2
0 (Ω) ≤ C(h)‖∆2u‖L2(Ω), ∀u ∈ D(∆2). (9)

In the one-dimensional case in which the domain is J := (a, b), several a priori
error estimates satisfying

‖u′′ − u′′h‖L2(J) ≤ Ĉ(h)‖u′′′′‖L2(J) (10)

have been presented [2, 10] with numerically determined values for Ĉ(h) > 0. Then,
for a rectangular domain such that Ω = J × J , by using the estimation (10), the
inequality

‖u− uh‖H2
0 (Ω) ≤ Ĉ(h)|u|H4(Ω) (11)
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can be derived with the H4 semi-norm:

|u|H4(Ω) :=
(
‖uxxxx‖2L2(Ω) + 4‖uxxxy‖2L2(Ω) + 6‖uxxyy‖2L2(Ω)

+4‖uxyyy‖2L2(Ω) + ‖uyyyy‖2L2(Ω)

) 1
2
.

However, it is not so easy to obtain a numerically determined upper bound C > 0 such
that

|u|H4(Ω) ≤ C‖∆2u‖L2(Ω), (12)

even if the domain Ω is a rectangle.

Remark 1 For example, when Ω is a unit square, by using the Fourier expansion in
which u =

∑∞
m,n=1 amnψmn with ψmn := sin(mπx) sin(nπy)/2, it may appear that

(12) has been achieved with C = 1. It is true if âmn = ((mπ)2 +(nπ)2)2amn for the ex-
pansion of ∆2u =

∑∞
m,n=1 âmnψmn ∈ L2(Ω). However, this equality does not hold in

general, because the coefficient of the Fourier expansion, âmn = ( ∆2u, ψmn )L2(Ω), can-
not be restored with amn = (u, ψmn )L2(Ω) by partial integration and with the boundary

condition u = ∂u/∂n = 0. It has been reported that if u ∈ H4(Ω) satisfies u = ∆u = 0
on ∂Ω, (12) holds when C = 1 [3].

To avoid the need to estimate (12), Nakao et al. [7] proposed a technique that
directly determines the constant in the constructive a priori and a posteriori error es-
timates of (5); they do this by using the finite element approximation. Their procedure
is based on verified computational techniques that use the Hermite spline functions
for a two-dimensional rectangular domain; several numerical examples have confirmed
the effectiveness of this approach.

In this paper, we take another computer-assisted approach that is expected to be
applicable to a wide variety of approximation subspaces Sh ⊂ H2

0 (Ω).

This paper is organized as follows. Section 2 introduces the notation and sev-
eral projections with related constants. Section 3 is devoted to some constructive
error estimations of biharmonic problems. Several numerical examples are reported in
Section 4.

2 Assumptions and Related Notation

We define the H1
0 -projection P1 : H1

0 (Ω)→ Sh and the L2-projection P0 : L2(Ω)→ Sh

by

(∇(ϕ− P1ϕ),∇vh)L2(Ω) = 0, ∀vh ∈ Sh, (13)

(ϕ− P0ϕ, vh )L2(Ω) = 0, ∀vh ∈ Sh, (14)

and we assume that the H1
0 -projection P1 has the following approximation property:

‖v − P1v‖L2(Ω) ≤ C0(h)‖∆v‖L2(Ω), ∀v ∈ D(∆2). (15)

Here, C0(h) > 0 is a positive constant that is numerically determined such that
C0(h) → 0 as h → 0. Using C0(h) of (15), we aim to construct C(h) satisfying
(9), namely (5).
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We assume that the finite-dimensional approximation subspace Sh belongs to
D(∆2), and we define the basis function of Sh by {ϕi}Ki=1 for K := dimSh and K×K
matrices A0, A1, A2, A3, and A4:

[A0]ij = (ϕj , ϕi )L2(Ω), (16)

[A1]ij = ( ∆ϕj , ϕi )L2(Ω) = −(∇ϕj ,∇ϕi)L2(Ω), (17)

