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Abstract

Language disorders can be classified into the three linguistic levels of
pronunciation, lexicon, and grammar. To identify the most important lin-
guistic processes leading to disorders in the before-mentioned fields, both
standardized test procedures and the analysis of freely spoken language
are used in the everyday work of speech therapists. However, especially
the analysis of freely spoken language may become a tedious and time con-
suming task for a speech therapist because it involves a repeated listening
to the recorded speech of each individual patient. Therefore, a current
research project, focusing on the German language, aims at the develop-
ment of a computer-based assistance system for the automatic detection
of pronunciation and grammar disorders to enable a speech therapist to
spend her/ his valuable time more efficiently on therapeutic interventions
and therapy planning. In this paper, interval-based algorithms are pre-
sented which form a basic building block for the automatic segmentation
of speech signals into individual phonemes. Moreover, a first classification
scheme for individual sounds is presented that will be employed in future
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work for the automatic pronunciation analysis and for the automatic de-
tection and classification of pronunciation disorders.

Keywords: Signal processing, Speech analysis, Phoneme and pattern recognition,
Extended Kalman Filters, Branch-and-bound algorithms, Interval likelihood functions
AMS subject classifications: 65G30,93E11,60G35,68T10

1 Introduction

To develop a computer-based assistance system for speech therapy, it is essential to
distinguish between the linguistic levels of lexicon, grammar, and pronunciation [2]
and to deal with (i) the automatic transcription and preprocessing of speech involving
erroneous pronunciation, (ii) the classification of pronunciation disorders, and (iii) a
grammatical analysis1.

For the tasks (i) and (ii), this contribution exploits an online frequency analysis
of speech signals based on stochastic filtering approaches and the identification of
points of time at which transitions between subsequent phonemes can be expected
(cf. [7, 8]). The online frequency analysis makes use of a dynamic system model in
discrete-time state-space representation. This model is the prerequisite for the design
of an appropriate Extended Kalman Filter approach that allows for determining both
the characteristic frequency components of each phoneme and their bandwidths.

This Kalman Filter-based frequency estimation, in general, needs to be able to
account for the fact that phonemes can be classified into voiced and unvoiced sounds [5,
7, 14]. Voiced sounds (e.g. normal vowels) are characterized by several relatively sharp
formant frequencies produced by vibrations of the vocal folds. In the case of voiced
sounds, the vocal folds represent a laminar fluidic resistance against the outflow of air
expelled from the lungs.

In contrast, unvoiced sounds (e.g. whispered vowels and fricatives such as ch, ss,
sch, f in the words Bach (J.S. Bach, 1685–1750) [baX], Wasser (eng. water) ["vas5],
Schiff (eng. ship) [SIf])2 are caused by a turbulent, partially irregular, air flow with
negligible vibrations of the vocal folds. To some extent, unvoiced sounds are produced
by fizzing sounds originating between teeth and lips as well as between tongue and hard
or soft palate. Due to the before-mentioned considerations motivated by principles
from fluid mechanics, sharp formant frequencies are characteristic for voiced phonemes,
whereas wide frequency bands are typical for unvoiced ones.

For both voiced and unvoiced phonemes, a stochastic filtering approach [7, 9] can
be employed to estimate the expected values of the formant frequencies and their as-
sociated covariances, where the broad-band nature of unvoiced speech is reflected by
(co-)variance estimates that are significantly larger than for the voiced case. Transi-
tions between subsequent phonemes are then indicated by rapid changes in the above-
mentioned estimation results [8].

In this contribution, an approach for the discrete-time modeling of speech signals
is firstly reviewed in Sec. 2 together with a short description of the Extended Kalman
Filter procedure that was published in [7]. On this basis, a novel interval algorithm

1Note that there exists a wide range of applications of computer-based assistance systems
for speech therapy. Firstly, children with developmental language disorders — with a preva-
lence up to 50% in primary education [12] — require logopedic interventions. Secondly, speech
therapy may be indicated for adults and elderly people with neurological diseases.

