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Abstract

In many practical situations, it turns out that the set of possible val-
ues of the deviation vector is (approximately) a super-ellipsoid. In this
paper, we provide a theoretical explanation for this empirical fact – an
explanation based on the natural notion of scale-invariance.
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1 Formulation of the Problem

Need to describe uncertainty domains. The intent of the mass production of
a gadget is to produce gadgets with identical values (x1, . . . , xn) of the desired char-
acteristics xi. In reality, of course, different gadgets end up having slightly different

values x̃i of these characteristics: ∆xi
def
= x̃i−xi 6= 0. For each of these characteristics

xi, we usually have a tolerance bound ∆i for which |∆xi| ≤ ∆i, so that possible val-
ues of ∆xi form an interval [−∆i,∆i]. Thus, possible values of the deviation vector
∆x = (∆x1, . . . ,∆xn) are located in the box [−∆1,∆1]× . . .× [−∆n,∆n].

In practice, not all vectors ∆x from this box are possible. It is therefore desirable
to describe the set of all possible deviation vectors ∆x. This set is known as the
uncertainty domain.

Shall not we also determine probabilities? At first glance, it seems that we
should be interested not only in finding out which deviation vectors ∆x are possible
and which are not, but also in how frequent different possible vectors are. In other
words, we should be interested not only in the uncertainty domain, but also in the
probability distribution on this domain.

In reality, however, it is not possible to find these probabilities. Indeed, the manu-
facturing process may slightly change (and often does change). After each such change,
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the tolerance intervals and the resulting uncertainty domain remain largely unchanged,
but the probabilities change (often drastically).

Empirical shapes of uncertainty domains. Empirical analysis has shown that in
many practical cases, the uncertainty domain can be well approximated by a super-

ellipsoid
n∑
i=1

(
|∆xi|
σi

)p
≤ C for some values σi, p, and C, and the accuracy of this

approximation is higher than for other approximation families with the same number
of parameters; see, e.g., [4, 5].

Historical comment. Super-ellipsoids were first successfully used to describe uncer-
tainty domain in [3]. Super-ellipsoids are also actively used in image processing, to
describe different components of an image; see, e.g., [2, 6, 7, 10].

What we do in this paper. In this paper, we provide a theoretical explanation for
this empirical phenomenon.

2 Our Idea

Let us apply probabilistic approach. In reality, there is some probability distribu-
tion ρi(∆xi) for each of the random variables ∆xi. Since we have no reason to assume
that positive values of ∆xi are more probable than negative values or vice versa, it
makes sense to assume that they are equally probable, i.e., that each distribution
ρi(∆xi) is even: ρi(∆xi) = ρi(|∆xi|).

Similarly, we assume that the corresponding random variables are independent.
This makes sense, since we have no reasons to believe that different deviations are
statistically dependent. In this case, the overall probability density function (pdf) has

the form ρ(∆x) =
n∏
i=1

ρi(|∆xi|).

Usually, we consider a deviation vector possible if its probability exceed a certain

threshold t. Thus, the desired set has the form St
def
= {∆x : ρ(∆x) ≥ t}.

Scaling and scale-invariance: an informal description. Numerical values of the
deviations ∆xi depend on the choice of a measuring unit; if we replace the original
unit by a unit which is λ times smaller, then for the exact same physical situation, we
get the new numerical values ∆x′i = λ ·∆xi.

Since the physics remains the same, it makes sense to require that the uncertainty
domains do not change under such a re-scaling.

To be more precise, the pdf threshold t may change, but the family of such sets
should remain unchanged: {S′t}t = {St}t, where S′t corresponds to the re-scaled pdf
ρ′(∆x) = const · ρ(λ ·∆).

We will prove that under this scale-invariance, the corresponding sets St are exactly
super-ellipsoids. Thus, we will get the desired explanation.

3 Definitions and the Main Result

Definition. Let n > 1, and let ρ(y) = (ρ1(y1), . . . , ρn(yn)) be a tuple of positive
symmetric (ρi(−yi) = ρi(yi)) smooth functions of one variable.

• For every t > 0, let us denote the set

{
(y1, . . . , yn) :

n∏
i=1

ρi(yi) ≥ t
}

by St(ρ).
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• We say that a tuple ρ(y) is bounded if the set St(ρ) is bounded for every t.

