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Abstract

Feedback control strategies for continuous-time dynamic systems rely,
on the one hand, on a mathematical system model given as a set of (ordi-
nary) differential equations and, on the other hand, on knowledge about
the current state variables and system parameters. However, most prac-
tical applications are characterized by the fact that not all state vari-
ables are directly measurable and that system parameters are either only
imprecisely known or may change their values during system operation.
This typically leads to the necessity to determine the before-mentioned
non-measurable quantities by means of model-based online estimation
procedures, for which a guaranteed asymptotically stable convergence
to the true, however, unknown values has to be ensured. In this con-
text, variable-structure state estimation procedures represent powerful
approaches because candidates for Lyapunov functions are employed in
an underlying manner to perform a proof of the required stability prop-
erties. In this paper, a novel interval-based variable-structure state and
parameter estimation procedure is presented for which a systematic ap-
proach toward an optimal parameterization is presented. The parameter-
ization aims at simultaneously attenuating the influence of (stochastic)
noise and maximizing the regions in the state and parameter space for
which stability can be proven.
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1 Introduction

In previous work, interval-based extensions of sliding mode state observers [3, 4, 5,
7, 22, 23] have been presented by the authors which allow for a guaranteed stabi-
lization of the associated error dynamics [13, 16, 18, 20]. In contrast to well-known
Luenberger-type observers, variable-structure approaches have the advantage of an
improved robustness against uncertainty and typically show better convergence prop-
erties to the true, however, unknown parameters and states (under some preconditions
even in finite time).

The parameterization of these observers is so far based on the online evaluation
of a suitable candidate for a Lyapunov function and its related time derivative. The
variable-structure gain of this type of observer is determined in such a way that the
time derivative of the Lyapunov function candidate can be guaranteed to be negative
definite despite bounded uncertainty in system parameters as well as in the measured
output variables. Besides the treatment of interval uncertainty, extensions were devel-
oped which guarantee asymptotic stability in cases in which stochastic measurement
noise influences the system dynamics. These stochastic disturbances1 are taken into
account by a replacement of the classical time derivative of the Lyapunov function
candidate by the so-called Itô differential operator [9, 17, 18].

The limitations of this estimation approach are

• the assumption of negligibly small time discretization errors in a quasi-continu-
ous implementation of the interval-based estimation procedure and

• the use of the stability requirement of the error dynamics as the only design
requirement.

While the first requirement can easily be satisfied with a suitable choice of the
discretization step size (which has to be smaller by at least one order of magnitude
than the smallest time constant in the considered system model), a more detailed
investigation of the stability requirement is crucial. So far, it has been assumed that
an underlying linear state observer exists with an a-priori fixed gain matrix. This
linear observer part aims at stabilizing the system dynamics in domains of the state
space where — due to bounded measurement errors — the actual sign of the error in
the estimated state variables can no longer be determined. However, a classical choice
of this fixed gain matrix by pole assignment or by solving the design conditions for a
stationary Kalman Filter may lead to the drawback that stochastic measurement noise
is not sufficiently attenuated in the overall variable-structure implementation and that
regions in the state space, for which stability of the error dynamics cannot be proven
rigorously, become unnecessarily large.

This paper is structured as follows. Sec. 2 gives an overview of the fundamental
structure of an interval-based sliding mode state and parameter estimator. A first
attempt toward the optimal parameterization of the underlying linear state observer
is presented in Sec. 3. Together with a suitable choice of the variable-structure gain
in Sec. 2, the rate of convergence of the estimated states toward their true values can
be influenced systematically. This allows for a trade-off between the maximum rate
of convergence, on the one hand, and the robustness of the estimation as well as the

1Throughout the paper, the word uncertainty refers to an imprecisely known quantity
related to some system parameter, while disturbances represent imprecisely known external
effects in either the system dynamics or measurement equations. From this point of view,
measurement uncertainty, represented by interval variables, refers to the sensor resolution or
a sensor bias, while measurement noise represents external random disturbances.
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achievable accuracy of the point-valued estimates, on the other hand. Experimental
results for prototypical electric drive train applications are summarized in Sec. 4.
Finally, Sec. 5 is focused on conclusions and gives an outlook on future work.