2The phonetic transcription of these German sample words is given by the symbols of the
International Phonetic Alphabet (IPA).
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is presented for the segmentation of speech signals into individual phonemes in Sec. 3
as well as for the matching of individual sounds against the phoneme features stored
in a suitable reference database (Sec. 4). Besides a pattern recognition for correctly
pronounced sounds, this procedure helps to identify and classify pronunciation disor-
ders3. Here, expert knowledge of speech therapists will be inevitable if the features of
a mispronounced phoneme are not yet included in the database. Moreover, the iden-
tification procedure is designed in such a way that it can be extended in future work
to detect further disorders such as stuttering. This kind of disorder is characterized
by (rapid) repetitions of individual and/ or multiple phonemes or syllables. From this
point of view, characteristic features of stuttering can be detected from an occurrence
count of the extracted phoneme features over a short time window. Numerical results
for a benchmark speech signal highlight the algorithmic features in Sec. 5 before this
contribution is concluded in Sec. 6 with an outlook on future work.

2 Mathematical Modeling and Frequency Anal-
ysis of Speech Signals

Phonemes are the basic building block of syllables, from which individual words are
formed. They are characterized by specific features, namely, a speaker-dependent basis
frequency and higher formant frequencies that are specific for each phoneme. Typically,
higher formant frequencies are not integer multiples of the basis frequency. Moreover,
the bandwidth of the included frequency ranges serves as a feature to distinguish
between voiced and unvoiced phonemes.

As mentioned in the introduction, voiced phonemes are, for example, normal vow-
els, that are characterized by several sharp formant frequencies. In contrast, unvoiced
phonemes, such as whispered vowels and fricatives are characterized by wide blurred
formant frequency ranges.

2.1 Fourier Analysis of Speech Signals

In the frame of automatic speech recognition systems [1, 4, 10], an offline frequency
analysis is commonly performed, which consists of the following stages:

1. Cut the sound sequence into short temporal slices of typically 10− 50 ms length

2. Perform a short-time Fourier analysis for each of these time slices (partly with
overlapping time windows after the application of windowing functions aiming
at the suppression of the leakage phenomenon)

3. Determine a measure of similarity with phoneme-dependent frequency spectra
(usually by the application of cross-correlation functions in the frequency do-
main)

3Although a lot of research work exists in the frame of speech recognition (cf. [13] and
the references therein), no assistance system is yet available that automatically detects and
classifies pronunciation disorders. The reason is that most speech recognition systems per-
form a matching of speech signals against correctly pronounced reference patterns, leading
to a replacement of mispronounced sounds by seemingly correct substitutes. However, this
replacement obviously contradicts the aim of developing the desired assistance system for
speech therapy.
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(a) Output for the setting DFT 1.
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(b) Output for the setting DFT 2.
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(c) Output for the setting DFT 3.

Figure 1: DFT analysis of a benchmark speech signal [7].

For all numerical results concerning frequency analysis and pattern recognition of
speech signals in this paper, a 5-second excerpt from a German TV news broadcast is
used. It consists of an audio stream (pure speech of the anchorman without background
sounds) sampled with the frequency fs = 44.1 kHz.

Results of an offline Discrete Fourier Transformation (DFT) of this signal are
summarized in Fig. 1. There, frequency ranges which are characteristic for a specific
phoneme become visible in a dark red color code. These frequencies correspond to
sufficiently large values in the amplitude response |Fk(ω)| that is computed for windows
of N equidistant sampling points of the speech signal. Moreover, large temporal
variations of the frequency contents represent the transition points between different
subsequent sounds in the speech signal. Hence, they coincide with those points of time
at which sharp vertical lines appear in the spectrum in Fig. 1.

According to the parameters in Tab. 1, an increase in the number of sampling
points N for each DFT evaluation leads to smaller values ∆f of the spectral resolution.
This improves the detectability of the formant frequencies (i.e., frequencies with large
amplitude values) as well as their temporal variations in the speech signal (i.e., the
before-mentioned vertical lines).

As mentioned above, points of time with significant changes in the spectrum rep-
resent candidates for the transition between two subsequent phonemes. These points
of time are determined algorithmically in the following after the introduction of a
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Table 1: Different parameterizations for the DFT analysis of a benchmark signal.

DFT 1 DFT 2 DFT 3

Length of time window in samples (N) 512 1024 2048

Length of time window in ms 11.6 23.2 46.4

Sample shift between two DFT evaluations 64 64 64

Spectral resolution ∆f in Hz 86.5 43.2 21.6

filter-based online frequency analysis which can serve as a computationally efficient
substitute for the offline DFT.