• For every λ > 0, by a λ-re-scaling of the tuple ρ(x), we mean a tuple ρλ(y), for

which ρλ,i(yi)
def
=

1

λ
· ρi(λ · yi).

• We say that a tuple ρ(y) is scale-invariant if for every λ > 0, re-scaling does not
change the family St: {St(ρ)}t = {St(ρλ)}t.

Main Result. If the tuple ρ(y) is bounded and scale-invariant, then each set St(ρ) is
a super-ellipsoid.

Comments.

• Vice versa, it is easy to prove that each super-ellipsoid can be represented as
a set St for the bounded and scale-invariant distributions of the type ρi(yi) =

const · exp

(
−|yi|

p

σpi

)
. Such probability distributions indeed occur as probability

distributions of measuring errors corresponding to some measuring instruments;
see, e.g., [9].

• Processing super-ellipsoids is similar to processing ellipsoids; see, e.g., [8].

Proof. For convenience, let us consider logarithms ψi(yi)
def
= − ln(ρi(yi)). Once

we take the negative logarithm of both sides of the inequality
n∏
i=1

ρi(yi) ≥ t that

describes the set St(ρ), we get an equivalent description
n∑
i=1

ψi(yi) ≤ c, where we

denoted c
def
= − ln(t). In these terms, scale-invariance means that the corresponding

family of sets is the same for all c.

In terms of the new functions ψi(yi), scaling means

ψλ,i(yi) = − ln(ρλ,i(yi)) = − ln

(
1

λ
· ρi(λ · yi)

)
=

ln(λ)− ln(ρi(λ · yi)) = ψi(λ · yi) + ln(λ), (1)

i.e., has the form ψλ,i(yi) = ψi(λ · yi) + ln(λ).

In these terns, the fact that scaling does not change the family of sets St means
that if two tuples (y1, . . . , yn) and (z1, . . . , zn) always belong or not belong to the same

sets – i.e., have the same value of the corresponding sum
n∑
i=1

ψi(yi) =
n∑
i=1

ψi(zi), then

the re-scaled functions should also have the same value of the sum, i.e.,
n∑
i=1

ψλ,i(yi) =

n∑
i=1

ψλ,i(zi). Substituting the above expression for ψλ,i(yi) into this formula, we get

n∑
i=1

(ψi(λ · yi) + ln(λ)) =

n∑
i=1

(ψi(λ · zi) + ln(λ)), (2)

i.e.,

n · λ+

n∑
i=1

ψi(λ · yi) = n · λ+

n∑
i=1

ψi(λ · zi). (3)
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Subtracting n · λ from both sides of this equality, we get

n∑
i=1

ψi(λ · yi) =

n∑
i=1

ψi(λ · zi). (4)

Thus, we have the following property:

• if
n∑
i=1

ψi(yi) =
n∑
i=1

ψi(zi),

• then
n∑
i=1

ψi(λ · yi) =
n∑
i=1

ψi(λ · zi).

In particular, this property holds if we perform very small changes to only two of
the values yi, i.e., if for some a 6= b, we replace ya with za = ya + δa and yb with
zb = yb + δb; for i 6= a, b, we take zi = yi.

In this case,

ψa(za) = ψa(ya + δa) = ψa(ya) + ψ′a(ya) · δa + o(δ), (5)

where ψ′a(ya), as usual, denotes the derivative of the function ψa(ya). Similarly, we
have

ψb(zb) = ψb(yb + δb) = ψb(yb) + ψ′b(yb) · δb + o(δ). (6)

Thus,
n∑
i=1

ψi(zi) =

n∑
i=1

ψi(yi) + ψ′a(ya) · δa + ψ′b(yb) · δa + o(δ), (7)

and the original equality
n∑
i=1

ψi(yi) =
n∑
i=1

ψi(zi) takes the form

ψ′a(ya) · δa + ψ′b(yb) · δb + o(δ) = 0. (8)

Similarly, we have

ψa(λ · za) = ψa(λ · (ya + δa)) = ψa(λ · ya + λ · δa) =

ψa(λ · ya) + λ · ψ′a(λ · ya) · δa + o(δ) (9)

and

ψb(λ · zb) = ψb(λ · (yb + δb)) = ψb(λ · yb + λ · δb) =

ψb(λ · yb) + λ · ψ′b(λ · yb) · δb + o(δ). (10)