2 Variable-Structure Observer Approach

Assume that a dynamic system is given by the ordinary differential equations (ODEs)

ẋ(t) = f (x(t),p,u(t)) = A · x (t) + B · u(t) + S · ξ (x(t),u(t)) (1)

with the state vector x(t), the vector of uncertain but bounded parameters p(t) ∈ [p]
as well as the input vector u(t) [18, 20].

The associated vector of measured output variables is denoted by

y(t) = C · x (t) . (2)

The system model above is capable of representing both the nominal linear dynam-
ics in terms of the system, input, and output matrices A, B as well as C and all a-priori
unknown and nonlinear terms S · ξ (x(t),u(t)) with S ∈ Rn×q and ‖ξ (x,u)‖ ≤ ξ. For
the term ξ (x(t),u(t)), it is assumed that a fixed upper bound ξ exists for a suitable
(usually Euclidean) vector norm.

Here, uncertainty in the linear system components is assumed to be allowed in
terms of the interval matrix [6, 12] representations A := A(x(t),p) ∈ [A], B :=
B(x(t),p) ∈ [B] and C := C(x(t),p) ∈ [C]. In such a way, also state dependencies can
be included in the before-mentioned matrices in terms of worst-case range enclosures
x(t) ∈ [x] (t). These parameter and state dependencies lead to a convex polytopic
uncertainty model for the (quasi-)linear system components. Details on how such
models can be constructed can be found, for example, in [15].

As soon as Brownian motions wp and wm are taken into account for modeling
process and measurement noise, the system model turns into the stochastic differential
equation

dx =
(
A · x (t) + B · u(t) + S · ξ (x(t),u(t))

)
dt+ Gpdwp (3)

with

y = C · x (t) + Gmwm . (4)

The interval-based sliding mode observer is then designed by means of the ODEs

ˆ̃
f ∈ f̂(x̂ (t) , [p],u(t)) + P+[Ĉ]T ·Hs · sign(em (t) + [∆ym])

:= [Â] · x̂ (t) + [B̂] · u (t) + Hp · [em] (t) + P+[Ĉ]T ·Hs sign(em (t) + [∆ym])
(5)

and the output equation

ŷm (t) ∈ [Ĉ] · x̂ (t) . (6)

According to [20], this observer consists of the combination of a locally valid linear
system model and a variable-structure part to stabilize the error dynamics despite
uncertainty and nonlinearities. During a real-time implementation, interval arithmetic
software libraries such as C-XSC [8] are employed to handle uncertainty in parameters
and measurements in such a way that the negative definiteness of the time derivative
of a suitable Lyapunov function candidate can be proven.
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The use of interval arithmetic becomes necessary if the nominal system, input
and output matrices are replaced by interval matrices [Â], [B̂], and [Ĉ]. These matri-
ces correspond to the interval evaluations of Â(x̂ (t) , [p]) ∈ [Â], B̂(x̂ (t) , [p]) ∈ [B̂],
and Ĉ(x̂ (t) , [p]) ∈ [Ĉ] in the sense of a quasi-linear state-space representation with
worst-case bounds for the estimated states x̂ (t) ∈ [x̂] (t). Moreover, the vector of
measurement errors

em(t) ∈ [em] (t) = ym (t)− ŷm (t) + [∆ym] (7)

is extended by the interval uncertainty [∆ym] to account for bounded measurement
tolerances.

According to the structure of the observer ODEs (5), an underlying stabilization
of the locally linear error dynamics by the observer gain matrix Hp is necessary. After
computing the matrix P = PT � 0 as the positive definite solution2 of the Lyapunov
equation

Ã ·P + P · ÃT + Q = 0 with Ã = Â−Hp · Ĉ and Q � 0 , (8)

an online evaluation of the switching amplitudes Hs can be performed in each time
step to handle uncertainty and the effects of all nonlinearities that are not captured
by the locally valid linear system model described by A = Â and C = Ĉ.