2.2 Filter-Based Frequency Analysis

For the implementation of an online, real-time capable filter approach, the measured
speech signal is represented by a superposition of different harmonic components ac-
cording to

ym(t) ≈ ym,n(t) =

n∑
i=1

(αi · cos (ωi · t+ φi)) (1)

with the basis frequency ω1 > 0, further harmonic signal components ω2, . . . , ωn,
ωi+1 > ωi, i ∈ N, the signal amplitudes αi, and the phase shifts φi.

The i-th component of the signal model (1) coincides with the solution of the
continuous-time system model [6, 7]

ẋ3i−2(t) = −x3i(t) · αi · sin (x3i(t) · t+ φi) =: x3i−1(t)

ẋ3i−1(t) = −x23i(t) · αi · cos (x3i(t) · t+ φi)

ẋ3i(t) = 0

(2)

that can be summarized in the state-space representation

ẋi(t) = Ai (x3i(t)) · xi(t) , xi(t) =

x3i−2(t)
x3i−1(t)
x3i(t)

 ∈ R3 (3)

with the frequency-dependent system matrices

Ai (x3i(t)) =

 0 1 0
−x23i(t) 0 0

0 0 0

 ∈ R3×3 . (4)

For this set of state equations, the i-th component of the signal model (1) is given by

yi(t) = čT
i · xi(t) with čT

i =
[
1 0 0

]
. (5)

The complete signal model can then be formulated according to

ẋ(t) = A (x(t)) · x(t) with x(t) ∈ R3n , (6)

where the frequency-dependent system matrix corresponds to a block diagonal con-
catenation of the subsystem matrices defined in (4) according to

A (x(t)) =


A1 (x3(t)) 0 . . . 0

0 A2 (x6(t)) . . . 0
...

...
. . .

...
0 0 . . . An (x3n(t))

 ∈ R3n×3n . (7)
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A superposition of the individual signal components resulting from (3) and (5) leads
to the output representation

ym,n(t) = cT · x(t) with cT =
[
čT
1 čT

2 . . . čT
n

]
. (8)

Under the assumption that the sampling frequency fs is sufficiently large, temporal
frequency variations can be neglected between two subsequent discretization points tk
and tk+1. Therefore, a discrete-time system model is derived from (6), (7), and (8) in
terms of the difference equations

xk+1 =exp (Ts ·A (xk)) · xk + wk =: Ad
k · xk + wk (9)

with the measured output

yk = ym,n,k := ym,n(tk) = cT · xk + vk . (10)

In the equations (9) and (10), the additive terms wk and vk are normally dis-
tributed noise processes

fw,k (wk)=N (µw,k,Cw,k) and fv,k (vk) = N (µv,k,Cv,k) (11)

with zero mean values µw,k = 0 and µv,k = 0 as well as the (co-)variances Cw,k

and Cv,k. These noise processes are taken into consideration in the design of an
Extended Kalman Filter4 (EKF) that is used for the online estimation of the formant

frequencies ωi and their associated standard deviations

(√
Ce

x,k,(3i,3i)

)
. A typical

estimation result for an EKF with n = 2 is shown in Fig. 2.

3 Phoneme-Based Segmentation of Speech Sig-
nals

3.1 Threshold Classification

Candidates for transition points between two subsequent phonemes [3] in a speech
signal are characterized by significant variations in the formant frequencies (i.e., the
entries in the vectors of estimated expected values) as well as in the bandwidth of the
included frequency components (related to diagonal entries in the estimated covari-
ance matrices). For that purpose, the following threshold estimator makes use of the
Extended Kalman Filter outputs after a normalization by the corresponding average

4For linear dynamic systems with additive Gaussian process and measurement noise, the
Kalman Filter provides the solution of Bayesian state estimation in terms of parameterizing
the exact, normally distributed probability density functions of all state variables by their
expected values and covariances. For nonlinear processes, the Bayesian estimation does usually
not have analytic solutions. To obtain Gaussian approximations of the probability densities
in such cases, the process and measurement models are locally approximated by linearized
state-space representations with additive noise. The Extended Kalman Filter is thus the
application of the Kalman Filter routine to this linearized model [11]. For the application
of further stochastic filtering approaches aiming at the estimation of frequencies in speech
signals, the reader is referred to [9].
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(b) Estimate for ω2.

