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Abstract

Tests for speeding up the determination of the Bernstein enclosure of
the range of a multivariate polynomial and a rational function over a box
and a simplex are presented. In the polynomial case, this enclosure is
the interval spanned by the minimum and the maximum of the Bernstein
coefficients which are the coefficients of the polynomial with respect to the
tensorial or simplicial Bernstein basis. The methods exploit monotonicity
properties of the Bernstein coefficients of monomials as well as a recently
developed matrix method for the computation of the Bernstein coefficients
of a polynomial over a box.

Keywords: Multivariate polynomial, multivariate rational function, Bernstein coef-
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1 Introduction

Solving global optimization problems is of paramount importance in many real-life
and scientific problems; polynomial global optimization problems form a significant
part of them. A commonly used approach for solving global optimization problems
is the branch and bound method. This is summarized as splitting the search region
into smaller parts and using suitable means to discard subregions that cannot contain
any global optimizer. The latter ones require the ability to compute tight bounds
for the range of the objective function and constraint functions over the considered
search region. In the case of polynomial optimization problems one can make use of
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the expansion of a polynomial into Bernstein polynomials, see [12], [13], [15]. Then the
minimum and maximum of the coefficients of this expansion, the so-called Bernstein
coefficients, provide bounds for the range of the polynomial over the search region.
Other fields, where this range enclosing property has been employed, include stability
analysis, e.g., [14], static analysis of computer programs [1], and the verified solution
of finite element models with uncertain parameters, e.g., [5]. As a particularly promis-
ing field appears automatic theorem proving. This application includes the proof of
nonlinear inequalities in the flyspeck project which aimed at a formal proof of Keplers
Conjecture on the density of spheres [6] and the formalization of the representation of
Bernstein polynomials in the higher-order logic of the mechanical theorem prover Pro-
totype Verification System (PVS) [9] with application to the development of formally
verifiable conflict detection algorithms for aircraft flying arbitrary, nonlinear trajecto-
ries [11].

The traditional approach, e.g., [3], [7], [12], requires that all Bernstein coefficients
have to be computed. This is not recommended since their number is exponentially
growing in the number of the variables. In [15], a method was proposed by which the
Bernstein coefficients over a box are represented implicitly and which employs three
tests to reduce the search space for the minimum and maximum coefficient. This ap-
proach is advantageous for many types of sparse polynomials typically encountered in
global optimization problems because the computational complexity becomes nearly
linear with respect to the number of the terms of the polynomial. We combine these
tests with a recently developed method [17] for the computation of the Bernstein
coefficients over a box. Also, we formulate the tests to localize the minimum and
maximum coefficients of the Bernstein expansion of a polynomial over a simplex. In
[10] the Bernstein enclosure for polynomials was extended to rational functions. Here
the enclosure is provided by the minimum and maximum of the ratio of the Bernstein
coefficients of the numerator and denominator polynomials. This allows us to extend
our results derived in the polynomial case to the rational case.

The organization of our paper is as follows: In the next section, we give the nota-
tion that is used throughout the paper. In Section 3, we briefly recall the Bernstein
expansion of a polynomial over a box and a simplex. In Sections 4 and 5, we present
the determination of the Bernstein enclosure for polynomials over a box and a simplex,
respectively. Finally in Section 6, we extend the results to rational functions.

2 Notation

In this section we introduce the notation that we are using throughout this pa-
per. Let n ∈ N (set of the nonnegative integers) be the number of variables. A
multi-index (i1, . . . , in) ∈ Nn is abbreviated by i. In particular, we write 0 for
(0, . . . , 0). Comparison between multi-indices and arithmetic operations using them
are understood entry-wise. For x = (x1, . . . , xn) ∈ Rn, its monomials are defined
as xi :=

∏n
s=1 x

is
s . For d = (d1, . . . , dn) ∈ Nn such that i ≤ d, we use the com-

pact notations
∑d
i=0 :=

∑d1
i1=0 . . .

∑dn
in=0 and

(
d
i

)
:=
∏n
s=1

(
ds
is

)
. Finally, we define

|x| := x1 + . . .+ xn.

Let IR be the set of compact, nonempty real intervals [x] = [x, x], x ≤ x. A box x
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of Rn is a vector with n components from IR.