After the definition of a Lyapunov function candidate

V := V (t) =
1

2
(x (t)− x̂ (t))TP(x (t)− x̂ (t)) =

1

2
eT (t) Pe (t) (9)

with respect to the estimation errors e := e (t) = x (t) − x̂ (t), the Itô differential
operator [9]

L(V (t)) =
∂V

∂t
+

(
∂V

∂e

)T
·
(
f([x], [p],u)− ˆ̃

f([x̂], [p],u)
)

+
1

2
trace

{
GT ∂

2V

∂e2
G

}
(10)

is used as a generalization of the total time derivative of V in the stochastic case3.

In (10), the model for the true dynamic system f([x], [p],u), evaluated with inter-
vals for all not exactly known parameters and states, and the observer parallel model
ˆ̃
f([x̂], [p],u) defined in (5) are included. Moreover, the complete matrix of standard
deviations G = [Gp −HpGm] comprises process and measurement noise and accounts
for all stochastically approximated, non-structured uncertainties as well as for all non-
linear phenomena and inaccuracies of sensor measurements that are not analytically
included in the system model.

The switching amplitude of the interval-based variable-structure observer is de-
termined by ensuring the negative definiteness of (10). To guarantee an element-wise
defined minimum convergence rate q ≥ 0 with respect to the components of the es-
timation error signal, the switching amplitudes are determined from the inequality

L(V (t))
!
< −qT |[em]| , (11)

2Note, M � 0 denotes positive, M ≺ 0 negative definiteness of a square, real-valued,
symmetric matrix M.

3In the following, the time argument t is omitted for reasons of compactness, whenever the
notation is non-ambiguous.
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which results in

hs =

{
0 if [δ] ∩ [em]T [em] 6= ∅
sup

(
|[em]|+ ·

(
[V̇a] + 1

2
· trace

{
GT ∂2V

∂e2
G
})

+ qT
)

else

(12)
with

[V̇a] = [e]TP · ([f ]− [f̂ ]−Hp · em) (13)

and [f ] := f([x], [p],u) as well as [f̂ ] := f̂([x], [p],u).

Here, a small interval [δ] centered around zero is introduced to prevent a division
by zero during the gain computation.

The diagonal matrix Hs = diag(hs) ∈ Rny×ny , y ∈ Rny , of the switching ampli-
tudes consists of the vector elements computed in (12).

For the evaluation of the switching amplitudes, the absolute value of the difference
between measured and estimated states |[em]| (defined component-wise) according to

|[em,i]| =


[
−em,i ; −em,i

]
for em,i ≤ 0[

em,i ; em,i
]

for em,i ≥ 0[
0 ; max{|em,i|, |em,i|}

]
else

(14)

and an interval-valued pseudo inverse

|[em]|+ =
(
|[em]|T |[em]|

)−1

· |[em]|T (15)

are required together with the interval specifications for control, estimation, and mea-
surement errors according to [e] = [x]− [x̂], [x] = x + [∆xc], [x̂] = x̂ + [∆xe]. Here,
x is the vector of the true (unknown) states; x̂ are point-valued estimates determined
by the variable structure observer; [∆xc] is chosen such that all true states are con-
tained in the interval [x] despite control errors; [∆xe] represents interval bounds for
the maximum deviation between the true and estimated states.

The stability proof is successful, if a variable-structure gain exists for which the
inequality L(V (t)) < 0 (or more generally the inequality (11)) is satisfied. The in-
equality L(V (t)) < 0 corresponds to the stability requirement V̇ (t) < 0 in the purely
set-valued case, that is, if no stochastic disturbances are included in the model. In the
close vicinity of the true and estimated system states, where the sign of the estima-
tion errors can no longer be determined unambiguously, the fundamental requirement
for the observer is the robust stabilization of the underlying linear dynamics which
simultaneously has to prevent the amplification of stochastic measurement noise.