Figure 2: Estimation results for n = 2: expected value µe
x,k,3i (solid lines) and upper

frequency bound µe
x,k,3i + 3 ·

√
Ce

x,k,(3i,3i) (dashed lines) [7].

values over a windows of L samples (typically the complete speech signal under con-
sideration). Hence, the normalized expectation of the i-th formant frequency and the
corresponding normalized (co-)variance are given by

µ̃e
x,k,3i =

µe
x,k,3i

1
L

L∑
k=1

µe
x,k,3i

and C̃e
x,k,(3i,3i) =

Ce
x,k,(3i,3i)

1
L

L∑
k=1

Ce
x,k,(3i,3i)

, i = 1, . . . , n . (12)

Based on the absolute variation rate

∆µ̃e
x,k,3i =

∣∣µ̃e
x,k+1,3i − µ̃e

x,k,3i

∣∣ (13)

of the estimated frequencies as well as the absolute variation rate

∆C̃e
x,k,(3i,3i) =

∣∣∣C̃e
x,k+1,(3i,3i) − C̃e

x,k,(3i,3i)

∣∣∣ (14)

of the corresponding (co-)variances, candidates for phoneme boundaries are character-
ized by

∆µ̃e
x,k,3i > ∆µ̃ and ∆C̃e

x,k,(3i,3i) > ∆C̃ , (15)

where either of the absolute variations (13) and (14) exceeds empirically chosen thresh-

old values ∆µ̃ or ∆C̃.
According to [8], both criteria in (15) can be merged into a joint detection routine

for possible phoneme boundaries. Phoneme boundaries are set at those points in
the speech signal where the inequalities above are satisfied with a minimum temporal
distance ∆Tmin between two subsequent boundaries. For typical human speech signals,
this temporal distance can be chosen in the order of magnitude of ∆Tmin = 20 ms.

3.2 Branch-and-Bound Procedure

As an alternative to the previous threshold-based detection scheme, a novel interval-
based branch-and-bound procedure is introduced in this subsection. In analogy to the
previous classification scheme, a stochastic frequency estimation is performed in a first
stage by using the Extended Kalman Filter, cf. Sec. 2.

Then, the following algorithm is applied.
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Step 1 Determine the convex interval hull (CIH) for each of the estimated mean
values and standard deviations of the analyzed speech signal in terms of mutu-
ally independent intervals for each frequency. These intervals are defined such
that their bounds correspond to the smallest, respectively largest, values of the
quantity of interest over the considered time span.

Step 2 Bisect the time interval if

• the length is larger than ∆T ′min < ∆Tmin and

• either of the maximum variation rates

max
k∈K

{
µ̃e
x,k,3i

}
−min

k∈K

{
µ̃e
x,k,3i

}
> ∆µ̃ (16)

or
max
k∈K

{
C̃e

x,k,(3i,3i)

}
−min

k∈K

{
C̃e

x,k,(3i,3i)

}
> ∆C̃ (17)

exceeds given threshold values, where K denotes the range of time indices
for the considered temporal slice.

• A subsequent merging of neighboring time intervals is possible if the in-
equalities (16) and (17) are not fulfilled for the union of these two neigh-
boring temporal slices.

4 Phoneme Identification

4.1 Relevant Features

In order to identify the phoneme that is located between its before-mentioned bound-
aries, it is necessary to compare its relevant features with the ones that are stored in
an offline generated reference database.

To avoid speaker-dependent influences, all formant frequencies and standard de-
viations are normalized by a multiplicative scaling factor so that the mean of the
estimated frequency ω1 over the complete speech signal corresponds to the mean of
ω1 in the reference database. This procedure is admissible for sufficiently long audio
streams.

The most relevant phoneme features are represented by a CIH (cf. Step 1 in
Sec. 3.2) over the expected values of each formant frequency for the complete phoneme
duration as well as by the CIH over the respective standard deviations of each formant
frequency and their associated amplitudes.