[A2]ij = (∆ϕj ,∆ϕi)L2(Ω), (18)

[A3]ij = ( ∆2ϕj ,∆ϕi )L2(Ω), (19)

[A4]ij = ( ∆2ϕj ,∆
2ϕi )L2(Ω). (20)

The matrices A0, A1, A2, and A4 are symmetric and nonsingular. Because A0 is
positive definite, it can be decomposed as A0 = A

1/2
0 A

T/2
0 , where T indicates the

transposition, and A
T/2
0 means (A

1/2
0 )T . Usually, A

1/2
0 is a lower triangular matrix.

For each u ∈ D(∆2), by representing the L2-projection P0∆2u ∈ Sh by (14) and
the H2

0 -projection P2u ∈ Sh by (7) as

P0∆2u =

K∑
i=1

viϕi, v = [vi] ∈ RK , (21)

P2u =

K∑
i=1

uiϕi, u = [ui] ∈ RK , (22)

the definition of projections P0 and P2 state that

(P0∆2u, ϕi )L2(Ω) = ( ∆2u, ϕi )L2(Ω)

= (∆u,∆ϕi)L2(Ω)

= (∆P2u,∆ϕi)L2(Ω)

= (P0∆2P2u, ϕi )L2(Ω)

for all 1 ≤ i ≤ K; then, it holds that

u = A−1
2 A0v. (23)

We also assume that an element

χh =

K∑
i=1

wiϕi ∈ Sh, w = [wi] ∈ RK (24)

can be expressed as

w = Fv, (25)

where v is defined in (21) and F ∈ RK×K . The element χh ∈ Sh is introduced by
Lemma 3.1 in the next section, and the relation (25) between w for χh and v for
P0∆2u will be presented in connection with Lemmas 3.2 and 3.3 in the next section.
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Finally, we define matrices

Q1 := A
−1/2
0 A1FA

−T/2
0 , (26)

Q2 := −AT/2
0 A−1

2 AT
3 FA

−T/2
0 , (27)

Q3 := A
T/2
0 A−1

2 A4A
−1
2 A

1/2
0 , (28)

Q4 := A
−1/2
0 FTA2FA

−T/2
0 , (29)

B1 := Q2 +QT
2 +Q3 +Q4, (30)

B2 := Q1 +QT
1 +Q2 +QT

2 +Q3 +Q4 − I, (31)

where I stands for the identity matrix.

3 Constructive Error Estimations of Biharmo-
nic Problems

For the error estimation of the P2-projection (9) with C0(h), we begin by showing the
following lemma.

Lemma 3.1 For each u ∈ D(∆2) and χh ∈ Sh, it is true that

‖u− P2u‖H2
0 (Ω) ≤ C0(h)‖∆2(u− P2u) + ∆χh‖L2(Ω). (32)

Proof: Set u⊥ = u − P2u ∈ D(∆2). Using (7), two partial integrations, (13), the
Cauchy-Schwarz inequality, and (15), we have

‖∆u⊥‖2L2(Ω) = (∆u⊥,∆u⊥)L2(Ω)

= (∆u⊥,∆(u⊥ − P1u⊥))L2(Ω)

= −(∇∆u⊥,∇(u⊥ − P1u⊥))L2(Ω)

= −(∇(∆u⊥ + χh),∇(u⊥ − P1u⊥))L2(Ω)

= ( ∆2u⊥ + ∆χh, u⊥ − P1u⊥ )L2(Ω)

≤ ‖∆2u⊥ + ∆χh‖L2(Ω) ‖u⊥ − P1u⊥‖L2(Ω)

≤ ‖∆2u⊥ + ∆χh‖L2(Ω) C0(h)‖∆u⊥‖L2(Ω),

which implies (32). 2

Note that (32) holds for any χh ∈ Sh and there are some choice of χh depending
on the finite-dimensional subspace Sh. We show several concrete examples of χh in
the last section.