3 Bernstein Form over the Unit Box and the
Standard Simplex

In this section we present fundamental properties of the Bernstein expansion over a
box [2], [3] and over the standard simplex [7], [8] that are employed throughout the
paper.

3.1 Tensorial Bernstein form

For simplicity we consider the unit box u := [0, 1]n since any compact nonempty box
x of Rn can be mapped affinely onto u. Let l ∈ Nn and p be an n-variate polynomial
with the power representation

p(x) =

l∑
i=0

aix
i. (1)

We expand p with respect to the basis of the Bernstein polynomials of degree d, d ≥ l,
over u as

p(x) =

d∑
i=0

b
(d)
i B

(d)
i (x), (2)

where B
(d)
i is the i-th Bernstein polynomial of degree d over u, defined as

B
(d)
i (x) :=

(
d

i

)
xi(1− x)d−i, (3)

and b
(d)
i is the i-th Bernstein coefficient of p of degree d over u which is given by

b
(d)
i =

i∑
j=0

(
i
j

)(
d
j

)aj , 0 ≤ i ≤ d, (4)

with the convention that aj := 0 for j ≥ l, j 6= l. We arrange the Bernstein

coefficients in a multidimensional array B(u) = (b
(d)
i )0≤i≤d, the so-called Bernstein

patch. The Bernstein coefficients provide lower and upper bounds for the range of p
over u,

d

min
i=0

b
(d)
i ≤ p(x) ≤ d

max
i=0

b
(d)
i , for all x ∈ u. (5)

This property is called the range enclosure property and the enclosure (5) itself the
tensorial Bernstein form of p. Equality holds in the left or right inequality of (5) if and
only if the minimum or the maximum, respectively, is attained at a vertex of B(u), i.e.,
if is ∈ {0, ds}, s = 1, . . . , n. This condition is known as the vertex condition. Another
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property of the Bernstein coefficients is their linearity: Let p = αp1 + βp2, α, β ∈ R,
where the degrees of p1 and p2 is less than or equal to d. Then

b
(d)
i (p) = αb

(d)
i (p1) + βb

(d)
i (p2), for all 0 ≤ i ≤ d, (6)

where b
(d)
i (p1) and b

(d)
i (p2) are the i-th coefficients of the Bernstein expansions of de-

gree d of p1 and p2, respectively. In the following text, we choose d = l and suppress
the upper index d.

3.2 Simplicial Bernstein form

Let v0, . . . , vn be n+ 1 points of Rn. The ordered list V = [v0, . . . , vn] is called sim-
plex of the vertices v0, . . . , vn. The realization |V | of the simplex V is the set of Rn
defined as the convex hull of the points v0, . . . , vn. We will consider here only the
standard simplex ∆ := [e0, e1, . . . , en], where e0 is the zero vector in Rn and es is the
s-th vector of the canonical basis of Rn, s = 1, . . . , n. This is not a limitation since
any non-degenerate simplex V in Rn can be mapped affinely upon ∆, see, e.g., [7], [8].
Let k ∈ N. If |i| ≤ k, we further use the notation

(
k
i

)
:= k!

i1!...in!(k−|i|)! .

The Bernstein polynomials of degree k over ∆ are the polynomials (B
(k)
i )|i|≤k,

defined as

B
(k)
i (x) :=

(
k

i

)
xi(1− |x|)k−i. (7)

Let the polynomial p be given in its power representation (1). We define

l′ := max {|i| | i = 0, . . . , l with ai 6= 0} .

We expand p with respect to the basis of the Bernstein polynomials of degree k,
l′ ≤ k, over ∆ as

p(x) =
∑
|i|≤k

b
(k)
i B

(k)
i (x). (8)

Herein the b
(k)
i are the Bernstein coefficients of p of degree k over ∆ which are given

by

b
(k)
i =

∑
m≤i

(
i
m

)(
k
m

)am (9)

with the convention that

am := 0 for ms > ls for at least one s ∈ {1, . . . , n} .

We arrange again the Bernstein coefficients in the Bernstein patch B(∆) = (b
(k)
i )|i|≤k.