As soon as a single phoneme is characterized by multiple temporal subintervals due
to the segmentation routines in Sec. 3, a weighted arithmetic average of the interval
values is used, where the corresponding subinterval durations serve as weighting factors
for the following pre-classifier as well as for Algorithm 1 in Sec. 4.4. Alternatively, a
CIH can be formed over all subslices as well.

4.2 Database of Reference Values

To compare the estimated CIHs against some reference values, it is necessary to create
a database of features that represent the phonemes of a specific language of interest.
For example, for the German language from which the benchmark scenario in Sec. 2 was
chosen, a list of approximately 75 characteristic, different phonemes exists (including,
for example, short and long variants of a vowel as separate database entries). The
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corresponding features are stored in terms of their CIH in a reference database, where
naturally spoken language without pronunciation disorders serves as the reference. To
avoid a bias due to random errors in this reference database, the selected features
need to be observed multiple times during the creation of the reference. The typical
interval features are then obtained by averaging the corresponding CIHs or by forming
a further CIH after normalization to the average of the basis frequency.

4.3 Pre-Classification of Phonemes by Interval-Based
Similarity Measures

4.3.1 Unvoiced Phonemes

As mentioned in Sec. 2, unvoiced phonemes are characterized by large estimated stan-
dard deviations (especially for i ≥ 2). Based on the normalized standard deviation
of the second formant [σ̃e

2] as well as based on the duration τ of a phoneme, a pre-
classification scheme can be implemented to distinguish between candidates that most
likely are unvoiced sounds and definitely not voiced ones. This pre-classification uses
the following criteria with the threshold value σ∗ chosen by comparison of the DFT
frequency spectra of unvoiced and voiced phonemes:

Criterion 1:
sup{[σ̃e

2]} − σ∗

σ∗ − inf{[σ̃e
2]} > 0.5 (18)

Criterion 2:

(inf{[σ̃e
2]} > σ∗) & (τ < 65 ms) (19)

Either Criterion 1 or Criterion 2 has to be satisfied in order to denote the current
phoneme as a candidate for an unvoiced sound.

4.3.2 Voiced Phonemes

In contrast to unvoiced phonemes, voiced phonemes are characterized by small esti-
mated standard deviations (especially for i ≥ 2).

Besides the interval for the normalized standard deviation of the second formant
[σ̃e

2], intervals for the estimated formant frequencies [ω̃e
1] and [ω̃e

2] as well as the corre-
sponding estimated amplitudes [α̃e

1], [α̃e
2] and the phoneme duration τ are included in

the pre-classifier for voiced phonemes. The resulting criterion is given by:

Criterion:

(sup{[σ̃e
2]} < σ∗)& (inf{[ω̃e

2]} > sup{[ω̃e
1]}) . . .

& (τ ≥ 50 ms) &

(
sup{[α̃e

1]}
sup{[α̃e

2]} > 0.8

)
(20)

Note that the results that are summarized in Sec. 5.2 for the pre-classification of
phonemes are restricted to using the option of averaged interval boxes for the relevant
phoneme features if a phoneme is represented by several subintervals.
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4.4 Matching of Phonemes

4.4.1 Interval Box Representation of Phoneme Features: Algorithm 1

The matching of phonemes with the entries that are stored in a reference database
can be performed by the evaluation of the following similarity measure. It makes use
of the short-hand notation

vol (diam{[z]}) =

n∏
i=1

(zi − zi) (21)

for the pseudo-volume of an n-dimensional interval box [z].

The feature box [z]ref,j for the j-th phoneme in the reference database (j =
1, . . . , jmax) contains the normalized intervals of formant frequencies, estimated stan-
dard deviations, and amplitudes over the complete phoneme duration.

With the help of the feature box [z] of the current phoneme, the similarity measure

ρj =
vol (diam{[z]}) + vol

(
diam{[z]ref,j}

)
vol
(

diam{[z] ∪ [z]ref,j}
) (22)

is evaluated for each j = 1, . . . , jmax. The ratio ρj in (22) is a measure for the degree of
similarity between the current feature box and the j-th reference in terms of maximum
overlapping with a minimum excess volume between the volume of the convex axis-
aligned hull of two interval boxes denoted by the operator ∪ and the sum of the
individual volumes.