3 Parameterization of the Observer

3.1 Parameterization of the Variable-Structure Part

As long as the sign of the estimation errors can be determined uniquely, an implicit
bounding of the variable-structure gain is possible by the choice of the interval [δ].
The rate of convergence in this so-called reaching phase is foremost determined by the
choice of the non-negative components of q. Further details are published in [10, 20].
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3.2 Parameterization of the Underlying Linear Observer
Part

In general, the parameters for the feedback gain of the underlying linear observer part
can be determined by the assignment of asymptotically stable eigenvalues located in
the open left complex half plane, by the application of a linear quadratic optimization
approach (equivalent to the steady-state Kalman Filter solution) or by the solution of
linear matrix inequalities (LMIs) [1, 2]. In addition to purely formulating the feasibility
problem that is identical to the requirement for asymptotic stability of the linear error
dynamics, an optimization approach is introduced in the following that aims at a
simultaneous minimization of the domain in the state-space for which asymptotic
stability cannot be proven due to the influence of stochastic excitations caused by
measurement noise.

3.2.1 LMI-Based Stability Criterion for Linear Time-Invariant Sys-
tems

If a linear dynamic system is given by the state-space representation

ẋ = Ax + Bu

ym = Cx ,
(16)

a suitable linear state observer can be defined as

˙̂x = Ax̂ + Bu + Hp · (ym − ŷm)

ŷm = Cx̂
(17)

with the estimation errors e = x− x̂ and the associated error dynamics

ė = (A−HpC) e . (18)

The definition of the Lyapunov function candidate

V (e(t)) =
1

2
eTPe (19)

with the positive definite symmetric matrix P = PT � 0 leads to the time derivative

V̇ (e(t)) =
1

2

(
ėTPe + eTPė

)
=

1

2
eT
(

(A−HpC)T P + P (A−HpC)
)

e ,

(20)

in which a bilinear matrix inequality with the yet unknown matrices Hp and P needs
to be negative definite according to

(A−HpC)T P + P (A−HpC) ≺ 0 (21)

to ensure asymptotic stability [15]. To recast this inequality in a linear form, the
duality between control and observer design is firstly exploited. It makes use of the fact
that the eigenvalues of the matrix (A−HpC) are identical to those of (A−HpC)T .
Hence, the matrix inequality

(A−HpC) P + P (A−HpC)T ≺ 0 (22)
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has to be satisfied which can be transformed into an LMI by a linearizing change of
variables after multiplication with the regular matrix P−1 � 0 from the left and right
with

P−1 (A−HpC) + (A−HpC)T P−1 ≺ 0 . (23)

This leads to the sufficient requirement for asymptotic stability in the LMI form

QA−YTC + ATQ−CTY ≺ 0 , Q = P−1 � 0 , HT
p = YP . (24)

If the influence of stochastic noise is considered in both the state and measurement
equations according to

dx = (Ax + Bu) dt+ Gpdwp

ym = Cx + Gmwm ,
(25)

the time derivative in (20) can be replaced by the Itô differential operator [9]

L(V ) =
1

2

(
ẽT
(

(A−HpC) P + P (A−HpC)T
)

ẽ
)

+
1

2
trace

{
GTPG

}
< 0 (26)

with G = [Gp − HpGm]. However, the stochastic excitation due to process and
measurement noise leads to a domain around the point of vanishing estimation errors
e = 0 (respectively, ẽ = 0, ˙̃e = (A−HpC)T ẽ), where the inequality above cannot be
satisfied. Therefore, the stability boundary is represented by

L(V ) = 0 . (27)

The corresponding non-provable stability domain is then given by the interior of an
ellipsoid

ẽTM−1ẽ− 1 = 0 (28)

with

M−1 =

(
−Ā

trace {GTPG}

)
(29)

and
Ā := (A−HpC) P + P (A−HpC)T ≺ 0 . (30)

3.2.2 Optimality of the Observer Gain

During the observer parameterization, the ellipsoid for which stability cannot be
proven, is minimized. The volume of the ellipsoid (28) to be minimized is propor-
tional to √

det {M} !
= min (31)

as well as proportional to √
trace {GTPG}

det
(
−Ā

) !
= min . (32)

Non-vanishing observer gains Hp are achieved by an equivalent maximization accord-
ing to √

det {Q}√
trace {GTPG}

det
(
−Ā

)
!
= max . (33)
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In (33), the numerator term maximizes the error domain with a bounded linear feed-
back in the observer ODEs. The overall optimization task is hence equivalent to√

trace {GTPG}
det
(
−Ā

) · 1√
det {Q}

!
= min , (34)

which has the same minimum as

trace
{
GTPG

}
det
(
−Ā

)
· det {Q}

!
= min (35)

and
ln
(

trace
{

GTPG
})
− ln

(
det
(
−Ā

))
− ln (det {Q}) !