As in the tensorial case, the Bernstein coefficients are linear, see (6), and provide
the range enclosure property (with the sharpness of the bounds if the respective ver-

tex condition is fulfilled), see [19, Proposition 2]. The interval [min
|i|≤k

b
(k)
i ,max
|i|≤k

b
(k)
i ] is

called the simplicial Bernstein form of p. If in the sequel the degree of the Bernstein
expansion will be clear from the context, we suppress the upper index k.
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4 Determination of the Tensorial Bernstein
Form for Polynomials

In this section we present an efficient method for the determination of the Bernstein
form for a multivariate polynomial over the unit box which is spanned by the mini-
mum and maximum Bernstein coefficients. The proposed method relies on the matrix
method presented in [17] which we combine with a method [15] for speeding up the
determination of the Bernstein form.

4.1 Matrix method for the computation of the tensorial
Bernstein coefficients

In [17] we propose a matrix method for the computation of the Bernstein coefficients
over the unit and a general box. This method has complexity O(nκn+1), where κ is
the maximum degree of the variables. Let p be an n-variate polynomial given by (1).
The coefficients of p are arranged in an (l1 +1)× l∗ matrix A, where l∗ :=

∏n
s=2(ls+1).

The correspondence between the coefficients ai1,...,in of p and the entry of A in row i
and column j is as follows:

i = i1 + 1,

j = i2 + 1 +

n∑
s=3

is(l2 + 1) · . . . · (ls−1 + 1).

We introduce the following matrices of Rls+1,ls+1, s = 1, . . . , n. The lower triangular
Pascal matrix Ps is defined as

(Ps)ij :=

{(
i−1
j−1

)
, if j ≤ i,

0, otherwise.
(10)

The matrices Ks
µ, µ = 1, . . . , ls, are given by

(Ks
µ)ij :=


1, if i = j,

1, if i = j + 1, ls − µ+ 1 ≤ j ≤ ls,
0, otherwise.

(11)

We will make use of the following factorization, e.g., [16, Lemma 2.4],

Ps =

ls∏
µ=1

Ks
µ. (12)

For the computation of the Bernstein patch of p over u we first multiply the entries

ai1,...,in of A by
(
l1
i1

)−1
. . .
(
ln
in

)−1
. We name the resulting matrix Λ(u), put Λ0 := Λ(u),

and define for s = 1, . . . , n

Λs := (PsΛs−1)c. (13)

The superscript c denotes the cyclic ordering of the sequence of the indices, i.e.,
the order of the indices of the entries of the array under consideration is changed cycli-
cally. This means that the index in the first position is replaced by the index in the
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second one, the index in the second position by the one in the third, . . . , the index
in the n-th position by the one in the first position, so that after n such steps the
sequence of the indices is again in its initial order, see Figure 1 in [17] for an illustra-
tion in the trivariate case. Note that in the bivariate case the cyclic ordering is just
the usual matrix transposition. The Bernstein patch B(u) arranged accordingly in an
(l1 + 1)× l∗ matrix is given by Λn. For simplicity we assume that ls = κ, s = 1, . . . , n.
Therefore, we suppress the subscript of Ps and the superscript of Ks

µ, s = 1, . . . , n. In
[17], a method, named Method 1, is proposed for the computation of B(u) according
to (13) which relies on the factorization (12). In this method we first multiply Kκ

and Λ(u) and multiply the resulting matrix by Kκ−1 and so on. The main advantage
of using factorization (12) of the Pascal matrix is that it allows us to get rid of the
multiplication operations which are required when we multiply by the Pascal matrix.
This method requires nκ(κ+1)n

2
additions and n(κ+ 1)n multiplications.

In passing we note that an alternative factorization of the Pascal matrix into a
Toeplitz matrix and two diagonal matrices allows the use of the Fast Fourier Trans-
form hereby reducing the amount of the arithmetic operations to O(nκn log2 κ); for
details see Method 2 in [17].

4.2 Determination of the Bernstein form over the unit box

In this subsection we apply the method that is briefly presented in the previous sub-
section for the determination of the Bernstein form over u.

In [15], a method called implicit Bernstein form for the representation and com-
putation of the Bernstein coefficients of a multivariate polynomial is introduced. In
this method one only needs to compute the univariate Bernstein coefficients of each
univariate component monomial of each term. Therefore, the computation of all the
Bernstein coefficients is not required. The calculation of a single Bernstein coefficient
requires then (n + 1)t − 1 arithmetic operations, where t is the number of terms in
the n-variate polynomial [15]. The minimum and maximum Bernstein coefficients are
referenced by multiindices which we label imin and imax. We want to determine the
value of imin in each coordinate direction (for imax we proceed similarly). This task is
facilitated by three tests introduced in [15], see Subsection 5.2. We explain the appli-
cation of the method from Subsection 4.1 by an expository example. Let us assume
that we have already determined the first two components of the multiindex sought,
imin = (0, κ, i3, . . . , in) say.