Hence, the best match for the corresponding phoneme is the maximizer of the
similarity measure according to

j∗ = arg max
j=1,...,jmax

{ρj} . (23)

4.4.2 Interval Likelihood Representation: Algorithm 2

As an alternative algorithm for phoneme matching, interval likelihood functions can be
used as a generalization of a point-valued normal distribution for the phoneme feature
representation in the time step k. A point-valued probability density function with
corresponding mean values and covariances determined with the help of the Extended
Kalman Filter algorithm is given by

fx,k (xk) =
1√

(2π)3n |Cx,k|
exp

{
−1

2
(xk − µx,k)T C−1

x,k (xk − µx,k)

}
. (24)

A reasonable generalization to an interval-based likelihood representation can be de-
fined for the complete phoneme according to

fr,K,j ∈ [fr,K]j := wj ·
1√

(2π)3n
∣∣∣[Sx,K]j

∣∣∣ exp

{
−1

2
[rx,K]Tj [Sx,K]−1

j [rx,K]j

}
, (25)

where

[rx,K]j := [µx,K]− [µx,K]ref,j (26)
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is an interval residuum value and

[Sx,K]j := [Cx,K] + [Cx,K]ref,j (27)

a suitable interval definition of the error (co-)variance. Both the interval residuum
[rx,K]j in (26) and the interval covariance [Sx,K]j in (27) are defined as CIHs over the
complete index set k ∈ K of the corresponding phoneme duration. In a fundamental
setting, each scaling factor wj > 0 is set to wj ≡ 1.

With the information obtained from the interval likelihood functions (25), the most
likely phoneme is given by

j∗ = arg max
j=1,...,jmax

{
sup

{
[fr,K]j

}}
, (28)

which detects the maximum supremum of all possible interval likelihood functions
[fr,K]j for the complete list of phoneme database entries j = 1, . . . , jmax.

In addition to using the complete estimated feature vector (provided by the Ex-
tended Kalman Filter routine in Sec. 2), also projections of the interval residua and
the corresponding interval (co-)variances onto a subspace formed by individual compo-
nents of µx,K are possible. These components have to be chosen such that they carry
the most relevant information for detecting the phonemes of interest. Typically, this
information is given by the estimated frequencies and the duration of the phoneme.
Information about the duration is necessary, if distinctions between short and long
sounds such as short and long vowels are made.

A necessary prerequisite for the applicability of this second classification algorithm
is the invertability of the interval matrices [Sx,K]j defined in (27) for all j = 1, . . . , jmax.
Although this is ensured for time horizons K that consist only of a single time step k,
interval-related overestimation due to the use of CIHs over the complete duration of a
phoneme may lead to a loss of regularity of the corresponding interval matrix. If this
loss of regularity occurs, the first classification procedure can be used as a fallback
solution.

As it is shown in Sec. 5.3, the use of factors wj 6= 1 can noticeably enhance the de-
tection rates for phonemes which can hardly be distinguished by residuum vectors (26)
that only consist of the estimated formant frequencies.

5 Results

5.1 Phoneme-Based Segmentation of the Speech Signal

As a fundamental prerequisite for the matching of phonemes, the possible boundaries of
the individual phonemes need to be detected. For the phoneme-based segmentation of
the benchmark speech signal, the two possible options of using either a pure threshold
segmentation (Sec. 3.1) or the interval-based segmentation (Sec. 3.2) are compared.

The results of both algorithms are then compared to phoneme boundaries obtained
manually from repeated listening to excerpts of the speech signal and to the visual
frequency variations in the DFT output (cf. the vertical band structure in Fig. 1).

For the automatic segmentation according to Sec. 3, the formant frequencies are
firstly determined by means of the Extended Kalman Filter procedure. It provides
information about the frequencies up to the order n as well as the corresponding
(co-)variances and the signal amplitudes.
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As shown in Fig. 3, the threshold classification procedure allows for an accurate
detection of phoneme boundaries. Here, the boundaries determined manually by the
human listener (marked by red vertical lines) are in good coincidence with the auto-
matic segmentation and the DFT results. This statement is equally true for minimum
temporal slices chosen from the set {15 ms, 20 ms, 25 ms}.