= min , (36)

where the latter variant replaces nonlinear couplings in the cost function by suitable
differences.

Due to further multiplicative couplings between P and Hp in the first term of (36),
the before-mentioned optimization problem is not yet solvable by standard LMI tech-
niques. Hence, the term GTPG is replaced by the matrix inequality

N � GTPG =⇒ N−GTQ−1G � 0 (37)

that can be re-written by applying the Schur complement formula according to[
N GT

G Q

]
=

[
N

[
Gp −HpGm

]T[
Gp −HpGm

]
Q

]
� 0 , N = NT � 0 . (38)

A further reformulation is necessary because (38) is still not in the form of an LMI.
Rearranging the blocks in the rows and columns leads to[

Q G
GT N

]
=

[
Q

[
Gp −HpGm

][
Gp −HpGm

]T
N

]
� 0 , N = NT � 0 . (39)

A left and right multiplication with the block diagonal matrix blkdiag{Q, I} results in
the expression[

Q̌3
[
QGp −YTGm

][
QGp −YTGm

]T
N

]
� 0 , N = NT � 0 (40)

which is solved iteratively due to the nonlinearity Q3. For that reason, the matrix
Q̌3 in (40) — that has been obtained in the previous iteration stage — serves as a
substitute for the nonlinear term Q3. The solution of the matrix inequality (40) is
constrained by the stability requirement

QA−YTC + ATQ−CTY ≺ 0 , Q = P−1 � 0 , HT
p = YP (41)

according to (24) as well as by the optimality criterion

ln (trace {N})− ln
(
det
(
−Ā

))
− ln (det {Q}) !

= min . (42)

In (42), the logarithms of determinants and matrix traces are coupled in such a
way that the structure is not accepted by the LMI solver SeDuMi [11, 21]. Hence,
the criterion (35) is directly included in the iteration scheme in the form

trace {N}
det
(
− ˇ̄A

)
· det

{
Q̌
} !

= min (43)
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with
ˇ̄A :=

(
A− ȞpC

)
Q̌−1 + Q̌−1 (A− ȞpC

)T
(44)

and the observer gain

ȞT
p = Y̌Q̌−1 (45)

computed by the results of the previous iteration. The iteration is continued until the
matrix Q and the optimality criterion remain practically identical in two subsequent
iteration steps.

3.2.3 Generalization to a Polytopic Uncertainty Representation of
the Underlying Linear Observer

In case of polytopic uncertainty in the system model, a joint gain Hp is determined
for all vertex matrices (Aν ,Cν). In this case, (41) has to be satisfied for each of the
vertex matrices, where the performance criterion is evaluated as the average ellipsoid
volume for all ν.

4 Experimental Validation of the Variable-
Structure Observer Approach

To validate the observer for a practical application scenario, the drive train test rig [19]
depicted in Fig. 1 is considered. It consists of an electric drive attached rigidly to the
drive-side shaft. The brake on the load-side shaft (connected to the drive-side shaft
via a non-elastic toothed belt) provides an unknown velocity-proportional load torque.
The goal of the following observer is the estimation of the before-mentioned load torque
(in terms of the corresponding parameter α in the following model) and the overall
mass moment of inertia (β−1) from pure angle measurements.

electric 
drive

drive-side shaft

load-side shaft

deflector rolls 
with drive belt

brake

angle 
measurement

Figure 1: Test rig for the validation of the variable-structure observer approach.