The i-th Bernstein coefficient given by (4) can be represented as

bi1,...,in =

in∑
jn=0

(
in
jn

)(
κ
jn

) · · · i2∑
j2=0

(
i2
j2

)(
κ
j2

) i1∑
j1=0

(
i1
j1

)(
κ
j1

)aj1,j2,...,jn . (14)

We start with our knowledge of the first two components. Since imin1 = 0 we need to
compute all the Bernstein coefficients b0,i2,...,in , 0 ≤ is ≤ κ, s = 2, . . . , n. Therefore,
the first inner-most sum in (14) does not contribute to the calculation of bimin and we
fix i1 = 0, which corresponds to the first row vector in A of length (κ+ 1)n−1. So we
only multiply the first row in P , which is [1 0 . . . 0], by A which requires no arithmetic
operations. After that we apply the cyclic ordering and we get an (κ+ 1)× (κ+ 1)n−2
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matrix named A′.

Now by imin2 = κ, the computation of all the Bernstein coefficients b0,κ,i3,...,in is
required. Therefore, in the second inner-most sum we fix i2 = κ, which corresponds
to the last row vector in A′ of length (κ+ 1)n−2. So, we need to multiply the matrix
A′ by the row vector which is obtained by division of each entry in last row of P by
the corresponding binomial coefficient

(
κ
j2

)
, j2 = 0, . . . , κ, i.e., by [1 1 . . . 1]. Then we

need κ additions for each column of A′ which makes κ(κ+ 1)n−2 additions. After the
application of the cyclic ordering we obtain a (κ+ 1)× (κ+ 1)n−3 matrix, that we will
denote by A′′.

The remaining indices are not determined. We need to compute all the Bernstein
coefficients b0,κ,i3,...,in . We define Λ′′(u) from A′′ by dividing each of its entries by(
i3
j3

)
. . .
(
in
jn

)
. Then we apply the method from the Subsection 4.1 and use the factor-

ization (12) of the Pascal matrix n − 2 times. The number of arithmetic operations

that are required to calculate these Bernstein coefficients is (n−2)κ(κ+1)n−2

2
additions

and (n− 2)(κ+ 1)n−2 multiplications /divisions.

In the general situation, we first rearrange the matrix A in such a way that zero
indices appear first followed by the ones which are equal to κ, and that the remaining
ones are undetermined. Let σ and ζ be the number of the variables xs with imins = 0
and imins = κ, respectively. Then the complexity for the proposed method is for κ ≥ 2

O((n− σ)κn−σ+1), if ζ = 0,

O(n−σ+1
2

κn−σ), if ζ = 1,

O(max
{
κn−σ, n−σ−ζ

2
κn−σ−ζ+1

}
), if ζ > 1.

The case ζ = 0 follows immediately from the case of n undetermined variables by
replacing n by n−σ. If ζ ≥ 1 we need κ(κ+1)n−σ−1 additions for the first variable xs
with imins = κ and O(κn−σ−ζ+1) for the ζ-th of such variables (if there is any). The
amount of operations for the n−σ− ζ undetermined variables is n−σ−ζ

2
κ(κ+ 1)n−σ−ζ

additions and (n− σ − ζ)(κ+ 1)n−σ−ζ multiplications.

5 Determination of the Simplicial Bernstein
Form for Polynomials

In this section, we consider the determination of the Bernstein form of a multivariate
polynomial p over the standard simplex.

5.1 Monotonicity of the simplicial Bernstein coefficients
of multivariate monomials

Recall that the Bernstein coefficients are linear with respect to the polynomial to which
they are associated. Therefore, we may consider the case of a polynomial consisting
of a single term and may assume without loss of generality that the coefficient of the
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monomial is 1.

Proposition 5.1 Let p(x) = xr, x = (x1, . . . , xn), and |r| = r′ ≤ k. Then its
Bernstein coefficients bi of degree k are increasing with respect to i.

Proof: From (9) it is easy to see that the first nonzero Bernstein coefficient appears
for m = r.