At first glance, the branch-and-bound version in Fig. 4 leads to very similar re-
sults. However, due to the splitting and merging steps of time intervals described in
Sec. 3.2, the algorithm determines the visible boundary points in the DFT spectrum
more accurately than the pure threshold implementation. Moreover, it has the advan-
tage that also points of time with characteristic variations of formant frequencies and
bandwidths within a single phoneme are determined more accurately.

This is also confirmed by the fact that the lengths of the individual subintervals
are less homogeneously distributed than for the algorithm according to Sec. 3.1. The
distribution of the estimated lengths of the time slices between points with significant
feature variations is exemplarily shown for the branch-and-bound procedure in Fig. 5.

Note that — without the automatic segmentation procedure — inner phoneme
boundaries could only be extracted from the offline DFT. For a human listener, these
boundaries are not detectable at all, since phonemes can only be perceived as a whole.

Concerning the matching of phonemes, these intermediate points of significant fre-
quency variations are especially useful to detect plosives that only become audible for
a human listener by their combination with a preceding or subsequent voiced phoneme
(typically a vowel). This is usually the case for bilabial stops such as the voiced bil-
abial plosive b ([b], [b

˚
]) or the unvoiced bilabial plosive p ([p], [ph]) with a preceding

or following vowel. These phoneme combinations are commonly characterized by sig-
nificant variations of at least one of the formant frequencies over the duration of the
complete joint sound. Examples, for which these variations can be perceived, are [ba],
[da], [ga], [di], [da], [du].

5.2 Results of the Phoneme Pre-Classification

In this subsection, the results of the phoneme pre-classification are presented. The
audio signal consists of a 2-second excerpt from the news broadcast already used in
Sec. 2. From this excerpt, the following outcome was obtained, where the repetition
of sounds represents their multiple occurrences:

• Unvoiced: ‘s’ ‘n’ ‘n’ ‘s’ ‘n’ ‘ch’ ‘t’

• Voiced: ‘i’ ‘i’ ‘e’ ‘n’

• Undecided: ‘b’ ‘e’ ‘g’ ‘e’ ‘i’ ‘ch’ ‘ei’ ‘z’ ‘u’ ‘r’ ‘i’

In IPA transcription, the respective sounds are:

• Unvoiced: [z] [n] [n] [z] [n] [ç] [t]

• Voiced: [i:] [I] [@] [n
"
]

• Undecided: [b] [@"] [g] [@] [I] [ç] [aI
“
] [ts] [u:] [ö] [I]

Here, all sounds pre-classified as unvoiced were actually unvoiced phonemes. In
the set of voiced ones, only the phoneme ’n’ ([n

"
]) is misclassified. This sound is hard

to detect even for a human listener since it follows a short voiced ’i’ ([I]). Due to
some jitter in the detection of the phoneme boundaries, this voiced sound ’i’ was
mistakenly included in the list of undecided candidates.
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(a) Boundaries for ∆Tmin = 15 ms.
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(b) Boundaries for ∆Tmin = 20 ms.
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(c) Boundaries for ∆Tmin = 25 ms.

Figure 3: Comparison of manually detected phoneme boundaries (red vertical lines)
with the automatic threshold classification results (black lines).

Due to the separation of phonemes with the attributes voiced, unvoiced, and un-
decided, the pre-classification stage significantly reduces the effort of the following
phoneme matching. For the classes voiced and unvoiced, only the corresponding sub-
sets from the reference database need to be investigated, while a full list search only
becomes necessary for undecided phonemes.

In future work, the pre-classification criteria will be extended by some probabilistic
confidence measures that aim at the reduction of the misclassification likelihood of
sounds such as for the unvoiced ’n’ above.

5.3 Results of the Phoneme Matching Procedure

Fig. 6 gives a comparison of the two phoneme matching procedures. For the sake of
compactness, only a matching of selected vowels is investigated. It can be seen that the
interval likelihood representation in Algorithm 2 clearly reduces the misclassification
rate in comparison with the box-valued Algorithm 1 if it is applied in a two-stage man-
ner. Firstly, wj ≡ 1 is used to rule out all unlikely phonemes (Fig. 6(b)). Candidates
within a certain distance from the most likely phoneme are kept for the evaluation
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(b) Boundaries for ∆Tmin = 20 ms.
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(c) Boundaries for ∆Tmin = 25 ms.