Now, we consider the estimation of C1(h) > 0 satisfying

‖∆2(u− P2u) + ∆χh‖L2(Ω) ≤ C1(h)‖∆2u‖L2(Ω). (33)

We show two approaches for C1(h) satisfying (33). The choice will be depend on Sh

and the computational cost. The following lemma is one of the approaches.

Lemma 3.2 The constant C1(h) > 0 of (33) can be taken as

C1(h) = 1 +
√
‖B1‖2. (34)
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Proof: Because

‖∆2(u− P2u) + ∆χh‖L2(Ω) ≤ ‖∆2u‖L2(Ω) + ‖∆2P2u−∆χh‖L2(Ω),

using (20), (19), (18), (22), (24), (25), (23), (28), (27), (29), and (30) we obtain

‖∆2P2u−∆χh‖2L2(Ω)

= ( ∆2P2u−∆χh,∆
2P2u−∆χh )L2(Ω)

= ( ∆2P2u,∆
2P2u )L2(Ω) − ( ∆2P2u,∆χh )L2(Ω)

− ( ∆χh,∆
2P2u )L2(Ω) + ( ∆χh,∆χh )L2(Ω)

= uTA4u−wTA3u− uTAT
3 w + wTA2w

= vTA0A
−1
2 A4A

−1
2 A0v − vTFTA3A

−1
2 A0v − vTA0A

−1
2 AT

3 Fv + vTFTA2Fv

= (A
T/2
0 v)T

(
A

T/2
0 A−1

2 A4A
−1
2 A

1/2
0 −A−1/2

0 FTA3A
−1
2 A

1/2
0

−AT/2
0 A−1

2 AT
3 FA

−T/2
0 +A

−1/2
0 FTA2FA

−T/2
0

)
A

T/2
0 v

= (A
T/2
0 v)T

(
Q2 +QT

2 +Q3 +Q4

)
A

T/2
0 v

= (A
T/2
0 v)TB1A

T/2
0 v

≤ ‖B1‖2(A
T/2
0 v)T (A

T/2
0 v)

= ‖B1‖2 vTA0v
= ‖B1‖2 ‖P0∆2u‖2L2(Ω)

≤ ‖B1‖2 ‖∆2u‖2L2(Ω),

then the conclusion. 2

Remark 2 In the case of χh = 0, we can take

C1(h) = 1 +

√∥∥∥AT/2
0 A−1

2 A4A
−1
2 A

1/2
0

∥∥∥
2
,

based on Lemma 3.2, and then
∥∥∥AT/2

0 A−1
2 A4A

−1
2 A

1/2
0

∥∥∥
2

coincides with the maximum

eigenvalue of the matrix A−1
2 A4A

−1
2 A0. For the verified bounds for the 2-norm (spectral

norm) of a matrix, see [8].

Now we show an alternative to Lemma 3.2.

Lemma 3.3 The constant C2(h) > 0 of (33) can be taken as

C1(h) =
√

1 + ‖B2‖2. (35)

Proof: When there exists Kh > 0 satisfying

‖P0∆2u−∆2P2u+ ∆χh‖L2(Ω) ≤ Kh‖P0∆2u‖L2(Ω), (36)

using (36) and Hölder’s inequality, we obtain

‖∆2(u− P2u) + ∆χh‖L2(Ω) = ‖(I − P0)∆2u+ P0∆2u−∆2P2u+ ∆χh‖L2(Ω)

≤ ‖(I − P0)∆2u‖L2(Ω) +Kh‖P0∆2u‖L2(Ω) (37)

≤
√

1 +K2
h

√
‖(I − P0)∆2u‖2L2(Ω) + ‖P0∆2u‖2L2(Ω)

=
√

1 +K2
h ‖∆

2u‖L2(Ω). (38)
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For Kh satisfying (36), using partial integration and (16), (18), (19), and (20), we
have

‖P0∆2u−∆2P2u+ ∆χh‖2L2(Ω)

= (P0∆2u−∆2P2u+ ∆χh, P0∆2u−∆2P2u+ ∆χh )L2(Ω)