We have for 1 ≤ s ≤ n and 0 ≤ t ≤ k − |r|

br+tes =

(
rs+t
rs

)(
k
r

) (15)

and therefore

br+tes ≤ br+(t+1)es , (16)

provided that t+ 1 ≤ k − |r|.

Remark 5.1 From Proposition 5.1 we conclude that the maximum Bernstein coeffi-
cient is attained at one of the following Bernstein coefficients

br+y =

(
r+y
r

)(
k
r

) , (17)

where |r + y| = k with y ∈ Nn.

5.2 Determination of the Bernstein form over the stan-
dard simplex

We consider now the determination of the minimum and the maximum Bernstein co-
efficients of a polynomial p given by (1) with k = l′ by using Proposition 5.1 and
Remark 5.1. Similarly as in [15] in the tensorial case we employ the following tests:

• Uniqueness: If a component of x, e.g., x1, appears in only one monomial term
of p, then p can be divided into two polynomials g and h, i.e., p = g+h, where g
is the monomial term containing x1 and h contains all the other monomial terms.
By Remark 5.1, the Bernstein coefficients of g are monotone with respect to i1.
The Bernstein patch of h can be calculated from (9) by only computing the
subpatch b0,i2,...,in(h); then the remaining Bernstein coefficients bi1,i2,...,in(h)
are equal to the corresponding coefficients b0,i2,...,in(h).

After having added the two Bernstein patches of g and h, then by Remark 5.1
the maximum Bernstein coefficient of p is attained at imax with |imax| = k if g
is increasing, i.e., the coefficient of g is positive. Define the function f of the
variable y ∈ Nn with |y| = k

f(y) :=
∑
ν≤y

(
y
ν

)(
k
ν

)aν . (18)

If y∗ is a maximizer of f , then imax = y∗. Whereas the minimum Bernstein co-
efficient is attained at imin with imin1 = 0. If g is decreasing, i.e., the coefficient
of g is negative, then imin = y∗ and so |imin| = k and imax1 = 0.
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• Monotonicity: In extension of the uniqueness test let xs be contained in t′

monomial terms of p and the Bernstein coefficients of all these terms are like-
wise monotone with respect to xs. Then imins = 0 and imax = y∗, i.e., |imax| = k,
if all these terms are increasing and imin = y∗, i.e., |imin| = k, and imaxs = 0 if
all these terms are decreasing, where y∗ is a maximizer of f in (18).

• Dominance: Otherwise, let all the terms containing xs be partitioned into two
sets, depending on whether they are increasing or decreasing with respect to xs.
Then the following theorem constitutes the dominance test, cf. [15].

Theorem 5.1 (Location of the minimum Bernstein coefficient under dom-
inance) Let the polynomial p be given by (1). Let p1 and p2 be the polynomials that
contain all the terms of p such that the Bernstein coefficients of these terms are in-
creasing and decreasing with respect to xs, s ∈ {1, . . . n}, respectively. Denote the
Bernstein coefficients of p1 and p2 by bi(p1) and bi(p2), respectively.

If for all i, |i| < k, bi1,...,is+1,...,in(p1) − bi1,...,is,...,in(p1) (19)

> bi1,...,0,...,in(p2)− b
i1,...,k−

n∑
r=1,
r 6=s

ir,...,in
(p2)

then imins = 0.

If for all i, |i| < k, bi1,...,is,...,in(p2)− bi1,...,is+1,...,in(p2) (20)

> b
i1,...,k−

n∑
r=1,
r 6=s

ir,...,in
(p1)− bi1,...,0,...,in(p1)

then imins = k −
n∑

r=1,
r 6=s

ir.

Proof: We present the proof only for the first statement (19); the proof of the second
one (20) is entirely analogous. For all i, |i| < k, we obtain by the linearity of the
Bernstein coefficients, the monotonicity of the bi(p2) with respect to xs, and (19)

bi1,...,is+1,...,in(p) = bi1,...,is+1,...,in(p1) + bi1,...,is+1,...,in(p2)

≥ bi1,...,is+1,...,in(p1) + b
i1,...,k−

n∑
r=1,
r 6=s

ir,...,in
(p2)

> bi1,...,is,...,in(p1) + bi1,...,0,...,in(p2)

≥ bi1,...,is,...,in(p1) + bi1,...,is,...,in(p2)

= bi1,...,is,...,in(p).