To eliminate the influence of static friction, a combined feedforward and feedback
control strategy is implemented in the real-time control system that turns the state
equations of the test rig into

ẋ =

[
ẋ1
ẋ2

]
= f(x, [p],u) = A · x + b · u =

[
0 1
0 α

] [
x1
x2

]
+

[
0
β

]
u . (46)
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Here, x1 is the angle of rotation of the drive-side shaft and x2 its corresponding angular
velocity. For the observer implementation, the state variable x1 corresponds to the
only measured system output with

y = cT · x =
[
1 0

]
· x = x1 . (47)

Besides the angular velocity x2 = ẋ1, the observer has to estimate the not a-priori
known parameters α = − d

J
and β = 1

J
in real time. In these parameter definitions, d

is a velocity-proportional friction coefficient resulting from a suitable actuation of the
magnetic powder brake on the load-side shaft. As mentioned above, both shafts are
connected with each other by a toothed belt with negligible elasticity, so that the only
remaining parameter is the overall mass moment of inertia J of all rotating elements.

According to [10, 20], the observer consists of two subsystems. The first subsystem
(implemented as a variable-structure observer) is employed to estimate the first three
derivatives of the measured angle. These estimates serve as virtual measurements for
the second variable-structure observer that is employed to estimate the parameters α
and β that are appended to the state equations (46) via the integrator disturbance
models α̇ = 0 and β̇ = 0.

4.1 Parameterization by Designing a Stationary Kalman
Filter

As a reference solution for the variable-structure observer, experimental estimation
results are shown in Fig. 2 for the initial parameter intervals α ∈ [−1.5 ; 4.5] and
β ∈ [30 ; 90].

Here, the observer gain matrices Hp were determined for both linear subsystems
by solving the algebraic Riccati equation

PCTR−1CP−AP−PAT −Q = 0 , (48)

where the final gain is given by

H = PCTR−1 . (49)

A corresponding cost function (dual to the linear quadratic regulator design) is
then given by

J =
1

2

∞∫
0

(
∆xTQ∆x + ∆yTR∆y

)
dt (50)

with the weighting matrices Q and R as well as the state and output errors ∆x and ∆y.
Note that (48) coincides with the design criterion for a stationary Kalman Filter [14].

For the first subsystem, described in detail in [20], the matrices for the standard
deviations of process and measurement noise were set to

Gp =
[
0 0 0 0 0.5

]T
and Gm = 0.005 (51)

with the weighting matrices

Q = diag
{[

12 502 502 502 702
]}

and R = 0.0012 . (52)
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For the second subsystem, the parameters

Gp =


0.15 0 0 0 0

0 0 0 0 0
0 0 0.3 0 0
0 0 0 0.3 0
0 0 0 0 0.5

 and Gm =

0.6 0 0
0 0.3 0
0 0 0.7

 (53)

as well as

Q = diag
{[

102 102 0.012 0.012 0.12
]}

and R = diag
{[

0.01 0.01 0.01
]}

(54)
were chosen. Note that especially the entries in each of the matrices Q and R need
to be chosen heuristically to achieve sufficient robustness and satisfactory convergence
rates of the underlying linear observer. Unfortunately, taking directly matrices that
coincide with Gp and Gm (as suggested by the theory of the Kalman Filter design)
leads to unsatisfying convergence rates of the observer due to the fact that information
concerning provable stability domains (as it is done in the following subsection) cannot
be taken into account directly.

t in s

x
1,
d
−
x̂
1

−0.01
0 200 400 600 800 1000

−0.006

−0.002

0.006

0.002

0.01

(a) Estimation error x1.

t in s

x
2,
d
−
x̂
2

0 200 400 600 800 1000

−6

−2

6

2

10

−10

(b) Estimation error x2.

t in s

α̂
,
β̂

0 200 400 600 800 1000

60

40

20

10

0

30

50

−10

β̂

α̂

(c) Parameter estimates α̂, β̂.

Figure 2: Experimental results.

The accuracy of the parameter estimates for α and β is checked by the simulation
results in Tab. 1.

Table 1: Quantification of the remaining modeling errors by means of simulation:
Comparison of least-squares identification (LS) and parameterization by the state-of-
the-art approach for the interval sliding mode observer design (ISMO).