Figure 4: Comparison of manually detected phoneme boundaries (red vertical lines)
with the automatic branch-and-bound segmentation procedure (black lines).

and are investigated further by choosing the weighting factors now as

wj =
1

n∑
i=1

(
diam

{[
µe
x,K,3i−2

]}
− diam

{
[µx,K,3i−2]ref,j

}) . (29)

In order to reduce the number of remaining misclassifications further, it is promis-
ing to improve the quality of the reference database by extracting the phoneme features
from a larger number of frequency estimates. Currently, the reference database is made
up only of averages of up to five recordings of each of the investigated sounds so that
outliers can still have a negative impact on the matching quality.

6 Conclusions and Outlook on Future Work

In this paper, the first building blocks of a signal processing unit were presented which
is currently under development for the automatic classification of pronunciation disor-
ders in speech therapy. When the detection of mispronounced phonemes is of interest
in a therapeutic context, it is not possible to use state-of-the-art speech recognition
systems based on pattern recognition procedures such as those presented in [13]. The
reason for this is obvious: As soon as replacements of mispronounced sounds by seem-
ingly correct ones occur during the comparison of the frequency features of a speech
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Figure 5: Temporal distance between two subsequent segmentation points for the
branch-and-bound procedure.

signal with words that are included in some reference dictionary, every mispronounced
sound is replaced by something that is seemingly correct. However, exactly the in-
formation of pronunciation disorders5 is of interest for the therapist to be assisted
in her/ his everyday work. Therefore, also learning-type approaches from artificial
intelligence aiming at an automatic correction of mispronunciation are not reasonable
for the development of the assistance system SUSE (A Software assistance system for
U ncovering speech disorders by Stochastic Estimation techniques).

For this reason, an online filter-based frequency estimation procedure was pre-
sented which allows for determining characteristic features on the level of individual
phonemes such as formant frequencies and their estimated (co-)variances. Here, the
(co-)variance information is especially useful to distinguish between voiced and un-
voiced sounds in a pre-classification phase. Moreover, various results have shown that
novel interval-based segmentation procedures for the detection of phoneme boundaries
and interval-likelihood representations of phoneme features can be used to reliably de-
termine the boundaries of individual sounds and to find those sounds from a list of
reference signals which represent the actually observed sound with maximum proba-
bility.

Future work firstly has to deal with extending the phoneme database to a complete

5Note that such replacements may be admissible in cases of a pure grammar analysis which
was not considered in this paper.



Reliable Computing 25, 2017 115

i e i e i u i e
 

 

e i u

lik
el

ih
oo

d
in

%

100

80

60

0

20

40

(a) Box classification (Algorithm 1 ), 4 out
of 8 phonemes were correctly classified.

i e i e i u i e
 

 

e i u

lik
el

ih
oo

d
in

%

100

80

60

0

20

40

(b) Interval likelihood classification
(Algorithm 2, wj ≡ 1), used for pre-
classification purposes.
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(c) Interval likelihood classification
(Algorithm 2, wj 6= 1 acc. to (29)), 6 out
of 8 phonemes were correctly classified.

Figure 6: Overview of the outcomes of the different phoneme matching procedures,
where the correct phonemes are listed below the horizontal axis.

list of all sounds that are relevant for a specific language (e.g. approximately 75 fun-
damental sounds for the German language). Moreover, detection rates of individual
phonemes need to be thoroughly analyzed if a speaker-independent reference database
is employed and if this is equally applied to analyze the speech of various speakers
including children, adults, and elderly persons, each of them with and without pro-
nunciation disorders. Besides the implementation of further estimation procedures
(such as Extended Kalman Filters with a bandpass filtering of the input signal aiming
at an improved observability as shown in [7, 9]) and the use of multi-hypothesis filter
techniques [11], options will be investigated to include self-learning features into the
classification scheme. There, especially mispronounced sounds not yet included in the
database, and weakly distinguishable sounds will be in the focus. In both cases, the
therapist will have to provide expert knowledge in order to trigger the learning by
rejecting possibly incorrect estimates made by the assistance system. One possibility
for this will be the adaptation of weighting factors during the learning phase such as
those included in Sec. 5.3.
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