Thus the Bernstein coefficients of p are increasing with respect to xs, and the claim
follows.

In other words, the statement of Theorem 5.1 means the following: If the width
of the Bernstein form of one set (treated as the polynomial comprising its terms) is
smaller than the minimum difference between the Bernstein coefficients of the terms
of the other set, then the first set can make no contribution to the determination of
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imins and the monotonicity test applies.

We demonstrate the application of the three tests for the determination of the
minimum Bernstein coefficient, denoted by bimin , by the following example. The de-
termination of the maximum Bernstein coefficient is similar. We make use of the
fact [18] that the Bernstein coefficients of p over an ν-dimensional face of ∆, where
1 ≤ ν ≤ n − 1, are the same as the Bernstein coefficients that are located at the
corresponding ν-dimensional face of the Bernstein patch of p over ∆.

Example 5.1 Consider the polynomial

p(x1, x2, x3, x4) : = x1x
2
2x

2
3 − x2

1x
2
2x4 + 104x2

1x2 − x1x
2
2 + x2

2x3 + 105x1

+ 105x2.

The degree of p is l = (2, 2, 2, 1). We choose k = l′ = 5. The number of the Bernstein
coefficients of p is

(
k+n
n

)
=
(

9
4

)
= 126. An estimate for an upper bound on the number

of the arithmetic operations required for the computation of the Bernstein coefficients
is of magnitude 104, see [18]. We observe the following:

The component x3 appears in the first and fifth term. Since the coefficients of these
terms are positive we conclude that x3 satisfies the monotonicity test and that imin3 =
0. The Bernstein coefficients with i3 = 0 are just the Bernstein coefficients of p over the
face of ∆ given by x3 = 0, i.e., these coefficients are located at a three-dimensional face
of ∆. Hence these Bernstein coefficients are identical with the ones of the polynomial

f(x1, x2, x4) := −x2
1x

2
2x4 + 104x2

1x2 − x1x
2
2 + 105x1 + 105x2,

which is obtained by substituting x3 = 0 in p. In f , the component x4 appears only in
the first term; therefore, x4 satisfies the uniqueness test. Since the coefficient of this
term is negative we conclude that imin4 = k − i1 − i2. The Bernstein coefficients of f
with i4 = k − i1 − i2 are just the Bernstein coefficients of f when x4 = 1 − x1 − x2,
which are the Bernstein coefficients of p over the two-dimensional face of ∆ given by
x3 = 0, x4 = 1− x1 − x2. These coefficients are the Bernstein coefficients of

g(x1, x2) := −x2
1x

2
2 + x3

1x
2
2 + x2

1x
3
2 + 104x2

1x2 − x1x
2
2 + 105x1 + 105x2,

which is obtained by substituting x4 = 1−x1−x2 in f . We note that g is divided into the
two polynomials p1 and p2, where p1(x1, x2) := x3

1x
2
2 +x2

1x
3
2 +104x2

1x2 +105x1 +105x2

and p2(x1, x2) := −x2
1x

2
2 − x1x

2
2. Their Bernstein patches are as follows (rounded to

five decimal places)

B(∆, p1) =


0 21 42 63 84 105
21 42 63 84 105
42 66.46667 90.93333 115.5
63 94.4 125.9
84 125
105

 ,

B(∆, p2) =


0 0 0 0 0 0
0 0 −0.03333 −0.10000 −0.20000
0 0 −0.10000 −0.30000
0 0 −0.20000
0 0
0

 .
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We note that all the Bernstein coefficients of p1 and p2 are nonnegative and non-
positve, respectively. Inequality (19) is fulfilled for x1 and x2. Therefore, we may
conclude that imin = (0, 0, 0, 5).

Alternatively, after we have (only) verified that (19) is fulfilled for x1 we may con-
clude that the Bernstein coefficients of g with i1 = 0 are just the Bernstein coefficients
of p over the edge of ∆ provided by x1 = x3 = 0, x4 = 1− x1 − x2. These coefficients
are the Bernstein coefficients of

h(x2) := 105x2

over [0, 1]. So in order to determine bmin, it suffices to compute only the two Bern-
stein coefficients of h and then to take the smallest one. Since b0(h) = h(0) = 0 and
b1(h) = h(1) = 105 we find again imin = (0, 0, 0, 5).