LS ISMO Improvement

x1 ∆x1,LS = 2730 ∆x1,ISMO = 268.61 90.16%

x2 ∆x2,LS = 4.79 ∆x2,ISMO = 3.01 37.10%

There, the estimated time series of the parameters were substituted into the state
equations which are then simulated in terms of an initial value problem with the exper-
imental motor torque u(t) as input signal. The reference solution for this simulation
was determined by a least-squares estimate that minimizes the square of the deviation
between simulated and measured angles x1 by determining the system parameters as
constant values for time windows of eight seconds each (a full driving cycle consisting
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of acceleration, constant velocity, and deceleration phases). It can be seen that the
interval-based sliding mode observer (ISMO) significantly outperforms the results of
the least-squares identification (LS).

4.2 Parameterization by the Proposed Optimization Pro-
cedure

For the novel optimization procedure proposed in this paper, only information about
the standard deviations of process and measurement noise is necessary. There, directly
the technologically motivated values

Gp =
[
0 0 0 0 10

]T
and Gm = 0.001 (55)

can be used for the first subsystem. Moreover, the corresponding values for the second
subsystem are given by

Gp =


0.15 0 0 0 0

0 1 0 0 0
0 0 0.003 0 0
0 0 0 0.003 0
0 0 0 0 0.5

 and Gm =

0.06 0 0
0 0.3 0
0 0 0.7

 . (56)

Obviously, this significantly reduces the parameterization effort because the gain
matrices Hp now directly result from solving the LMI-constrained optimization prob-
lem according to (40), (41), (43), (44), and (45). This straightforward optimization
approach removes the necessity for intelligent guessing of weighting factors and leads
to the estimation results in Tab. 2 which were determined in analogy to Tab. 1.

Table 2: Quantification of the remaining modeling errors by means of simulation:
Comparison of least-squares identification and novel optimization-based observer pa-
rameterization.

LS ISMO Improvement

x1 ∆x1,LS = 2730 ∆x1,ISMO = 215.48 92.11%

x2 ∆x2,LS = 4.79 ∆x2,ISMO = 3.09 35.41%

It can be seen that the estimation results for the first state variable were further
improved by the novel parameterization procedure, while the accuracy of the estimate
for the second state variable remains practically unchanged.

5 Conclusions and Future Work

In this paper, an optimization procedure was presented for the parameterization of the
underlying linear observer gain matrix of an interval-based variable-structure observer.
This observer is capable of simultaneously estimating system states and parameters
with improved accuracy as compare to linear gain-scheduled approaches or (if parame-
ter estimation is concerned) with respect to offline least-squares identification routines
applied over finite time intervals.

The optimization of the gain matrix is performed by solving an LMI-constrained
optimization problem which is characterized by the fact that asymptotic stability of
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the linear system part is guaranteed despite bounded uncertainty and that the domain
in the state-space is minimized for which stability cannot be proven rigorously. The
stability proof is based on the online evaluation of a Lyapunov function candidate
including stochastic noise processes for both the state and measurement equations.
For that purpose, the Itô differential operator is used to determine the time derivative
of the Lyapunov function candidate including the before-mentioned noise processes. In
contrast to classical parameterizations of the underling linear observer, the proposed
approach can be applied in a straightforward manner to system models with a polytopic
uncertainty representation.

Due to the duality of the design of linear feedback controllers and state estima-
tors, the proposed optimization procedure can be easily applied to the design of linear
feedback control components in interval-based sliding mode controllers. A further
point for future work is to rigorously account for time discretization errors in cases in
which the assumptions on the sampling time — that were made in the introduction
of this paper — are not satisfied. Moreover, future work will also aim at the develop-
ment of a procedure that simultaneously performs the guaranteed stabilizing design
of controllers and state estimators. Currently, the controller and observer design is
made independently with a subsequent careful check of the overall system stability.
However, the joint design of both components is necessary for nonlinear systems if
no additional stability proof is desired. This is due to the fact that the separation
principle — that is well-known from linear dynamics — no longer holds in the case of
nonlinear observer-based control structures.
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