Thus, the equality
n∑
i=1

ψi(λ · yi) =
n∑
i=1

ψi(λ · zi) takes the form

λ · ψ′a(λ · ya) · δa + λ · ψ′b(λ · yb) · δb + o(δ) = 0, (11)

i.e., equivalently,

ψ′a(λ · ya) · δa + ψ′b(λ · yb) · δb + o(δ) = 0. (12)

So, the scale-invariance condition takes the following form:

• if ψ′a(ya) · δa + ψ′b(yb) · δb + o(δ) = 0,

• then ψ′a(λ · ya) · δa + ψ′b(λ · yb) · δb + o(δ) = 0.
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The first condition is satisfied if we choose

− δb
δa

=
ψ′a(ya)

ψ′b(yb)
+ o(δ). (13)

The satisfaction of the second condition then means that

− δb
δa

=
ψ′a(λ · ya)

ψ′b(λ · yb)
+ o(δ), (14)

i.e., that
ψ′a(λ · ya)

ψ′b(λ · yb)
=
ψ′a(ya)

ψ′b(yb)
+ o(δ). (15)

Since this is true for all δ, then we can take δ → 0 and conclude that

ψ′a(λ · ya)

ψ′b(λ · yb)
=
ψ′a(ya)

ψ′b(yb)
. (16)

This equality is equivalent to

ψ′a(λ · ya)

ψ′a(ya)
=
ψ′b(λ · yb)
ψ′b(yb)

. (17)

The left-hand side of this equality does not depend on yb; thus, the right-hand side
does not depend on yb either. Hence, this ratio depends only on λ. Let us denote this
common ratio by r(λ). Then, for each a, we have

ψ′a(λ · ya)

ψ′a(ya)
= r(λ), (18)

i.e., equivalently,
ψ′a(λ · ya) = r(λ) · ψ′a(ya). (19)

The derivative of a smooth function is always measurable, and thus, the function
r(λ) is also measurable, as a ratio of two measurable functions.

Now, let us take arbitrary values λ1 > 0 and λ2 > 0. Then, we can re-scale first
by λ2, then by λ1, or we can right away re-scale by λ = λ1 · λ2. In the first case, the
above formula has the form

ψ′a(λ2 · ya) = r(λ2) · ψ′a(ya) (20)

and then

ψ′(λ1 · (λ2 · ya)) = r(λ1) · ψ′(λ2 · ya) = r(λ1) · r(λ2) · ψ′a(ya), (21)

i.e.,
ψ′(λ1 · λ2 · ya) = r(λ1) · r(λ2) · ψ′a(ya). (22)

In the second case, we get

ψ′(λ1 · λ2 · ya) = r(λ1λ2) · ψ′a(ya). (23)

Since the left-hand sides of the two equalities (22) and (23) coincide, their right-hand
sides must coincide as well, i.e., we must have r(λ1 · λ2) = r(λ1) · r(λ2).

It is known (see, e.g., [1]) that all measurable functions satisfying this property
have the form r(λ) = λβ for some real number β. Now, from the condition

ψ′a(λ · ya) = r(λ) · ψ′a(ya) = λβ · ψ′a(ya), (24)
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for λ = z and ya = 1, we conclude that ψ′a(z) = ψ′a(1) · zβ , i.e., that ψ′a(ya) = ca · yβa
for some constant ca.

Integrating, for β 6= −1, for ya > 0, we get ψa(ya) = ka · ypa + Ca for p = β + 1,

ka
def
=

ca
β + 1

, and for some constant Ca. Since each function ψi(yi) is even, we get

ψi(yi) = ki · |yi|p + Ci.

So, the condition
n∑
i=1

ψi(yi) ≤ c takes the equivalent form

n∑
i=1

ki · |yi|p ≤ c0
def
= c−

n∑
i=1

Ci, (25)

i.e., the form of the super-ellipsoid. For this super-ellipsoid to be bounded, we need
to have p > 0.

To complete the proof, it is sufficient to consider the case when β = −1. In this

case, integration leads to ψi(yi) = ki · ln(|yi|)+Ci, so the condition
n∑
i=1

ψ(yi) ≤ c takes

the form
n∑
i=1

ki · ln(|yi|) ≤ c0
def
= c−

n∑
i=1

Ci.

Exponentiating both sides, we get an equivalent inequality
n∏
i=1

|yi|ki ≤ exp(C), for

which the corresponding set St is unbounded.

So, in the bounded cases, we always have a super-ellipsoid. The result is proven.
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