= (P0∆2u, P0∆2u )L2(Ω) − (P0∆2u,∆2P2u )L2(Ω) + (P0∆2u,∆χh )L2(Ω)

− ( ∆2P2u, P0∆2u )L2(Ω) + ( ∆2P2u,∆
2P2u )L2(Ω) − ( ∆2P2u,∆χh )L2(Ω)

+ ( ∆χh, P0∆2u )L2(Ω) − ( ∆χh,∆
2P2u )L2(Ω) + ( ∆χh,∆χh )L2(Ω)

= vTA0v − ( ∆P0∆2u,∆P2u )L2(Ω) + wTA1v − ( ∆P2u,∆P0∆2u )L2(Ω)

+ uTA4u−wTA3u + vTA1w − uTAT
3 w + wTA2w

= vTA0v − uTA2v + wTA1v − vTA2u + uTA4u−wTA3u
+ vTA1w − uTAT

3 w + wTA2w.

Then, noting that A0 = A
1/2
0 A

T/2
0 , (22) and (25) can be used to derive

‖P0∆2u−∆2P2u+ ∆χh‖2L2(Ω)

= vTA0v − vTA0A
−1
2 A2v + vTFTA1v

− vTA2A
−1
2 A0v + vTA0A

−1
2 A4A

−1
2 A0v − vTFTA3A

−1
2 A0v

+ vTA1Fv − vTA0A
−1
2 AT

3 Fv + vTFTA2Fv

= −vTA0v + vTFTA1v + vTA1Fv + vTA0A
−1
2 A4A

−1
2 A0v

− vTFTA3A
−1
2 A0v − vTA0A

−1
2 AT

3 Fv + vTFTA2Fv

= (A
T/2
0 v)T

(
−I +A

−1/2
0 FTA1A

−T/2
0 +A

−1/2
0 A1FA

−T/2
0 +A

T/2
0 A−1

2 A4A
−1
2 A

1/2
0

−A−1/2
0 FTA3A

−1
2 A

1/2
0 −AT/2

0 A−1
2 AT

3 FA
−T/2
0 +A

−1/2
0 FTA2FA

−T/2
0

)
A

T/2
0 v

= (A
T/2
0 v)T B2 A

T/2
0 v

≤ ‖B2‖2 (A
T/2
0 v)TA

T/2
0 v

= ‖B2‖2 vTA0v
= ‖B2‖2‖P0∆2u‖2L2(Ω).

Therefore, we can take K2
h = ‖B2‖2. 2

Remark 3 In the case of χh = 0 in Lemma 3.3, we can take

C1(h) =

√
1 + ‖AT/2

0 A−1
2 A4A

−1
2 A

1/2
0 − I‖2.

Lemma 3.1, Lemma 3.2, and Lemma 3.3 imply our main result.

Theorem 3.1 For the solution u ∈ D(∆2) of the biharmonic equation (1) and the
approximate solution uh ∈ Sh satisfying (6), it is true that

‖u− uh‖H2
0 (Ω) ≤ C(h)‖f‖L2(Ω), (39)

with

C(h) := C0(h) C1(h), (40)

where C1(h) is given constructively by (34) or (35).



Reliable Computing 25, 2017 175

4 Numerical Examples

In this section, we report several numerical examples of a finite-dimensional approxima-
tion ofH2

0 (Ω) by Legendre polynomials [2] on the unit square domain Ω = (0, 1)×(0, 1).
For N > 0, define

ψn(x) :=
(−1)n+1

√
2n+ 3

(n+ 1)!