Since the Bernstein coefficients at the vertices of B(∆) are the values of p at the
respective vertices of ∆, see, e.g., [7, Proposition 3.2 (ii)] we obtain

min
x∈∆

p(x) = p(0, 0, 0, 1) = 0.

6 Determination of the Bernstein Form for Ra-
tional Functions

6.1 Tensorial Bernstein form

We present our results on the determination of a range enclosure of a rational function
over a box. In this section we assume that p and q are polynomials in n variables
with Bernstein coefficients bi(p) and bi(q), 0 ≤ i ≤ l, respectively, over a box which
is contained in a single orthant of Rn. We also assume that all Bernstein coefficients
bi(q) have the same strict sign (and without loss of generality we may assume that all
of them are positive). We use the notation

bi(f) :=
bi(p)

bi(q)
, 0 ≤ i ≤ l, (21)

and call these quantities the Bernstein coefficients of the rational function f := p
q

(of degree l) over x. The interval spanned by the minimum and the maximum of the
Bernstein coefficients of f provides an enclosure for the range of f over x [10]. For
properties of this form see [4].

Now we extend the three tests given in Section 5 to the rational case. We consider
here only the determination of the minimum Bernstein coefficient; the determination of
the maximum Bernstein coefficient is analogous. Also we do not consider the unique-
ness test since this test is included in the monotonicity test.

• Monotonicity: Assume that the Bernstein coefficients of all monomial terms
containing xs in p are likewise monotone with respect to xs and those in q are
monotone in opposite sense. Then,

– if the Bernstein coefficients of p are increasing and those of q are decreasing
with respect to xs, then imins(f) = 0,
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– if the Bernstein coefficients of p are decreasing and those of q are increasing
with respect to xs, then imins(f) = ls.

• Dominance: Assume that all the terms containing xs in both p and q can be
partitioned into two sets, depending on whether they are increasing or decreas-
ing with respect to xs such that the Bernstein coefficients of two polynomials
are likewise monotone.

Theorem 6.1 (Location of the minimum tensorial Bernstein coefficient un-
der dominance for rational functions) Let polynomials p and q of maximum degree
l be given and let p1 and p2 be the polynomials that comprise all the terms of p such
that the Bernstein coefficients of these terms are increasing and decreasing with respect
to xs, respectively. Then for 0 ≤ i ≤ l, is 6= ls, the following statements are true:
If for p

bi1,...,is+1,...,in(p1) − bi1,...,is,...,in(p1) (22)

> bi1,...,0,...,in(p2)− bi1,...,ls,...,in(p2)

is satisfied and for q the inequality

bi1,...,is,...,in(q) > bi1,...,is+1,...,in(q), (23)

is fulfilled then imins(f) = 0.
If for p

bi1,...,is,...,in(p2) − bi1,...,is+1,...,in(p2) (24)

> bi1,...,ls,...,in(p1)− bi1,...,0,...,in(p1)

is satisfied and for q the inequality

bi1,...,is+1,...,in(q) > bi1,...,is,...,in(q), (25)

is fulfilled then imins(f) = ls.

Proof: We will present the proof only for the first statement; the proof of the second
one is entirely analogous. For all i = 0, . . . , l, is 6= ls, it follows similarly as in the proof
of Theorem 5.1 that

bi1,...,is+1,...,in(p) > bi1,...,is,...,in(p), (26)

and by (23) we may conclude that

bi1,...,is+1,...,in(f) > bi1,...,is,...,in(f). (27)
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6.2 Simplicial Bernstein form

The tests for the tensorial rational case carry over to the simplicial case with only
minor modifications. We assume that p and q are polynomials in n variables with
Bernstein coefficients bi(p) and bi(q), |i| ≤ k, respectively, over ∆. We assume again
that all Bernstein coefficients bi(q) are positive. For the rational function f := p

q
we

use the notation

bi(f) :=
bi(p)

bi(q)
, for all i, |i| ≤ k. (28)

The interval spanned by the minimum and the maximum of these quantities provides
an enclosure for the range of f over ∆ [10]. For properties of this form see [19].

We employ the same tests as in Subsection 6.1. Then Theorem 6.1 remains in force
with the necessary changes to be made if we replace therein the reference to (22) and
(24) by the reference to (19) and (20), respectively.
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