(
d

dx

)n−1

(x− x2)n+1, 1 ≤ n ≤ N, (41)

and

ϕk(x, y) := ψm(x)× ψn(y), (42)

with some change of indices (m,n)→ k. Then, we can assure that K = N2, h = 1/N ,
and Sh = span{ϕk}Kk=1 is a finite-dimensional subspace of H2

0 (Ω) satisfying Sh ⊂
D(∆2). Moreover, C0(h) > 0 of (15) can be taken as

C0(h) =

{ √
c2(N + 3)/4 if 1 ≤ N ≤ 16,√
c3(N + 3)/4 if N ≥ 17,

(43)

where

c2(L) :=
2√

2L− 5(2L− 3)2
√

2L− 1)(2L+ 1)

+
4

(2L− 3)
√

2L− 1(2L+ 1)
√

2L+ 3(2L+ 5)

+
1√

2L− 1(2L+ 1)(2L+ 3)(2L+ 5)
√

2L+ 7

+
10L− 3

(2L− 3)2(2L− 1)(2L+ 1)(2L+ 3)
,

(44)

and

c3(L) :=
1√

2L− 5(2L− 3)(2L− 1)(2L+ 1)
√

2L+ 3

+
4

(2L− 3)
√

2L− 1(2L+ 1)
√

2L+ 3(2L+ 5)

+
6

(2L− 1)(2L+ 1)(2L+ 5)(2L+ 7)

+
4

(2L+ 1)
√

2L+ 3(2L+ 5)
√

2L+ 7(2L+ 9)

+
1√

2L+ 3(2L+ 5)(2L+ 7)(2L+ 9)
√

2L+ 11
.

(45)

Note that by using Theorem 3.7 in [2], it would be possible to further improve C0(h).
Table 1 shows the bounds of C1(h) obtained by Wolfram Mathematica 10.0.2.0 with

100-digit multiple precision. To avoid rounding-error effects, this should be confirmed
analytically, which can be accomplished by interval arithmetic software (e.g., [4, 9]). In
Table 1, we consider three types of the matrix F . The notation “0” indicates χh = 0,
“A−1

2 A3A
−1
2 A0” indicates that w in (24) satisfies

( ∆χh −∆2P2u,∆ϕi )L2(Ω) = 0, 1 ≤ i ≤ K,
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which ensures that Q2 +Q4 = 0, and “A−1
2 (A3A

−1
2 A0−A1)” indicates that w is taken

such that
( ∆χh −∆2P2u+ P0∆2u,∆ϕi )L2(Ω) = 0, 1 ≤ i ≤ K.

The simplest case, F = 0, is very unstable; in other cases, there is some improvement
in C1(h).

Table 1: Constructive constants of C1(h) in Lemma 3.2 and Lemma 3.3.

F 0 A−1
2 A3A

−1
2 A0 A−1

2 (A3A
−1
2 A0 −A1)

N Lemma 2 Lemma 3 Lemma 2 Lemma 3 Lemma 2 Lemma 3
5 3.3305 2.3305 2.8906 1.9895 3.0421 1.7912
10 5.7256 4.7256 3.9293 2.9970 4.0323 2.8774
15 8.6612 7.6612 5.0966 4.1518 5.1680 4.0723
20 12.0622 11.0622 6.3069 5.3539 6.3601 5.2962

Table 2 shows the bounds of each constant by using Lemma 3 with

F = A−1
2 (A3A

−1
2 A0 −A1).

C(h) seems to be approximately O(h), which means it should provide a “good” veri-
fication of nonlinear biharmonic problems.

Table 2: Constructive error estimates for the biharmonic equation.

N C(h) C0(h) C1(h)
10 3.7742× 10−3 1.3117× 10−3 2.8774
20 2.2329× 10−3 4.2161× 10−4 5.2962
30 1.6453× 10−3 2.1133× 10−4 7.7851
40 1.3051× 10−3 1.2672× 10−4 10.2997
50 1.0823× 10−3 8.4375× 10−5 12.8265

It is not clear why C1(h) shows a tendency to become large as h → 0. As an
area of future work, we intend to investigate much finer spacing of F for C(h) and
to use another finite-dimensional basis, e.g., finite element functions; we also will
try to verify these solutions of nonlinear biharmonic equations, especially the two-
dimensional Navier-Stokes equations.
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